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Abstract. The dependence on the excitation dose of the maximum thermoluminescence 
intensity as well as of the peak temperature are investigated theoretically. It is shown 
that certain irregularities of the dose dependences can be explained by assuming the 
existence of a trapping level, the transition into which competes with the retrapping and 
recombination of the free carriers. By numerical solution of the appropriate equations, 
it is demonstrated that the maximum thermoluminescence intensity may depend super- 
linearly on the excitation dose. The power of the dose dependence was found to be 
2 under certain circumstances at low doses, and reached even higher values before 
saturation of the competing level. The maximum temperature sometimes behaved in an 
unusual way; namely, it increased with increasing dose. The relation between the 
area under a glow peak and its maximum intensity is also studied; it is shown that the 
latter can usually serve as a measure for the former. This finding is of practical impor- 
tance, especially in thermoluminescent dosimetry, since the evaluation of the maximum 
intensity is obviously more convenient than that of the area. 

1. Introduction 

The dependence of the thermoluminescence (TL) intensity on the dose of excitation is of 
primary importance from the theoretical point of view as well as from the aspect of 
applications, such as thermoluminescent dosimetry (TLD). Another point of importance 
is the dependence of the temperature at the maximum of a glow peak on the excitation 
dose. Let us consider first the simplest case; namely, the first-order equation (Randall 
and Wilkins 1945) 

I= - dn/dt =sn exp (- E/kT) (1 * 1) 
where I is the TL intensity, n (cm-3) is the concentration of trapped carriers, t (s) is the 
time, s (s-1) is the frequency factor, E (eV) is the activation energy, k (eV K-1) is Boltz- 
mann’s constant, and T(K) is the absolute temperature. The solution of equation (1.1) 
with a linear heating rate T=To+Pt gives I=I(T). The maximum condition for this 
equation is ,BE/kTm2 = s exp (- E/kTm), where Tm is the temperature at the maximum. 
It is readily seen that in this siniple first-order case Tm is independent of the initial con- 
centration of trapped carriers no, and is therefore independent of the excitation dose. 
From the detailed shape of I(T) it can be seen that the maximum intensity of the glow 
peak is proportional to no, and so is the area under the glow curve. 

Garlick and Gibson (1948) considered the possibility of a second-order kinetics TL 
peak. They showed that the temperature Tm of the second-order peak decreases with the 
increase of the initial concentration no. More-complicated equations to account for a 
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TL peak were later developed by Halperin and Braner (1960), who took into account 
the existence of a single trap and a single recombination centre. They assumed that 
thermally released carriers can either recombine with carriers of opposite sign in a 
recombination centre or fall back into the trap (retrapping). Under these circumstances, 
the area under a peak is proportional to the initial concentration of electrons in traps 
(no) or the concentration of holes in recombination centres (mo), whichever is the smaller. 
In a more recent paper, Rodine and Land (1971) suggested the existence of an additional 
trap, which competes with the recombination centres and the empty traps for the therm- 
ally released electrons, in order to explain a quadratic dose dependence. They showed 
qualitatively that the TL intensity could depend on both no and ~ Z O  if the probability for 
trapping into this competing trap was large enough compared with the probability of 
recombination; thus the maximum intensity could depend on the square of the excitation 
dose. 

Alternative explanations for superlinear effects in TL have been given previously. 
Cameron et a1 (1968) described the superlinear excitation of TL dosimeters under excita- 
tion by y-radiation. If one writes for a certain range ImccDp, the value of p gives the 
‘degree’ of superlinearity. In the cases discussed by Cameron et al, p exceeded unity 
only slightly, and the explanation given assumed the creation of new traps in addition to 
the filling of the existing ones. Much higher values of p were found in the excitation by 
uv light of TL in semiconducting diamonds (Halperin and Chen 1966) and in ZnS 
(Savikhin 1972). The effect was explained to be due to a multistage transition of excited 
electrons from the valence to the conduction band. Another mechanism for explaining 
a superlinear excitation of TL has previously been given by Israeli et al (1972). This 
mechanism assumed competition processes during the excitation and creation of defects 
rather than during their thermal annealing. This mechanism was found to fit well the 
experimental results for the TL of alkali halides. However, it could not explain the differ- 
ent cases of superlinear dose dependences which were accompanied by unusual shifts of 
Tm with dose, as observed in other crystals. 

In the present work, these phenomena are considered. The dependences on radiation 
dose of the maximum TL temperature and intensity as well as of the area under the glow 
peak are investigated. The model, which takes into account the possibility of competition 
during the thermal annealing process, is treated quantitatively. The circumstances under 
which a quadratic dose dependence (p=2) occurs, as well as the special conditions 
leading to higher values of p ,  are discussed. In the course of this work, the area under a 
glow peak S is compared with its maximum intensity Im. This is of practical importance, 
since in the literature some workers report the dose dependence of S, whereas others 
consider the dose dependence of Im. 

2. Mathematical analysis 

For the mathematical treatment, three levels are considered in the forbidden band 
(shown schematically in figure 1). 

(I) The trap from which electrons are thermally released. Nl(cm-3) denotes the total 
concentration of these traps and nl(cm-3) the concentration of electrons trapped therein. 

(11) The competing traps where electrons are thermally stable. Nz(cm-3) denotes 
their total concentration out of which nz(cm-3) are occupied. 
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(111) The recombination centres. m (cm-3) denotes the concentration of holes in these 
centres. nc(cm-3) is the concentration of free electrons in the conduction band. ,T Conduction band 

(E) 

(a) 

Valence band 
Figure 1. Energy level diagram, including an electron trap (I), a competing trap (11) 
and a recombination centre (111). 

The rate equations governing the process (assuming that electrons cannot be ther- 
mally released from traps of type (11), at  the temperature range of interest) are 

dnlldt = - ynl + Alnc(Nl - nl) 

dnzldt = Aa(N2 - 722) nc  

I= - dm/dt = Ammnc 

dmldt = dnl/dt -k dnz/dt + dnc/dt 

(2.1) 

(2.2) 

(2.3) 

(2 9 4) 

where y =s exp (- E/kT), E (eV) is the activation energy for the release of electrons from 
traps of type (I), s (SKI) is the frequency factor, T ( K )  is the temperature, k (eV K-l) is 
Boltzmann's constant, Al(s-l cm3) is the probability of retrapping into (I), A2 (s-I cm3) 
is the probability of trapping into (11), A m  (s-1 cm3) is the recombination probability, 
t (s) is the time, and I is the TL intensity. It should be noted that equation (2.4) is written 
in a differential form, which means that charge neutrality between the above-mentioned 
levels is not assumed. It is, however, assumed that additional traps exist at which charge 
carriers of both signs may be trapped. These traps are taken to be inactive at the tempera- 
ture range of the studied glow peak. 

From (2.2) and (2.3) one gets 

1 d  1 d  n - - [ln(Nz-nz)]=- ~ -(Inm) 
'-A2 dt  A m  dt 

which can be integrated to yield 

N2 - nz = (Nz - nzO) (m/mo)*z/*m 

where mo and nzO denote the initial values of m and n2. 
With the usual assumption (see eg Halperin and Braner 1960) 

Idnc/dtl< Idmldt I (2 7) 

dmldt N dnlldt -k dnz/dt. (2.8) 

~ c = y n 1 / [ A 1 ( N l - n i ) + A ~ ( N ~ - ~ z ) + A ~ m l .  (2 9 9) 

equation (2.4) can be rewritten as 

By substituting (2. I), (2.2) and (2.3) into (2. S), one gets an explicit expression for nc : 
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By insertion of (2.9) into (2.3) we have 

I = - dm/dt = A mynlm/ [A l(N1- nl) + A z(N2 - n2) + A “1. (2.10) 
The three terms appearing in the denominator represent the probabilities (s-1) for 
retrapping at (I), for trapping at (11) and for recombination at (111) respectively. Integra- 
tion of (2.8) yields 

m -mo =n1 -nl0 +n2 -nzo 
where nl0 is the initial value of n ~ .  By substituting (2.6) and (2.8’) in (2. lo), one gets 
the following differential equation for m : 

I= - 

(2, 8‘) 

dm 
dt 

This equation can be numerically solved for various sets of given parameters, as described 
in the following paragraph. 

I t  can be seen that equation (2.11) includes the quadratic dose dependence of TL 

intensity (Rodine and Land 1971) as a special case. If we assume that the trapping in 
traps of type (11) is much faster than both recombination in (111) and retrapping into (I), 
namely 

then equation (2.10) becomes 

A2(N2 - n2) B AI.(NI -HI) + A m m  

I= - dm/dt = Amyn1m/[A2(N2 - nz)]. (2.12) 

If we assume, in addition, that the retrapping into (I) is very small compared with the 
rate of release of carriers from (I), namely 

yn1 BAlnc(N1 -n1) 

equation (2.1) transforms to 

dnl/dt = - ynl. (2.13) 

The solution of this equation is given by 

n1=n1~ exp (-1;ydt’). (2.14) 

Substituting (2.6) and (2.14) into (2.12) gives 

I= -dm/dt=A,ynl, exp ( - 1 ; y  dt’) m/[A2(N2-ne0) (m/m~)Az/Am]. (2.15) 

Integration of (2.15) gives 

j; pio exp ( - J:y dt”) dt ’ = (N2 - 722,) [l - (m/mo>Az/Am]. (2.16) 

J r y e x p  (-1;ydt’) d t = l  (2.17) 
Since 

equation (2.16) transforms into 

nlo = (N2 - n2,) [l - (mm/mo)A2’Am] 

for the case when t = CO, where mm is m at  t = cc . 
(2.18) 
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From this we get 

mm=mo[l -nl,/(Nz -n~~)]Am/A2. (2.19) 

Assuming further that traps of type (11) are far from saturation (nzO<N2) and that 
n lo4  Nz ,  we have 

m&mo[l -(Am/AZ) (nl,/Nz)l. (2.20) 

The area S under a glow peak equals 

1," I dt = So" (- dm/dt) dt = mo -mm. 

Equation (2.20) leads therefore to 

S=mo - mm N [Am/(A2N2)] mom,. (2.21) 

If mo as well as nlo is proportional to the excitation dose D, which is generally correct 
for low doses, S will be proportional to 0 2 .  

3. Numerical method and results 

Equation (2.11) has been numerically solved for certain sets of parameters. For the 
solutions the fourth-order Runge-Kutta method (McCracken and Dorn 1964) was 
applied. The lengths of the integration intervals were varied in order to keep the relative 
error smaller than 10-4. The highest value of -dm/dt was taken as Im, whereas the 
integration of I was continued down to I= 10-3 Im. The value of m at this point was 
taken as ma, and thus the area under the curve, S= mo -mm, was evaluated. The accuracy 
of this numerical method was checked by applying it to the first-order equation 
I= -dm/dt= ym, and by colllparing the numerical results to its known analytical solu- 
tion; they were found to be in very good agreement. 

The values of some parameters-namely, E=0.3 eV, s= 10l2 s-1, the initial tempera- 
ture TO= 80 K, and the linear heating rate /? = 1 K s-1-were chosen to be the same for 
all calculations. For each run a different set of values was taken for the parameters 
Am, A I ,  A2, N I  and N z .  The initial concentrationsmo, 81, and nzo were taken as explicit 
functions of the excitation dose; the simplest case of linear dose dependences was first 
assumed. This is certainly true at relatively low doses, whereas one has to be cautious 
about the results when saturation of one of the levels is approached. 

Figures 2-5 show for various cases the dependences of the maximum intensity 
Im, the area under the glow curve S, and the temperature at the maximum Tm on the 
excitation dose. 

Table 1. Parameters for the curves in figures 2-5 
~~ 

Figure Nl(cm-3) Nz(cm-3) nl,(cm-3) n~~(cm-3) m~(cm-~) A d A m  
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I1 
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250 1 
log s log D 

Figure 2. The area S (curve A) and the maximum temperature Tm (curve B) as functions 
of the dose D under conditions leading to second-order kinetics. Curve C gives the 
maximum intensity Zm against S on a log-log scale. Parameters are as given in table 1. 

The values of the parameters chosen for these cases are summarized in table 1. As 
far as the computation is concerned, only the relative magnitudes of the values of A 
are of importance, since only the ratios of two of them appear in equation (2.11). 
Figure 2 represents a case where the probability for retrapping is dominant: 

Al(N1 -nl)$Az(N2 -nz) and Al(N1 -rzl)$Amm. 

Since the initial values nlo and mo were taken equal, and since a thermally released electron 
can, under the given conditions, be annihilated by recombination only, the values of 
m remain equal to those of nl during the heating. As long as trap (I) is far from saturation 
( n l < N ~ ) ,  equation (2.10) reduces in this case to 

I= - dtn/dt = (Am/A1N1) ym2. 

Curve A on the right-hand side of figure 2 depicts, on a log-log scale, the dependence 
of the area S on the dose. The curve is a straight line with a slope of unity, ie S depends 
linearly on D. In curve B the maximum temperature Tm is plotted against log D. 

I 

5 6 7 8 9 IO 
log s log D 

Figure 3. Plots of log S against log D (curve A) and log Zm against log S (curve C) for a 
'Rodine-Land' case (see text). Curve B is obsolete, since T m =  120 K is constant. Para- 
meters are as given in table 1. 
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Increasing the dose by four orders of magnitude causes Tm to decrease from about 230 
to 150 K. Curve C is given in order to check the possibility of representing the area 
S by Im. In the present case the dependence of Zm on D or S is slightly superlinear, the 
slope on the log-log scale being 1.095. 

Figure 3 represents a typical ‘Rodine-Land‘ case. Am, AI and AZ were chosen to be 
equal, but the number of empty competing trapping centres NZ - n2 was large enough to 
make transitions into them much more probable than to the empty trapping centres 
N I  - IZI or to the recombination centres m. In this case mo and nlo were taken to be equal 
and to vary linearly with the excitation dose. Thus, even at the highest dose ( D = l ) ,  
N 2 - n ~ ~  was larger than mo or N1-nlo, and therefore the Rodine-Land condition pre- 
vailed. Here, the maximum temperature Tm= 120 K did not change with dose. The 
slope of the curve of log S against log D equals 2, as expected from equation (2.21). 
On the left-hand side, log Im is plotted against log S to yield a straight line with a slope 
of unity, which again shows the linear relation between the maximum intensity and the 
area under the TL curve. 

l3 t 

c 

8 
M 

Ib ii r’2 /3 ;4 
log s . logD 

Figure 4. Same as figure 2, with parameters as given in table 1, leading to the increase 
of Tm with dose, and t o p  > 2 at high doses. 

Figure 4 gives the results under circumstances similar to those of figure 3, but with 
one crucial difference; namely, that NZ = 1016 (instead of lo1?). The Rodine-Land 
condition is in this case correct only at low doses and ceases to hold when D approaches 
unity, in which case NZ - nz0 substantially decreases, while N I  -nl, and mo surpass 
NZ - nz,. Curve A gives, as before, log S against log D. It  starts with a slope of 2, but 
increases faster at higher doses. Thus superlinearity with p > 2 becomes apparent. 
Curve B shows a different temperature behaviour than curve B in figure 2. Here Tm 
increases with increasing dose. Curve C shows that, even in this more-complicated case, 
Im is proportional to S. 

In the cases related to figures 2 and 3, the maximum dose considered was such that 
saturation was not approached in any of the energy levels. In the case of figure 4, trap 
(11) was filled up for the maximum dose treated ( D =  1). The progress of filling was, 
however, linear all the way. I t  is more likely to assume a function which is linear a t  low 
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doses and tends gradually to saturation. As an example for such a behaviour, the 
function nzo=Nz(l -,-aD) was chosen in figure 5. As seen in curve A, the initial slope 
of the curve of log S against log D is 2; it increases at higher doses and finally decreases 
to unity when saturation of trap (11) is approached. The temperature dependenceis 
rather unique under these circumstances (curve B). Tm increases with the dose in a 
similar manner to the previous case, but decreases again when NZ -nzO approaches zero 
for high doses. Such a dependence fits the experimental results shown in figure 4 of 
Rodine and Land’s (1971) work on ThO2. Curve C shows that, even under these extra- 
ordinary conditions, Im is practically proportional to S. 

15- 

0 - -  

I , \ , , I , , ]  
5 IO 15 18 

log s log D 
Figure 5. Same as figure 2, with parameters as given in table 1. Tm first increases and 
then decreases with D ; p = 2  at low doses;p>2 at higher doses; and thenp -1. 

4. Discussion 

In the present work, the dependences of the area under a glow peak and of the maxi- 
mum temperature on the excitation dose have been quantitatively investigated assuming 
the existence of a competing electron trap. The relation between the area under the 
glow curve and the maximum intensity has also been studied. 

In previous works, where the existence of the competing trap was not assumed, first- 
and second-order cases were treated mostly; it followed, obviously, that it was relatively 
easy to solve the corresponding equations. The present model includes these cases as 
special ones. The computed results and curves were therefore checked by taking for 
equation (2.11) initial conditions corresponding to these cases. 

The first-order case is characterized, as mentioned, by a strictly linear dose dependence 
of both the area under a glow peak and its maximum intensity. In this simple case the 
temperature Tm is dose-independent. 

The equation of a second-order TL peak is given by 

I= -dn/dt=s’exp ( -EIkT) n2 (4.1) 
where s’ is a pre-exponential factor which replaces the frequency factor and has dimen- 
sions of cm3 s-1. The solution of (4.1) for a linear heating rate /3 is 

I= 1102s’ exp ( - E/kT) [ 1 + (nos’lp) J T o  exp ( - E/kT’) dT’] -2 (4.2) T 
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and the equation for maximum (Chen 1969) is 

(nosf//3) lz: exp (- E/kT)  dT+ 1 = (2kTm2 nosf//3E> exp (-E/kTm). (4.3) 

By inserting (4.3) into (4.2) one gets the expression for Im: 

Im= (pE/kTm2)2 exp (E/kTm)/s’. (4.4) 

We solved equations (4.3) and (4.4) numerically for various values of E and s’, and 
found Tm and Im as functions of no. Although the area S under the glow peak was 
directly proportional to no, we found that Tm always decreased monotonically with no, 
and Im depended on the dose D as Dp, where p slightly exceeded unity (we assume here 
that Dccno). The values found were 1.05 < p  < 1.10. The values of the parameters chosen 
for figure 2 lead to a case of second-order kinetics, as can be seen from equation (3.1). 
The curves shown in figure 2 behave as expected from the solutions of equations (4.3) 
and (4.4). 

The introduction of an active competing trap can provide an explanation for the 
superlinear dose dependence of the TL intensity as well as for an increase of Tm with dose. 
As mentioned in relation to figure 5, the dependence of Tm on the radiation dose was 
found in certain cases to first increase and then decrease with dose. Such a behaviour has 
not previously been explained. The present model as formulated by equation (2.11) 
enables the explanation of this phenomenon by a choice of the appropriate parameters. 
In addition, the solution of the same equation (2.11) resulted in a quadratic dose depen- 
dence for cases where the competing trap dominated. The main feature of this situation 
is that the value of p=2 starts a t  the lowest doses. This behaviour differs essentially 
from that previously found in NaC1, where the dependence was linear at low doses and 
became superlinear for higher doses before tending to saturation (Israeli et al 1972). 
Superlinearity in NaCl has been attributed to a competition process during irradiation 
rather than during the thermal release of the trapped carriers. 

The occurrence of an even higher degree of superlinearity ( p  > 2) is also included 
among the possible solutions of equation (2.1 l ) ,  as shown in figures 4 and 5. 

The use of the concept ‘TL intensity’ in the literature is sometimes confusing. In 
some works it stands for the area Sunder a glow curve, and in others for the luminescence 
intensity Im at the maximum of the glow peak. The dose dependences of S and of Im 
were therefore studied separately in the present work. The comparison between S 
and Im showed, in all the cases investigated here, that the two were virtually proportional 
to one another. This fact is of practical value, since the measurement of the maximum 
intensity is much easier than that of the area under the glow peak, especially when adjacent 
peaks overlap. This proportionality is readily applicable for thermoluminescence 
dosimetry. 
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