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A kinetic equation of the “mixed order” form
I(1)=—dn/dt=s5'n? exp(— E/kT) +s'Cn exp(— E/kT)

is considered and shown to govern thermoluminescence (TL), thermally stimulated conduc-
tivity (TSC) and ionic thermoconductivity (ITC) under certain conditions. The present
equation is compared to the previously accepted “three parameters” general order equation,
namely

I(t)=—dn/dt=s'n" exp(—E/kT),

where b is the “effective order” of the kinetics. The mixed order equation is shown to result
from the more general set of three differential equations governing the “traffic” of carriers
between a trap, the conduction band and a recombination center under certain physical
assumptions. Also, the applicability of this equation is discussed as an empirical approxima-
tion to the more general case. The solution of this equation is investigated, and methods for
experimentally extracting the three parameter E, s’ and C are introduced. The advantages
of this presentation as compared to the “general order” one are discussed. As a different
case where the mixed order equation seems to accurately describe the physical situation, we
discuss TL and conductivity attributed to ionic transport.

1. Introduction

The theory of thermoluminescence (TL) started with the introduction by
Randall and Wilkins [1] of the first order equation

I(t)=—%=snexp(—k—l;,), (1)

which shows the expected evolution of I(¢), the intensity of emission with the
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time. This can be replaced by I(T'), the evolution with the temperature, when
the heating function 7(¢) is given. E(eV) is the activation energy, s(s ') the
frequency (or pre-exponential) factor, and k(eV K ~!) the Boltzmann constant.
Physically, the Randall and Wilkins equation implicitly assumes that retrap-
ping of a thermally released carrier is practically impossible. Garlick and
Gibson [2] introduced the case of strong retrapping, which brought about the
second order kinetics

I(t)=—%?=s'n2exp(—k—€,). (2

Here the pre-exponential factor is s’(cm® s ).

From this point on, the theoretical investigation of the TL effect took two
routes. Halperin and Braner [3] adopted a set of three simultaneous differential
equations, previously used by Adirovitch [4] to deal with phosphorescence
decay, and showed that with a proper adjustment they could be used for TL.
This set of equations deals with the “traffic” of charged carriers during the
heating of the sample, when one trapping state (say, of electrons) and one kind
of recombination center (of holes) are involved. These equations are

= _dm_
I(t)= q; = Ammnc, (3)
dn E
E—snexp( ﬁ) An(N—n), (4)
dn, dm dn
& A ar ©)

where m(cm™3) is the concentration of holes in centers, n(cm™?) that of
electrons in traps, N(cm ) the concentration of traps of the kind responsible
for the peak being considered, n (cm™?) the concentration of electrons in the
conduction band, and 4, 4 (cm® s ') the probabilities of recombination and
retrapping respectively. This set of equations includes eight parameters, namely
s, E, A, A,, N, my, nyand n (initial values of m, n and n_). Even this degree
of complication does not entirely cover all the possible physical cases (see
below). It is obvious, however, that one can, at least in principle, fit with no
difficulty an experimental TL peak to an eight parameter theoretical one by an
adjustment of this set of parameters. Actually, it seems that the difficulties lies
in the fact that more than one set of eight parameters may be found to yield a
good fit to a desired accuracy. In practice, the use of eight parameters is very
difficult and one would always like to reduce the number of parameters
involved before starting an analysis such as a curve fitting. In the eight
parameter case n, can be assumed to be equal to zero, and only the ratio
ny/my is to be considered. The number of parameters is thus reduced by two,
while the problem loses only very little of its generality. However even six free
parameters to handle are too many in this case. Halperin and Braner [3] made
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the two physical assumptions
dn, < dn
ds ds

which essentially mean that electrons are not accumulating in the conduction
band in substantial amounts, and they got the approximate expression

_dm _ _E A,m
I(0)= T_S”e"p( kT)Amm+An(N—n)' ()

;o on.<n, (6)

Since it includes two unknown functions, m and n, eq. (7) cannot be solved,
and additional assumptions are needed. One simple assumption is that recom-
bination dominates, i.e. A, m>> A (N — n), which results in

=_dm_ _E
1(0)= == exp( kT). )
In the framework of one trap and one center, the equality
dm _dn

FTERrT) (or m=n+ const.)
necessarily occurs, which reduces eq. (8) to eq. (1).

The second order eq. (2) can be derived from eq. (7) by two different sets of
assumptions, both including the quite restrictive assertion m = n. Firstly,
Garlick and Gibson’s [2] “strong retrapping case” can be written as: A (N — n)
> A, m; and secondly if the trap is assumed to be far from saturation, N > n,
eq. (7) results in '

I(t)=—%=(%}n)n2exp(—%), )

thus, the pre-exponential factor here is s’ =sA4,, /NA,..

An alternative suggested by Wrzesinska [5] is to assume 4, = 4, (which is
also quite a particular assumption) in addition to m = n, which results in eq.
(7) becoming

I(t):—%:(%) zexp‘(—%). (10)

This is eq. (2) with s” being equal to s/N. It is to be emphasized that both the
first and second order kinetics are rather extreme cases, and that eq. (7)
includes mostly “intermediate™ situations, which are neither of first nor of
second order.

2. General order kinetics

Although numerical solutions of the set of three simultaneous differential
€gs. (3)~(5) have been-carried out for given sets of the eight parameters [6,7],
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the availability of such solutions has not been of much help in the more
important inverse problem, of analysing a given glow curve to derive the values
of the parameters from it. To deal with this problem, early investigators
assumed only first and second order kinetics, namely a two parameter case (E
and s or s’), but later authors [8—15] suggested a three parameter equation of
the form

I(t)Z—%Is’nbexp(—%), (11)

where b is the “effective order” of the kinetics, which could be between 1 and 2
and somewhat beyond this range. The fourth parameter n, must not be
considered as being of equal importance, since its main influence is on the total
intensity of the glow peak rather than on its shape. This approach of using eq.
(11) can account for various symmetries observed on the glow peaks. Follow-
ing Halperin and Braner [3] the symmetry factor p, of a peak can be defined
by p, =8/w where § =T, — T, and w = T, — T}, and where T,,, is the tempera-
ture of the maximum and 7, and 7, are the low and high half intensity
temperatures. Computations show a first order peak to be characterized by
pg =~ 0.42 and a second order one by pg == 0.52 [16]. The third parameter b
results in the theoretical three parameter curve having intermediate values of
t,, as well as values out of the range 0.42 to 0.52, for b <1 or b > 2, which may
be observed experimentally. As shown by Chen [10], the parameter pg can be
used in formulae deriving the activation energy from half intensity measure-
ments as an interpolation parameter. These formulae are of the form

E= ca( 5:5) bQKT.), (12)

where a stands for 7(= T, — T}), & or w, and where, for example
¢, =1.51+3(p, —042); b =158+ 4.2(p, —0.42). (13)

Similar expressions for c; and by as well as ¢, and b, were given by Chen [10].
The measured value of p, can also be used to evaluate the effective kinetic
order b and the pre-exponential factor s’ [10]. Egs. (1) have been successfully
used by a number of investigators [17-19] for various experimental TL peaks.

There are, however, two obvious disadvantages to the approach of eq. (11),
beside its approximate nature (its being dependent on three parameters only).
One is that it is entirely empirical, in the sense that no approximation can be
found which would enable us to derive eq. (11) from the three differential egs.
(3)-(5). (Possibly with the one exception mentioned by May and Partridge
[8,9]) An intermediate power appears typically much more phenomenological
than physical. The other disadvantage is that s’ has the “strange” units of
em’®~D 57! Instead of s/, the parameter s’n{’ " may be used; it has
frequency units like s(s ') but then this new frequency factor is occupancy-
dependent-rather than being a constant.
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Another approach to a “general order” description of glow curves may be
found in a recent paper by Kanunnikov [20]. The following identities are well
known:

B—5=b" (14)

for first or second order glow curves; with b equals 1 for first order, 2 for
second order; T, the temperature of the maximum of glow peak; I, the
intensity at this maximum; n_ the number of charges still trapped at 7= T,
and B the heating rate.

Kanunnikov writes eq. (7) with the assumption n = m; which results in the
single variable kinetic equation

_ dn_ A n? E
I(t)= G (Ao —A T AN exp( ﬁ) (15)
At the glow peak maximum, it results in the identity
E I
= _—pym 16
bz ™" (19

The parameter b’ thus introduced does have the values one or two respectively
for the limiting cases were eq. (15) is reduced to a first or second order kinetic
equation, but also other values in the range 1 to 2 for all other cases. Besides,
b’ has a very clear physical interpretation (as opposed to b), which makes it
(associated with eq. (15)) an attractive substitute to b as a “general order”
parameter to describe a wide range of glow curves. A drawback could be found
in the fact that ' does not appear as such in eq. (15). Another, more basic,
objection to this approach is as follows.

3. Mixed first and second orders

In all sets of assumptions leading to higher order kinetics, a common one is
m = n. This assertion seems actually the least probable to occur since in all real
samples, many kinds of defects and impurities are present. (To have only one
kind of trap and one kind of center acting in a certain temperature range, may
already be considered as a stroke of good luck.) In this case, m=n+n, + C
where C is a constant (positive or negative) [22]. This relation represents the
conservation of charge in the range of temperature in which the peak occurs
and it is equivalent to eq. (5). C represents the number of trapped electrons or
holes not taking part in the TL process in the temperature range being
considered due to their being in deep traps or in low probability recombination
centers. (More accurately, C is the difference between the concentrations of
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these trapped electrons and holes.) As is usually assumed, n can be neglected
as compared to m or n. But, additionally, taking C to be equal to zero seems
much more implausible.

When C#0, in the case of equal probabilities for recombination and
retrapping (A, = A,), eq. (7) becomes

1(:)——5 (C+N)n(n+C)exp( kET) (17)

instead of eq. (10), derived for C equals zero.

When the situation is that of the already considered dominating retrapping
A (N—n)>A m, and if the trap is far from saturation, N> n, eq. (7)
becomes

()= — ‘;’t’ (;‘;)n(wc)exp( kET) (18)

instead of eq. (9), when C equals zero.
Both egs. (17) and (18) can be written as

I(t)——gd—t—sn(n+C)exp( kT) (19)

where s’ is a constant with units of cm® s ~!. It is to be noted that an equation
similar to eq. (18) for the case of phosphorescence (7 = const.) has already
been suggested by Mott and Gurney [21]. Eq. (19) can simply be considered as
a combination of the well known first and second order kinetics.

Eq. (19) may also be derived directly from the more general eq. (7) by
combining it with the assumption that in a certain temperature range, only one
trap and one center are involved, i.e. m =n+ C, eq. (7) is then written as

dn _sA,exp(—E/kT)n(n+C)

= = G = A r O FAN=n) (20)
which can be written as
1(:)_—— sexp(~k£T)F(n). 1)

Under appropriate mathematical conditions, F(n) can be developed into a
power series

F(n)=Cin+Cn*+Cyn® + ... (22)

No constant additive term is included, since F(0)=0. In some cases (but not
always) taking the first two term may give a reasonable approximation, which
brings us back to eq. (19) [22].

It is to be noted that the solution of eq. (19) is not a combination of the first
and second order solutions. In this respect, the present treatment differs from
that of Schlesinger and Menon [23] who assumed, in an empirical way, a
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weighted combination of first and second order solutions.
To solve eq. (19), we introduce the parameter

"o
(”0+C)
Eq. (19) may be written as
g+ ) e E )
I(t) = T n(n no+- )exp T ) (23)

The solution, starting from temperature T; with the constant heating rate 8 is

s'C?a exp[(Cs’/B)fT exp(—E/kT’) dT'] exp(—E/kT)
I(T)= .

(24)
{exp[(Cs’/.B)/T:exp(—E/kT') dT’] _ }2

Similarly to the first, second and general order cases, initially, i.e. at the lower
temperatures, this expression behaves like exp(—E /kT). At higher tempera-
tures, the shape characteristic to the particular value of « is obtained. This
solution appears to be intermediate between the first and second order
expressions in the sense that for « =0 (n, < C) it tends to first order, and for
a=1(ny,> C), to second order. To derive, from eq. (24), numerical values of
T,, T, and T, for given values of E, s’, B, « and n, a computer program has
been prepared and executed. Values of p, have been readily obtained from 7,,,
T, and T,. The symmetry factor p, as a function of a appears to gradually
change from the value 0.42 characteristic of first order when a equals zero, to
the value 0.52 of the second order when a equals one, as shown by curve (a) of
fig. 1.

Only the values of « from zero to one, i.e. for n, < m are shown in fig. 1.
As for the case ny >my, i.e. a > 1, let us change in eq. (19) the variable » into

m=n+ C, and, instead of a, use the parameter: o’ =a~' =m, /n,. Eq. (19)
readily becomes
I(t)= P m(m my +—7 )exp( T (25)

which is strlctly the same as eq. (23), hence has the same solution [22]. p, as a
function of & here will be the same as p, vs. a in eq. (23). Thus, for the cases
where ny >mg, p, will be obtained by the same curve (a), fig. 1, but using
a '=my/n, 1nstead of a as the variable (and C’ = |C)).

It is interesting to note in this context the results by Halperin and Braner [3]
related to the case of ny, =m,. They show that when the recombination
probability is very large (4,, ~ ), § (and therefore, p,) may be very small,
and while increasing n, as compared to m,, they may reduce to zero and even
attain effective negative values. We are not concerned, however, with this case
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since neither eq. (17) nor eq. (18) results from the assumption that 4, is very
large, on the contrary, eq. (17) is related to the case of equal probabilities
whereas eq. (18) results from the assumption of low recombination.

The main point regarding the curve By vs. a is that, although it has been
calculated by choosing certain values for E and s’, we have verified that
changing £ and s’ modifies the graph but slightly, in other words, Py is @
relatively strong function of @ and a very weak function of E and s’. This and
the shape of curve (a) bring to mind the suggestion to use experimental values
of p, to compute the interpolation coefficients of egs. (13) and similar
equations based on 8 and w, and then the activation energy E by the half
intensity formulae (12) as given by Chen [10].

The point is that both in the “general order” case then considered, and in
the “mixed order” case presently studied, eqs. (13) are empirical and the
condition for their being useful is that p, is a slowly varying function of b in
the general order case of eq. (11) and of a in the mixed order case of eq. (10).

The half intensity formulae have been actually tested for “synthetic” glow
peaks, computer calculated with eq. (24) for given parameters. The values for e
thus derived were found to be within 3% of the given values, which represents
just as good a fit as with curves computed with the general order model [10].
As for the value of a itself, it can be deduced from the experimental value of By
directly with curve (a) in fig. 1.

T 08
h 07
06 -
0S5 -
(a)
i (b)
04 1 1 [ | 1 1

0 02 0.4 0.6 0.8 1
K (or ') —Pp

Fig. 1. The geometrical factor p, calculated as a function of a=ng/(ny+C)=ny/mg (or
mg/ng); (a) for the TL peak, according to eq. (24), (b) for the TSC peak, according to eq. (30).
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4. Measurements of TSC and TL due to ionic conductivity

Fuchs and Taylor [24,25] suggested that conductivity peaks observed during
a linear heating of irradiated KBr at low temperatures (10 to 35 K) are due to
displacements of ions in the process of complementary centers annihilation by
recombination. It has been found [26] also in other alkali halides that conduc-
tivity peaks in the low temperature range are due to ionic motions, and that
such conductivity peaks are usually accompanied by TL ones.

Fuchs and Taylor proposed for this recombination the rate equation

(26)

~ﬂ=nnRKexp(—7§—,),

ds
when 7 and ny are the concentrations of interstitials and ionic recombination
centers respectively, and K(cm® sec ~!) the rate constant. They identified n with
the mobile interstitials and ny with the immobile vacancies. If the recombina-
tion is radiative, the term dn/d¢ corresponds to the intensity of luminescence.
The ionic conductivity is given by

o)(T)=en(T)u(T), @)
the mobility u(7) being for ions

E
W)= (52) e - 22). (28)

The expression for o,(T) thus obtained is quite similar to the well-known
expression for o,(T'), the conductivity due to electrons (TSC) [24-28].

Fuchs and Taylor [24] use in eq. (26) an activation energy E and in eq. (28)
a motion energy E,, and then assume “for simplicity” that E = E_. We tend to
believe that the same energy E should be used in both equations not only as a
matter of convenience but rather since in this model both E and E, are
physically the heights of potential barriers for the motion of the ion [22]. In eq.
(26) the rate of recombination (—dn/d¢) is described as being proportional to
n and ny as well as to exp(— E /kT); this can be accounted for by the fact that
exp(—E,, /kT) appears in the expression for the mobility u; the higher the
temperature is, the more mobile are the ions and therefore they recombine
more, thus producing thermoluminescence. By such a recombination, a mobile
interstitial ion and a vacancy mutually annihilate and restore the normal
lattice.

We now denote by C the concentration of interstitials trapped by other
defects [26], which cannot participate in the mobility and recombination
effects. We can thus write n, = n + C where C is constant during a glow peak,
following a given irradiation. Eq. (26) can now be rewritten as

dn

E E
—_an_ .2 _£ L
I 3, = Kn exp( kT) + KCn exp( kT)’ (29)
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which is actually eq. (19) with K replacing s’. Thus the suggestion already
made above to use eq. (12) with coefficients given by eq. (13) to evaluate E,
can be applied here as well.

The expression for the ionic thermoconductivity o; related to the same
process can be found by combining egs. (27) and (28). This yields

eC(po/T) exp(—E/KT)

o(T)=
exp[(CK/,B)fTexp(—E/kT’) dT’| —a
T

(30)

with @ =n, /(ny + C) or (ny + C)/n,, whichever is the smaller, as we saw
above (and the absolute value of C in both cases).

Again, the initial behavior, at the lower temperatures, is the regular initial
rise one, o(T') cc exp(—E /kT). Curve (b) in fig. 1 shows the variation of the
symmetry factor p, for the conductivity curve given by eq. (30) vs. the
parameter a (resp. a ). In the same way as in curve (a), the results are rather
insensitive to the particular values chosen for E and K. The variation of By
with a is seen to be rather mild, up to a =~ 0.9. However, between a = 0.9 and
a =1, p, changes very quickly and reaches values up to ~0.8. This prevents
any attempt to use a simple interpolation formula for the evaluation of the
parameters from the conductivity curve. The high value of py ~ 0.8 corre-
sponds to conductivity related to pure second order TL. This has been already
investigated by Saunders [27] and Chen [28] in the similar case of TSC.

S. Summary and discussion

We have presented in this paper an equation that should replace, under
certain conditions, the formulae used presently for the description of the
thermally-stimulated phenomena. This eq. ((19) above) includes three free
parameters, the activation energy E, the pre-exponential factor s’ (or K), and
the excess concentration C (or alternatively, the parameter a). As in the
“general order” case mentioned in section 2 above, we disregard the additional
parameter n since it only influences the scale (or total intensity) rather than
the shape of the peak. As far as the number of parameters is concerned, the
present “mixed order” is thus similar to the “general order” case, therefore,
both may be equally well fitted to describe a general glow peak. Also, the two
are similar in the sense that they tend to the first or second order cases when
the appropriate values are chosen for the parameters. As shown above, the
same interpolation equations can be used for evaluating the activation energy
for both, and a similar diagram to evaluate the “third parameter” (b or a) from
the symmetry p, factor. The present mixed order approach has, however, the
following advantages:



R. Chen et al. / Kinetics in thermally stimulated processes 303

(1) The pre-exponential factor s’ (or K) has units of cm® s ! in the present
case, as against the “strange” units of cm*®~ D s~ ! in the “general order” case.

(2) As explained above, simple assumptions lead from the three differential
equations describing a glow peak in a general way to the “mixed order”
equations. No similar derivation can result in the “general order” equation.

(3) In particular cases, such as TL resulting from recombination of mobile
ions, the mixed order equation seems to be the natural one derived straightfor-
ward from the physical model without additional assumptions being made.
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