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Note 

On the Remainder of Truncated Asymptotic Series 

Many functions widely used in physics are most easily calculable by using 
asymptotic series [l-4] for certain ranges of the argument. Since these series are 
divergent, one should use a limited number of terms to get the best evaluation; 
usually terms are taken down to the one of smallest absolute value. The possible 
error is then expected to be of the same magnitude as the last term. This result 
can be improved by taking only half of the last term, which was shown to make 
the possible error not larger than half of its previous value [I, 51. Taking, for 
example, the asymptotic expansion of the exponential integral 

E(x) = j” (e-t/t) dt - (e-“/x) C (-l/x)” n!, 
2 12=0 

0) 

we have an approximation for the integral in the sense that while taking N terms, 
the error committed does not exceed the (N + 1)th term. The smallest term is 
seen to occur when two consecutive terms have about the same value, which 
results in the condition N w  X. For larger values of X, N increases accordingly 
and the possible error decreases very rapidly. 

Airey [2] and Dingle [3] developed the method of “converging factor”, which is a 
factor that should miltiply the last term taken in order to reduce the possible error 
substantially. In certain cases, however, the accuracy achieved by using the plain 
asymptotic series is sufficient while the simplicity of using this series is of advantage, 
especially for computer work. In these cases, it is of great importance to evaluate 
the possible error explicitly, without calculating the terms of the series. This has 
beeen done before for series representing the integrals appearing in glow curve 
theory [5, 61 and will be done here for various other asymptotic series. This 
evaluation, which also approximates the last term that is taken, is of importance 
when the accuracy needed is better than that given by the present method. If a 
converging factor is to be calculated, it is important to know to what accuracy it 
should be found, therefore an estimate of the last term taken is valuable. 

One of the functions calculable by the aid of asymptotic series is the incomplete 
r-function r(a, X) = Jz e-*P1 dt. The following treatment resembles that given 
before [5, 61 for the integrals appearing in glow curves theory, which are very 
close in nature to the incomplete gamma function. A special case for a = 0 is the 
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exponential integral mentioned above. For a > 1, one can reduce the value of a to 
be between zero and unity by the recurrence equation 

I@, x) = e-axa-l + (a - l)r(u - 1, x). 121 

The asymptotic series representing the function is a generalization of Eq. (I), 
namely, 

J-b, 4 - xa-1.5~ z. (-1)” r(n - a + l)/[x”T(l - a)] 

= xa-le-Z[l + (a - 1)/x + (a - l)(a - 2)/x2 f ~a*], (3) 

where I’(u) is the gamma function of y. The ratio between two consecutive terms 
N and N + 1 is (N - a + 1)/x. N should be chosen such that this ratio is the 
largest one smaller than unity; that is, N - a + 1 GX x. 

For best results, we have to take N terms in the series and the possible error is 
related to the (N + 1)th term, aN+l , which is (-l)“+lr(N - a + 2)/[xN+lr(l -a)]% 
Defining 0 < OL < 1 such that N - a + 1 + 01 = x, we have 

/ aN+l I = qx + 1 - C.X)/[X”+a--olr(l - a)]. (41 

For values of x greater than or equal to 10, the Stirling approximation [7] is correct 
to 1%; therefore, we have 

IGvt1l~ d2 TX e-(“-“)(x - ~)“-“+l/Z/[p+a-~~((I - a)] 

= v%Ze- (=-a)(1 - al/x)” (x - cX-“+l/2/[xa--ar(l - a)]. 

By writing e-” instead of (1 - (Y./X>“, we increase the expression by not more than 
5 % since 01 < 1 and x > 10. By taking ~-a+~/2 instead of (x - 01)-“+l12, we may 
add an error of up to 5 %. We finally have 

1 aN+1 / = 427rX eczx+/T(l - a), 

The relative error is I c.++~ 1 divided by the sum of the series. For x 3 10, kke 
I sum is 0.9 or more; thus, taking I aNfl , itself as the relative error, decreases the 

estimation of the error by up to 10 %. Summing up all the approximations leading 
to Eq. (6), we have an expression for the relative error which may be wrong by 
up to about 10 ‘A (taking into account that some of the factors mentioned are of 
opposite sign). The value of r(l - a) for 1 > a > 0 can be found in tables. The 
expression (6) becomes better for higher values of x. For the particular case of the 
exponential integral we have to insert a = 0 and get the simpler result 42X e-“. 
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As was shown before [5, 61, the value found by the series improves if we add 
QaN+1 and the possible error reduces to RN = 4 / aN+l I, which was shown to 
reduce the expression in Eq. (6) by $ as well. Following Dingle [3], a better 
approximation for the series is 

N-1 qn - a + 1) 
nzo (f$Ci~l~‘L) = z. (-x)” r(l - a) + r(l - a)(-x)” 

rw - a + l) l&La(X), (7) 

where ,.4,(x) is a function calculable by a power series given by Dingle 

/l,(s + 8) = 4 - (1 - Ss)(l - 26) + (1/32s2)(1 - 28 - 4e2) 

+ (1/128s3)(1 + 68 + 819~ + 88”) + . . . . (8) 

this expression is exact to order l/s3. For x = 10, this means an accuracy of 10-3. 
Checking this expression more closely, we see that for s 3 10 and 0 < 1, namely 
for our case where N - a + 1 M x 3 10 we have 0.49 < Ll,(s + 0) < 0.51. 
This means that by the simple way of taking the terms down to the smallest but 
one and adding half of the smallest one, we get results which are now proved to 
be correct to (l/100) 1 aNfl j rather than + J aNtI /. The estimate on the last term 
to be taken as in Eq. (6) should be combined with the desired accuracy in order 
to decide the number of terms to be taken in the expression (8). 

The Stieltjes integral [l] F(x) = Jr e+ &/(t + X) is very similar to the exponential 
integral in the sense that its asymptotic expansion is 

F(x) w  z. (-l)fi n!/x”+l = (l/x) c (-1)” n!/P 
,I&=0 

(9) 

and its analysis will be the same. The error function Erfc T = JG exp(-w2) du 
can be regarded a special case of the incomplete r function since Erfc T = 
JJ(&, T2). Its asymptotic expansion is thus 

Erfc T N (1/2T .\/qexp(--T2) c J’(n + g)(--I)“/T2”. (10) 
T&=0 

The smallest term occurs for T2 = N + Q, thus, for T > 3, a good approximation 
for this term is 2/z exp(-T2). As before, if we add only half of this term, the 
possible error is about 0.01 ~‘2 exp(-T2). 

Dealing with the Fresnel Integrals 131, one has the series 

4x1 - l,z**. (- l)+(+l) F(?z - +J[r(# x”-‘I; (11) 
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The smallest term is found for (N + &)(N - +) M x2; for x FX 10 or more we 
have N = x. The smallest term would now approximately be (in absolute value) 
F(x + 3/2)/x”+l which, by the use of Stirling’s formula tends to (271-/x)~~~e-(~+~~~~. 
According to Dingle [3], this last term should be multiplied by IIN+,,,( The 
expansion of II, is given by 

IT& + 0) = g - ($s)(l - 20) + (l/8$)(1 - 48 - 282) 

- (1/16s3)(3 + 180 + 8@ + a*., 

accurate to about l/s3. Again, s is about 10 or more and 0 < 0 < 1; under these 
circumstances, 0.48 < II,(s + 8) < 0.52. Thus, adding one half of the Nth term 
brings about an error which does not exceed O.O2(27i/~)~/~ &m-1/z), which is for 
x m 10 an accuracy of ~10-~. The accuracy improves rapidly for larger values of x. 

A similar case occurs with the sine and cosine integrals whose asymptotic series 
are 

ax) = c Nodd (-l)Q(+l) (n - l)! + (-l)+tN+l) (N + l)! D,+,(x) (13) 

1,3,5... 
y-1 XN+l 

and a similar series with even values of FZ. The treatment is the same as in the 
previous case as is the approximation for the last term and the possible error 
which is up to 2 % thereof. 

The possibility of taking $ as an approximate converging factor for the smallest 
term exists only for alternating sign series. When the terms in the asymptotic 
series have the same sign, the converging factors are of the form 

A,[-(s + I!?)] = -(l/3)(1 - 38) + (l/13%)(4 - 458 + 9082 - 458”) + ~*a (14) 

and another series denoted nJi(s + e)]; see Ref. [3]. These series may have 
various values even for large s and 0 < B < 1. 

Dawson’s integral is given by 

As with the error function, the smallest term is found for x2 m N + i and its 
value is approximated by II/Z exp(-x2) for x > 3. This last term has to be multi- 
plied by the converging factor and is now 42 exp(-x2) &&x2), the possible 
error depends on the accuracy in determining A, namely on the number of terms 
taken in Eq. (14). The Goodwin-Staton integral is given by f(x) = 
jr exp(-u2>/@ + > d x u w  h ose asymptotic expansion is 

f(x) - G4 c qJf + 9/x2’“, 
TZ=O 
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which is the same as Dawson’s integral except for the factor r(i) = 6; the 
treatment would therefore be the same. 

For calculating the Raabe integrals one has to use the asymptotic expansions 

R,(x) - (l/X) c (n - 1) !/x%-l, 
1,3,5... 

(17) 

and RG(x) which is the same for even values of n. These are the same as the functions 
C(x) and D(x) defined while dealing with the sine and cosine integrals, apart from 
the nonalternating sign of the terms here. In both cases, the smallest term will 
appear for N w  x and multiplied by the converging factor it gives 

(27rx)l’Z e-d7~+,(ix). 

The Fermi-Dirac integrals are defined by 

F,(x) = (l/p!) j,” EP d+?-s + 1). 

The asymptotic series for positive x is given here by 

(18) 

F,(x) - cos n-p . F,(-x) + 2x”+l 

(n - P - 2) ! t(n)/x~/, (1% 
e 

where t(n) = zl( - l)v-l/~, t(0) = 4 and F,(-x) is given by a convergent 
series [3]. 

The ratio between two subsequent terms is 

KN - P)(N -P - 1Wl[W + 2YWl 

which should be set to be about unity. For large enough x, we have 

t(N + 2) m t(N) M 1 

and therefore N -p - ij es x. By reasoning similar to the previous and using 
Eq. (17) in the third paper by Dingle [3] we have an expression for the last term to 
be taken 

1 aN / w &G- x-(l+p)e-o O” ,r; (- l>“-“/V”‘“~&,(iVx). (20) 
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The possible error depends, again, on the accuracy of calculating n. A similar 
treatment can be given to the Bose-Einstein integrals 
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