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SUPERLINEAR FILLING OF TRAPS IN CRYSTALS DUE TO
COMPETITION DURING IRRADIATION

S.G.E. BOWMAN* and R. CHEN**
Research Laboratory for Archaeology and the History of Art, University of Oxford, 6 Keble
Rd., Oxford, UK

The superlinear dose dependence of the filling of traps, as measured by thermolumines-
cence (TL), which often occurs under 8 and y irradiations, has been theoretically in-
vestigated. Assuming competition during irradiation of carriers falling into TL traps and into
deeper traps, one gets a linear-superlinear-linear-saturation behavior.

1. Introduction

In a number of growth curves of thermoluminescence (TL) intensity as a
function of the excitation dose, a superlinear behavior is observed, i.e. if we
denote the TL glow intensity by S and the dose by D, this means that dS/dD is
growing in a certain dose range, namely, that d*S/d D > 0. Superlinearity has been
found in two main forms.

1) Starting from the very low doses of excitation [1].

2) The growth curve starts linearly with dose, becomes superlinear at higher
doses and then goes to saturation [2], possibly through a second linear range.

Several explanations to the superlinear effects were given. Chen and Halperin
[1] explained the superlinear growth in uv irradiated semiconducting diamonds to
be due to the multistage transition of electrons from the valence to the conduc-
tion band. Another approach by Cameron and Zimmerman [3] ascribed the
superlinear response of LiF to the creation by the ionising irradiation of
additional traps or centers in the crystal. Rodine and Land [4] suggested a model
which was further investigated [5]. According to this, TL intensity is propor-
tional to both the initial concentration of electrons in traps and holes in centers
(rather than the usual case where it is proportional to the smaller of them), due
to the effect of an additional trap. Two more works explaining certain kinds of
superlinearity are the track interaction model [6] and another [7] which is based
on the spatial correlation between charged sites.

Suntharalingam and Cameron [8] suggested a different and apparently more
satisfactory way to explain superlinearity. They postulate that the filling of the
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trap giving rise to TL is superlinear due to competition during irradiation by
another trap which is of lower concentration but higher trapping probability than
the TL trap. Qualitatively, at low doses, the excitation fills both traps linearly. At
a certain dose, however, the competing trap comes to saturation, hence more
electrons are available to the trap of interest. This causes a faster though linear
filling of this trap, the transition region from one linear range to the other would,
however, be superlinear. Such competition superlinearity in TL bears some
resemblance to superlinear photoluminescence [9] and superlinearity in photo-
conductivity [10].

2. Mathematical analysis

We assume an energy level diagram as depicted in fig. 1. N, is the trap giving
rise to TL and N, is the competitor; N, and N, will be used to denote the
concentrations of these traps. At time ¢, n, and n, represent the concentrations
of electrons in these traps and m, the concentration of holes in luminescence
centers. We assume that at the end of the irradiation, n, < m and are interested
in the dependence of n, on the dose.

As shown below, we shall derive an expression with D as a function of n,,
therefore it is easier to study the sign of d’Dfdn? than that of d’n,/dD* Since.
however,

d’n,/dD* = —(d’D/dn})/(dD/dn,)’ (1)

and since dDfdn, > 0, the desired condition for superlinearity d*n,/dD?> 0 can
be written as d’Dfdni < 0.

We shall start with the case of electrons raised by the irradiation from the
valence to the conduction band and fall into either N, or N,. The equations
governing the process are

dn,/dt = A\(N,— n)n,, (2)
dn,/dt = Ay(N2— ny)n, (3)
dn.dt = X —dn,/dt — dn,/dt, (4

where n. is the concentration of electrons in the conduction band. A, and A, are
the transition probabilities into N, and N,, respectively. and X is the rate of
creation of electron-hole pairs. By eliminating n. from eq. (2) and (3), a direct
relation is found between n,(t) and n(¢t). Substituting in eq. (4) and assuming
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Fig. 1. Energy levels in the forbidden gap.
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|dn./dt| < |dn/dt| one gets by integration

n A2/Al
D- fx 4t = 1= gt Ny o= (Na = o) (i) )
The second derivative of D with respect to n, is
—ny (Ni—n\**
EDIdnt = (- A AN A A~ D2y () ®

and hence, the condition for this to be negative is A,> A,. This condition is,
explicitly, that the probability of the competitor is larger than that of the trap
directly involved in the TL process. Eq. (5) is expected to yield superlinearity for
A,> A in the whole range of 0 = n, = N, whereas actually, two linear regions of
growth may be observed with superlinearity in between (and, saturation at high
doses). The point is that although d’D/dn7 is negative, its absolute value may be
very small, so that it is practically nil. The qualitative description of the model given
in the introduction shows how linearity, superlinearity, linearity and ultimately
saturation can be expected in the growth of n, with dose. Numerically, regions of
linearity and superlinearity also result from computer calculations on eq. (5). The
fact that no saturation is observed, is related to the assumption that recombination
during excitation is negligible. This may well be the case at the low dose range
including the suplinearity region, but it ceases to be so at higher doses. The addition
to the model will be described now.
Aitken et. al. [11] considered a model in which eq. (4) is replaced by

dn./dt = X —dn,/dt —dn,/dt — Acn.p, (7

where p is the concentration of holes in the valence band and Ay the band to
band transition probability. They assumed

p=n+n+ng 8)

which implies the possibility of accumulating holes in the valence band which
seems rather unlikely. This picture can slightly be modified if we denote by p the
concentration of holes in the center and assume that A, is the recombination
probability conduction band to center. Eq. (8) will still hold with p,, the
concentration of holes in the valence band added to the left hand side. Both n.
and p, can be neglected as compared to the other terms in eq. (8). The equations
of Aitken et. al. remain the same with a slight change in the meaning. We still
neglect the direct band to band recombination which is usually known to be
small. The solution of the set of eq. (2), (3) and (7) is

AylA,
D= w2 (1) [ 2N (T ) (- )
1 1 1

9)

when for the sake of simplicity, we assumed n,, = ny; = 0.
By finding the first derivative one can see that dD/dn, goes to infinity when
n, = N,, which implies dn,/dD = 0 i.e. approach to saturation. For the low dose
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range, it can easily be shown that
1 2
dzD/dnﬂ,,l:() = A [AKN2AL/(AN)) + NLAS/N + Ag— NLAY(ANY)). (10)
1y

A necessary and sufficient condition for superlinearity at low dose is that the
right hand side of eq. (10) is negative which implies the three separate necessary
conditions

Ar> AL Ar> A NoAY(N,AD > A, (1

The second and third conditions are automatically fulfilled for small enough
values of A, and the first is the one mentioned above for the more restricted
case.

Eq. (5) and (9) have numerically been solved to yield n,= n(D). As an
illustration, fig. 2 depicts the results of n, as a function of D for a chosen set of
parameters as calculated from eq. (9). The initial linear range, the superlinear
region and the second linearity before saturation can be seen.
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Fig. 2. Growth curve as numerically calculated for N, =N,=10"cm . no=rny,=0. A, = A,
AL A, = 30.
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