"

R. CHEN et al.: Analysis of Thermoluminescence Data 251

phys. stat. sol. (a) 79, 251 (1983)
Subject classification: 13.4; 20.3

Department of Physics, Simon Fraser University, Burnaby')

Analysis of Thermoluminescence Data Dominated
by Second-Order Kinetics

By

R. CueN?), D. J. HuxtLEY, and G. W. BERGER

In the analysis of the thermoluminescence glow curves, and in particular when applied to TL dosi-
metry and TL dating of archaeological and geological samples, a first order behaviour of the peaks
involved is usually implicitly assumed. In this work the TL response for second order kinetics is
described and shown that the usual analysis, in which a linear growth of TL with excitation dose is
assumed, is correct to a good approximation provided that the curves are first shifted in temperature
so that their peaks coincide. This is true for a single isolated peak and for a series of overlapping
peaks.

Dans analyse des courbes de thermoluminescence (TL), particuliérement quand elle est appliquée
ATL dosimetrie et la datation TL d’échantillons archéologiques et géologiques, on suppose réguliére-
ment, quelquesfois implicitement, une conduite de premier ordre des pics TL. Nous considérons ici
les autres possibilités de 'ordre de la cinétique et nous donnons, par example, une analyse détaillée
des pics TL de deuxiéme ordre. Nous suggérons que pour établir la propriété de deuxiéme ordre
d’un pic, il faut examiner quelques caractéristiques des resultats expérimentaux. Il faut considérer:
a. la symétrie du pic, b. le changement de sa position quand on excite Péchantillon avec des doses
différentes, et c. la dépendance non-linéaire de la dose des regions différentes du pic. Nous considé-
rons aussi le ,,plateau-test* qui a été utilisé pour établir la stabilité thermique des pics de TL. Cet
examen doit étre modifié dans les cas ot le deuxiéme ordre se trouvera dominant. La modification
suggerée est I’étude du changement de position des pics lorsque les maxima coincident, et 'examen
du ,,plateau’ dans les pics ainsi transformés. Cette methode est examinée pour un pic unique syn-
thétique (calculée par ordinateur) de deuxiéme ordre, et pour une combinaison de quatre pics
synthétiques de deuxiéme ordre.

1. Introduection

The thermoluminescence (TL) of minerals is widely used for the determination of
past radiation doses. In archaeology and, to a limited extent, in geology, such doses
when combined with dose rates (which are separately evaluated) are used to determine
the age of past events in the technique of thermoluminescence dating. Details of the
methods used are found in books by Aitken [1] and Fleming [2]. It is generally assumed
implicitly that the mineral grains extracted from a specimen (pottery, brick, etc.)
exhibit first order kinetics. The possibility of second order or other kinetics is seldom
mentioned, and apparently seldom observed.

First order kinetics is characterized by a TL glow curve (light intensity versus
temperature) which increases uniformly linearly with radiation dose. In such a case
the determination of a past radiation dose is straightforward even if the TL results
from a complex distribution of electron (or hole) traps. In the case of second order
kinetics the glow curve resulting from a single trap shows a markedly different be-
haviour for which as yet no simple method of analysis exists. In this work we find that
an ad hoc method in which the glow curves were shifted so that their peaks aligned,
described in Berger and Huntley [3], has significant justification.
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The motivation for this work arose in the course of studies aimed at the development
of a TL dating method for sediments (Berger and Huntley [3], Wintle and Huntley [4])
which has been hampered by second order kinetics behaviour shown by some samples.
In this context, the work of Levy [10, 19] should be mentioned, in which second order
kinetics TL peaks were reported in albite (NaAl Sig0g) [19, 26] as well as in feldspars
and ocean sediments [10]. Putative second order and other non-first order peaks have
also been reported in quartz and feldspar [23] and in quartz in some more recent works
[24, 25]. :

Finally, we note that although a few authors studying well defined crystalline solids
have suggested that their samples exhibited second order behaviour, the evidence
presented is inadequate. We present here a set of criteria which we hope will allow
more satisfactory identification.

2. Second Order Peaks — Basie Considerations

The relatively simple case of a single TL peak resulting from a single trap and a single
recombination centre is mathematically represented by a set of three simultaneous
differential equations in the three unknown functions: n(t) — the concentration of
electrons in traps at time ¢, m(t) — the concentration of holes in centres and n.(t) — the
concentration of free electrons in the conduction band (see Section 2.1 in [5]). Adding
a simplifying assumption (e.g. Halperin and Braner [6]), that no substantial concen-
tration of electrons builds up in the conduction band, the following expression emerges

I:—d—m—:snexp( E) Awm (1)

de TkT) [Agm + AN —n)]’

where I is the TL intensity (in arbitrary units), s — the frequency factor (s7%), & — the
activation energy (eV), k¥ — the Boltzmann factor (eVK™), T' — the absolute tem-
perature (K), N — the concentration of traps (m~3) (out of which » have electrons at
a given moment), and 4, and 4, are the recombination and retrapping probabilities
respectively (m3s~!). Assuming dominating recombination, i.e. Aym > Ay(N — n)
one obtains the first order case
I dn fE . ,,&‘ ‘,t 92

————sexp(—ﬁ)n @
first suggested by Randall and Wilkins [7] and extensively investigated later on. The
solution of this equation for a linear heating function 7' = T, + Bt yields an asymme-
tric curve having a ‘“‘symmetry factor” u, =~ 0.42 where y, = d/w, and where 0 =
=T, — Ty, o = Ty — T, and Ty, is the temperature at the maximum; 7, and 7T,
are the low and high half-maximum-intensity temperatures [8].

Garlick and Gibson [9] were the first to investigate the case of non-negligible retrap-
ping. Assuming equal recombination and retrapping probabilities 4, = A4, as well
as equal concentrations of electrons and holes in traps and centres respectively,
n = m, they obtained

d IE
=—-£=(%)exp(—ﬁ)n2. (3)

A similar equation which may be more likely to occur results from “dominating re-
trapping”’, namely A,(N — n)> A,m, along with the assumptions that the trap is
far from saturation, n << N, and, again n = m. Considering (1) with these assumptions,
one gets

dn sd .,

E
I:_EZ=(—ZVTD)6XP(—W)n2. (4)
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P Fig. 1. A set of ideal second order glow curves with different ini-
tial trap fillings, (6). The parameters used were B = 1.1 eV, s’ =
=10"m%1, f=1Ks"1, (a)n, =2 x 106, (b)4 x 10, (c)
w‘;zh 8 x 1016, (d) 1.6 x 10%Y, (e) 3.2 x 10'7, (f) 6.4 X 10 m~3
i
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Equations (3) and (4) can be written as
C
dn B
b I=—— =snexp|— 5
) 4 di P\ 7T ®)

4 451 500 . . . . .
v ’ 71K —  where s’ isa constant having dimensions of m3s~1, which

is s/N in the formre case and s4,,/NA, in the latter. The
solution of (5) for a constant heating rate is

T
I = njs’ exp (—k—E;;) [1 + (%) f exp ( —%) dT’J_2, (6)

T,
where 7, is the initial value of n at T,. A set of curves of 1 (7) for varying n, is shown
in Fig. 1. Similar sets have been previously published [9, 10]. Such curves are nearly
symmetric with y, ~ 0.52.

We emphasize that by no means does one have to assume that a given TL peak is
necessarily of first or second order. On the contrary, the sets of assumptions made
above leading to the first or second orders were quite particular, and many kinds of
intermediate cases are possible. The main reason for an in-depth study of second order
kinetics is to point out features which may be common to non-first-order kinetics
cases.

Characteristics of these second order curves which distinguish them from first order
ones are:

(i) A decrease in the temperature of the peak, 7', with increasing n,.

(i) A slightly superlinear increase of the peak intensity, I,,, with Ng.

(iii) A quadratic increase in intensity with n, at a given temperature well below the
peak.

(iv) an asymptotic approach to a constant intensity with increasing n, at a given
temperature well above the peak.

The increase in TL with n, at a fixed temperature is shown in Fig. 2; this shows both
(iii) and (iv) as the peak moves from above to below this temperature.

70
'._\R
=
N0 Fig. 2. Second order growth curve, (7) with Z = n,/C.
Note that approach to a constant TL at large n,is
not due to saturation (traps all filled) and that this
curve is very different from that in the first order case
p ZI 4: when non-linearity due to saturation may occur
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3. Detailed Considerations

Let us consider the dependence of I on n, for a given value of T from (6). The integral
on the right-hand side starts off from 0 at 7' = T, and grows rapidly so that at a high

T
enough temperature (well above the peak) we have (nys'/8) [ exp (—E[kT")dT"> 1.
T

Thus if T is well below the maximum, I ~ nZ whereas if 7' is well above the maximum,

I is independent of n,. At a fixed 7', (6) can be simplified to

I=4 (1 4 %)—2, (7)

where 4 and C are constants defined by (6) and (7). This is the curve shown in Fig. 2.

For dosimetry applications, the best measure is the area under the whole glow curve,
because this is proportional to 7,. (Physically this arises because each trapped electron
yields a photon in the model.) However, since in many cases TL peaks are accompanied
by adjacent overlapping peaks, the behaviour of which may be different from the main
peak, one quite often takes the intensity at the peak, I, = I(T4,), as a measure of the
accumulated dose. Let us thus consider I = f(n,, T) with fixed s’, B, and B. The ex-
pression for the differential at 7' = T\, is

dI, = (%) dn, (8)
because (8f/87)r, = 0 here. Using (6) and (8) we obtain

Ay _[BE 0 (BT | dr o

I (nokT%s") o

or which we can write a solution
Iy~ ny ,
where
BE exp (E[kTy)
(ngkT%s")

because y is very nearly constant. One can test the near constancy of y by choosing a
set of parameters and solving numerically the condition for 7', (see e.g. [8]) and
substituting in (10).

An alternative approach is to use the asymptotic series approximation (e.g. see [12])
for the integral in (6)

T
E kT? kT\¢ . kT? E
i = o ) (F) ] o))

0

(10)

(11)
where 7(x) denotes the asymptotic series [8].
From this it is immediately seen that
4 B
exp | — 7 dT = F(Ty, E) — F(T,, E) (12)

Ty
however, since F(T, E) is a rapidly increasing function of T, the integral in (12) is
very accurately represented by F(T'y, E) provided that 7T, is not very close to T,
(which is in practice usually the case). Denoting kTy/E by Xy, we obtain the peak
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condition
1 (kT2 E 0 s
—=(fEm? - — 24X3 — .. 13
= () exp (— ) 0+ 2K — 6XE 4 245 — ) (13)
and therefore in (10)
y =14 2X, —6X2 4+ 24X3 — ... =2 — (X)) . (14)

In most cases that are likely to be considered, X, < 0.1 (in the examples in Table 1,
0.03 < X, < 0.08), thus we see immediately that for second order peaks the maximum
intensity I,, varies slightly superlinearly with the initial filling of traps n, since y in
(14) is slightly larger than unity. The best accuracy in evaluating y is by taking the
terms down to the smallest one in absolute value and adding one half of the next, i.e.

K
y=14+ 3 @+ 1! (—1)i+1 X}, + L (K + 2)! (—1)E+2 XE+1 | (15)
=1

where K is the integer part of 1/X,. The procedure for evaluating and checking its
approximate constancy is to choose a set of parameters, solve (13) numerically to get
T, find X, = kT, [|E and insert into (15).

Three points are to be considered here. First, looking at (6) and (10) one can imme-
diately see that the relevant parameter to be varied is s'n,y/f rather than s, n, or B
separately. Changing s” and 7, (for given £ and f) in such a way that the product s'n,
remains the same would leave 7', unchanged. In this sense, s'n, is a ‘“frequency factor”’
having units of s~ similarly to the s parameter in the first order case (equation (2)),
but unlike the first order case, this parameter is dependent on the initial filling n,.

The second point has to do with the range of values of s'n, that are physically rele-
vant. As discussed above, the value of s’ is given either by s/N or by (s4,/NA,) when
retrapping dominates, i.e. 4, is large as compared to 4. Since n, << N in all cases
(g = N when the traps are filled to saturation), n,s’ should be lower than the fre-
quency factor s. Since s is known (e.g. [8]) to be up to 103 s-1, s'n, should be smaller.
In Table 1, some results of 7', X,, and y are given for s'n, = 104, 108, 102 s~1 and

Tablel

Table values of peak temperature, Ty, Xy, = k7T'y,/E, and peak growth exponent, y, for
several values of s'n, and E in second order kinetics. A heating rate f = 1K s~ was
assumed. For other heating rates the table can be used if the first column is relabelled
8'n/f in units of K1

s'ng (s77) E (eV) T (K) X 4

104 0.5 450.4 0.0776 1.1273
104 1.0 860.7 0.0742 1.1226
104 1.5 1258.3 0.0723 1.1200
104 2.0 1647.9 0.0710 1.1182
108 0.5 275.4 0.0475 1.0836
108 1.0 534.7 0.0461 1.0814
108 1.5 788.6 0.0453 1.0801
108 2.0 1039.1 0.0448 1.0793
101z . 0.5 196.1 0.0338 1.0615
1012 1.0 383.9 0.0331 1.0604
1012 1.5 568.7 0.0327 1.0597

1012 2.0 751.6 0.0324 1.0592
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E =0.5,1.0, 1.5, 2.0 eV. 1t is readily seen that the value of y is hardly dependent on
the activation energy and does depend more appreciably on the parameter s'n,.

The third point to be considered is that on one hand the value of y is the power of
dependence of I, on n,, namely it expresses the variation of I, with n,. On the other
hand, for a given value of the constant s’, y depends on =, as seen in Table 1. Note
however, that y can be considered to be practically a constant when n, is varied by
say, an order of magnitude which is in many cases the range of variation of the excita-
tion dose in experiments, whereas the appreciable variation of y with s'n, shown in
Table 1 is related to changes of factors of 10* in n,,.

4. Application of the Plateau Test to Single Second Order Peaks

Because of the nonlinear growth curve, and the shift in temperature (Fig. 2), it is
evident that application of the plateau test [1] as used in first-order cases is quite
inappropriate. Berger and Huntley [3] found that shifting a set of experimental curves
along the temperature axis in such a way that the peaks were aligned and then applying
the plateau test, gave encouraging results. This procedure lacked proper theoretical
justification and we explore this now. The problem is not amenable to algebraic
analysis so instead we use theoretical curves generated from (6) and using parameters
which give curves similar to those we usually observe in sediments.

The parameters we use are £ = 1.1 eV, s’ = 10~ m3~1, # = 1 Ks~1and n, between
10 and 10* m~3. Fig. 3 shows curves for three values of n,, shifted to have their
maxima coincide. Curve d shows the ratio of the values for b and a. The variation of
this ratio with temperature is rather small, about 109, in a range where the intensities
of a and b change by a factor of ~ 6. The approximately constant ratio, curve d, is
to be compared to the exactly constant ratio for first order TL peaks.

An alternative way of discussing the matter is to examine the growth curves at a
fixed temperature (after shifting). Fig. 4 shows four of these; that at the peak is curve b
in which the slight superlinearity (y = 1.07) is seen. The dependence of the intensity
on ny, 30 K below and above 7', are shown in curves a and c respectively. The depend-
ence of n, is practically linear in both. The behaviour at 60 K above 7', is shown in
curve d. This is repeated in curve d” on a (X10) scale where it is seen to be slightly
sublinear. It is to be noted that both the superlinearity and sublinearity depicted
mainly in curves b and d’ respectively are rather minor because once the peaks are
shifted to have maximum temperatures coincide, they have rather similar shapes as
seen in Fig. 3.

In cases intermediate between first and second order it seems likely that linear
growth curves will result if the TL curves are first shifted to align their maxima. We
make this suggestion because it is true in both extremes, there being linearity in first
order (no shift required) and near linearity in second order.

In this context, the work by Balarin [12] should be mentioned. Balarin solved the
extension of (5) in which n? is replaced by n® where b is a general kinetic order, not
necessarily 1 or 2 (see also (16) below). He further normalized the resulting curves with

5 C Fig. 3. Three calculated second order

y curves with £ = 1.1eV, ¢/ = 107¢m=3s~1

and g = 1 Ks™L. Curve (a) is for n, =

o2y = 101%m=3, (b) for n, =2 X 1018 m3,
& and (c) for ny = 3 X 10 m~3. Curve b
2 is shifted by 12 K upwards and c¢ by
§ 18 K so that the maxima coincide. Curved
! represents the approximate plateau,

2750 500 550 namely, the ratio of values of (shifted)
T(K) ——— b to a
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Fig. 4. The dependence of different parts of shifted second or-
der calculated peaks on the initial filling. The peaks are all
75 shifted to have their maxima at 453.2 K. The dependence 30 K
below the maxima (a), at the maximum (b), 30 K above the maxi-
A mum (c) and 60 K above the maximum (d) are shown. (d’) gives
w2 the same data as (d) on a scale (X 10). The parameters chosen
mi 70 were B = 1.1eV, s’ = 107 ¢ m3?~1 and § = 1 Ks™% n, varied be-
= tween 1.47 X 10 and 10 X 1016 m-3
=
S
05
0

5 10
10" ——

respect to their maxima. It is possible that results similar to that depicted by curve d
in Fig. 3 can be more analytically deduced from his results for b — 2. This is not
entirely straighforward, however, since the element of shifting the peak is not so
simple. We therefore feel that at present, the empirical-numerical conclusion suffices.

5. Applieation to a Distribution of Peaks

In real cases which appear to be of second order kinetics ([2, 3, 10]) the observed curve
may and usually does consist of combinations of peaks rather than a single peak. In
order to simulate this situation, we have taken a combination of four second order
peaks, the sum of which agrees reasonably well with an experimental curve. It is shown
as curve a of Fig. 5. The calculation was repeated with all the initial concentrations
multiplied by 6.8 and the curve shifted 30 K to make the peaks coincide. In order to
compare the shapes of the curves, we have normalized the results by dividing the in-
tensity values by the same factor of 6.8; this is shown as curve b. Although the two
curves do not coincide, the difference is within 109, from 40 K below to 100 K above
the peak. The growth curves in this case looked very much like those of Fig. 4.

We thus conclude that the plateau test using shifted curves should be useful when

second order kinetics is present, and probably also in cases intermediate between first
and second order.

Fig. 5. Calculated combinations of four inde-
pendent second order curves. The parameters

5 chosen for curve (a) were: E, = 1.1 eV, 8=
T b =5 X 1078 m3~L, n, =7 x 1014 m=3; E, =
- = 1.175 eV, s, =5 x 1076 m3s~1, Ny, = 4 X
w2 101 a X 104 m=3; By =1.25eV,s; =5 X 10-6 m-3g-1
= Mgy = L5 X 10 m™3; E, = 1.35 eV, s =
= =5 X 10%m3s1, ny, = 0.8 x 104 m-3, In
E o5t , curve (b) all, the values or ng; were increased by
T a factor of 6.8. In order to see clearly the varia-
b Z tion in the shape, b is normalized by dividing

1 1 ] Il

0 the final results by the same factor of 6.8. Also
450 500 550 600 600 700 curve b is shifted by 30 K upwards in temper-
TH|—  ature

17 physica (a) 79/1
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6. Criteria Indicating Second Order Kinetics

Some of the features of second order kinetics curves have been discussed above. If
one has a clean single second order peak, each of these features can serve to classify
the peak as second order. In practice, however, the situation may be complicated by
two aspects briefly mentioned above.

1. Even if the peak is single, it is not necessarily represented by either (2) or (5).
Two kinds of intermediate cases have been discussed in the literature, the “general
order’” (e.g. [12, 13])

dn b E
I—-‘—Et——S'n exp(—k—,ﬁ) (16)
with 1 < b < 2 the (effective) order of the kinetics, and the “mixed order’ [14]
dn E E
— I en2 = ’ _ =
I = =" exp( kT)+anexp( kT)' (17)

Both approaches are, however, empirical in nature and have physical justification
only in specific cases, the general behaviour may be expected to be even more com-
plicated. Some curves for different A, [A, ratios and different initial m|n ratios are
published by Levy [10].

9. Some of the features of a curve consisting of, say, a main second order peak and
accompanying satellites may not be those of a pure second order peak due to the effect
of the additional ones. In addition, it is possible for a second-order characterstic to
arise from a more complicated trap and recombination centre situation than that
assumed. One should, therefore, demonstrate several properties of second order kine-
tics in order to establish that a peak is of second order.

Tor these reasons we present now a set of criteria which should be checked before
claiming a particular peak follows second order kinetics.

I. Peak shape: In the (rare) case that one has a single peak, the shape of the peak
provides sufficient information on the kinetics. ug =~ 0.52 is characteristic of second
order and g = 0.42 of first order; values between these are expected for intermediate
orders [5, 11].

I1. Peak shift: In second order peaks, or in fact, in most non-first order peaks, the
maximum shifts to lower temperatures at higher initial trap fillings 7, or experimen-
tally, at higher doses. This shift to lower temperature is however only an indication of
second order kinetics. Since the shift may be due to a build-up of accompanying peaks,
a quantitative test of the amount of shift as related to the parameters involved is de-
sirable. One method of doing this is explained in IV below.

I1I. Superlinearity: As explained above, a second order peak is characterized by a
slight superlinear dependence of the maximum intensity I, on the initial filling n,.
1f the latter is linear with the dose, which is usually expected when one is relatively
far from saturation, a behaviour of the form I, ~ D" is expected with y being typi-
cally around 1.08.

IV. I,~T,, method: Chen and Winer [15] suggested that when one has a TL curve
of general order (e.g. (16)) with a known kinetics order b, one can plot

a5

as a function of 1/7, and get a straight line, with a slope of E|k. For a second order
peak, b = 2, and a plot of In (I oT4) versus 1/7T', should give a straight line (assuming
a constant heating rate).
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V. Isothermal decay methods: If a sample is held at a constant temperature, the
number of trapped electrons n(t) decreases with time. This can be studied experimen-
tally by measuring the light emitted during this time, the phosphorescence. Alter-
natively, if the heating is stopped at time ¢, the sample cooled, and a glow curve mea-
sured, the area of the last is proportional to n(t). A series of such measurements for
various values of ¢ gives the shape of n(f) and is called the isothermal decay method.
These time dependencies are different in first and second order and may be readily
found by solving (2) and (5).

In the case of first order kinetics, a plot of In I versus ¢ will yield a straight line with
slope— sexp (— E[kT); here I is the TL intensity of the phosphorescence curve of the TL
peak area (or intensity) in the isothermal decay measurements. For second order phos-

phorescence, one must plot 1 [VI versus ¢ to obtain a straight line with slope
[s" exp(—E/kT)]42. In the second order isothermal decay case, a plot of 1/n versus ¢
will yield a straight line of slope s” exp (—E/[kT); here n is the trapped electron density
at the end of the isothermal treatment and can be represented by the area of subsequent
glow curve or, to a good approximation, by its maximum intensity. In each case, the
variation of slope with holding temperature can be used to calculate the trap depth £.
Two more isothermal phosphorescence methods which can provide information on the
kinetics order will be briefly mentioned. May and Partridge [16] suggested a method
in which one plots lg (—d/dt) as a function of lg I. The expected results should form
a straight line with a slope of (2 — 1/b) where b is the kinetics order (see (16)). For the
special case of second order, the slope should be 1.5. Recently, Sinha and Mukherjee
[17] utilized this method for glow in CdF,: Pr crystals and found a straight line which
yielded b = 1.6. Another method discussed by Visocekas [18] (see also [5] paragraph
6.6) is to plot y = tI versus x = In¢. The result should be a TL-like curve which
resembles a first order TL peak (u, =~ 0.42) in the first order case and a second order
TL peak (ugy =~ 0.52) in the second order case.

7. Discussion

The properties of second order thermoluminescence curves have been further investi-
gated in this paper. In particular the behaviours of the peak shape and maximum
intensity while changing the initial filling of the traps have been studied. The main
purpose of this research has been to expand the information one can extract from TL
results in geological samples in cases where the second order property of the results can
be established.

The method as applied to the “synthetic’ curve depicted in Fig. 5 and to experi-
mental ones of similar nature involves the shift of the whole glow curve by an amount
determined basically by the shift of the main TL peak involved. This may be slightly
altered if one has a series of separate second order peaks. If the shift is different for the
various peaks, one can deal with each of the peaks separately and shift each of them
by the correct amount so that the temperatures of the maxima coincide.

A word should be said about the feasibility of having a series of second order peaks
from a given sample. Suppose that one has a single material with, say, a series of four
traps and one centre which yield a series of four TL peaks which may be quite separate
or may form a single composite glow peak. According to this picture, one should have

4
Zonm’ =My, (18)
i=

17*
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where m, is the initial concentration of holes in centres and ny; is the initial concen-
tration of electrons in the 4-th trap, where ¢ = 1 ... 4. As mentioned above, however,
a necessary condition for a peak to be of second order is that m = » which cannot be
exactly true for each peak separately if (18) holds. In fact, according to this line of
thought, only for the last peak in such a series may one have n, = m, (where m, here
is the remaining concentration at the end of the first three peaks), and thus a second
order behaviour.

There still are, however, a number of possibilities of having a series of second order
peaks. First of all, the sample in hand may not be a single material, in fact, in the
archaeological and geological samples, the usual case is that many minerals are involved
each of which may emit a non-first order TL peak. Another possibility is that several
traps as well as several centres are involved and that traps and centres are exhausted
more or less in pairs, so that within each pair one has n, = m,. Also, it is possible that
some of the peaks result from electron traps and hole centres and others from hole
traps and electron centres, which make the two sets of peaks independent of each
other, which in turn increases the likelihood of the occurrence of second order kinetics.
Finally, even within the framework of a series of electron traps and one hole centre
discussed above, one can think of a situation in which n4,>> n5,>> 143> ny, which is,
more or less, the case discussed with respect to Fig. 3 above. In this case n,, is related
to the shallowest trap and the others are, in turn, deeper. If this is the case, we have
Mgy = ny; which may make the first peak approximately of second order. At the end
of the first peak, one should have the remaining concentration of holes in centres m,
and this may be rather close to ny, and so on. Of course, this argument is not very
strong when the peaks overlap, in which case second order kinetics would be only an
approximation.

Due to the factors mentioned above, but mainly the interference of additional peaks,
we would like to stress the need for utilizing as many criteria as possible for establish-
ing the second order nature (or more generally — the non-first order one) of TL
peaks. Some experimental results previously published (e.g. [17], [19 to 21]) utilized
only one or two of these criteria for determining the second order property. We note
that some of the considerations made here may be applied rather easily to other
thermally stimulated processes (e.g. see [5], [11]) provided that the second order kine-
tics can be established. Finally, we would like to reiterate that first and second order
kinetics are only limiting cases and many kinds of intermediate situations are possible.
In this respect, we would like to mention a recent paper by Moharil [22], who defined
general order kinetics by utilizing the ratio between recombination and retrapping
probabilities 4,/A4,,. His definition of “general order’ is not the most general possible,
however, since he assumed n = m which is not necessarily always the case [5, 6]. The
method suggested here may possibly be refined in the future to take into account the
exact process that takes place in various cases of non-first order kinetics.
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