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ON T H E  A N A L Y S I S  O F  T H E R M A L L Y  S T I M U L A T E D  P R O C E S S E S  
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S u m m a r y  

Several methods are known for the evaluation of the main kinetic parameters related to 
a thermoluminescence (TL) curve: namely, the activation energy, the pre-exponential fac- 
tor and the kinetic order. These methods can easily be applied, under certain conditions, 
to a series of related thermally stimulated phenomena which are governed by similar 
differential equations. These include thermally stimulated conductivity (TSC), thermally 
stimulated electron emission (TSEE), ionic conductivity (ITC) and thermally stimulated 
depolarization (TSD), thermal annealing (release of stored energy, measured thermally), 
partial thermo-remanent magnetization (PTRM), thermal desorption and evolved gas 
analysis (EGA), derivative thermogravimetry (DTG), differential thermal analysis (DTA) 
and differential scanning calorimetry (DSC). The concept of a kinetic order which is 
neither first nor second is discussed as related to the various phenomena, as well as the 
temperature dependence of the pre-exponential factors. A special interest lies in performing 
simultaneous measurements of two (or more) of these effects, in particular, TL and TSC. 
A method is described for calculating the recombination probability from such simultaneous 
measurements and the cross-section for recombination therefrom. 

1. I n t r o d u c t i o n  

In  a n u m b e r  o f  invest igat ions ,  a cer ta in  p r o p e r t y  o f  a sample  is measu red  
as a f unc t i on  o f  t e m p e r a t u r e ,  w h e n  the  sample  is hea t ed  f r o m  a cer ta in  " l o w "  
t e m p e r a t u r e .  The  bes t  k n o w n  o f  such invest igat ions  are t h e r m o l u m i n e s c e n c e  
(TL) ,  s o m e t i m e s  re fe r red  to  as t h e r m a l l y  s t imu la t ed  luminescence  (TSL)  and 
t h e r m a l l y  s t imu la t ed  c o n d u c t i v i t y  (TSC).  In  TL,  one  exci tes  a sample ,  usual ly  
b y  a sui table  i r rad ia t ion  at  a " l o w "  t e m p e r a t u r e .  Dur ing  the  s u b s e q u e n t  
heat ing ,  accord ing  to  a cer ta in  scheme ,  the  sample  emi ts  l ight  in excess  o f  the  
" b l a c k  b o d y "  rad ia t ion ,  in the  f o r m  o f  glow peaks .  I f  the  sample  is suff ic ient-  
ly insula t ing these  peaks  m a y  be a c c o m p a n i e d  b y  peaks  in the  da rk  conduc-  
t iv i ty  (TSC peaks) .  A typ ica l  g low p e a k  is shown  in Fig. 1. 

2. Analys is  o f  the  peaks  wi th  an  ene rgy  band  m o d e l  

The  a p p e a r a n c e  o f  a single T L  p e a k  can be  exp la ined  b y  the  aid o f  an 
energy  level d i ag ram as shown  in Fig. 2. A t  least  t w o  energy  levels, an  e lec t ron  
t r ap  (coac t iva to r )  and  a ho le  cen te r  (ac t iva tor ) ,  each be longing  to  a cer ta in  
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Fig. 1. A characteristic glow peak. The total half width co, the low temperature half width 
r, and high temperature half width 5 are shown. 

Fig. 2. Energy band model showing the thermal excitation from an electron trap and the 
possible retrapping and recombination processes. 

impurity or defect in the sample are to be taken into account. While exciting 
the sample at a low temperature, an electron is raised, usually from the 
valence to the conduction band, and then it becomes trapped in the electron 
trap while the hole left behind is trapped in the hole center. While heating 
the sample, the electrons can (if E is small enough) be raised thermally to the 
C.B. from where they can either be retrapped, or recombine with a hole in m, 
and emit a photon.  

The three differential equations governing the process are [1]: 

I = - d m / d t  = A m m n c ,  (1) 

- d n / d t  = sn  e x p ( - E / k T )  - A n ( N -  n ) n c ,  (2) 

d n c / d t  = d m / d t -  d n / d t ,  (3) 

where I is the TL intensity in photons/s,  t is the time and T is the absolute 
temperature, E is the activation energy (eV), k is Boltzmann's constant 
(eV/K), s is the frequency (pre-exponential) factor (s-l), m, n and n c are the 
concentration of  holes in the activator centers, electrons in the traps and elec- 
trons in the conduction band, respectively (era-3), N is the concentration of 
existing traps (cm -3) and A m ,  A n  are the "recombination probabil i ty" and 
"retrapping probabili ty",  respectively (cm 3 s -1 ). According to Halperin and 
Braner [ 1], 

A m = VeOrn , A n = VeOn, (4) 

where V e  is the thermal velocity of  electrons and a m  a n d  a n are the cross- 
sections for recombination and retrapping, respectively. A m a n d  A n are 

usually assumed to be temperature-independent,  which is justified in view of 
the fast change of e x p ( - E / k T ) ;  a slight dependence on T can occur through 
v e ~ T ~ a n d  ore ,  a n cc T = [2]. In certain cases, one should take into account 
the possibility of a recombination probability which depends exponentially 
on temperature, A m  ~ e x p ( W / k T )  which seems to be due to thermal quench- 
ing [3]. 
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The exactly analogous case of  holes in traps and electrons in activator 
centers is also possible. In both  cases, the TL peak can be accompanied by  a 
TSC peak, the intensity of  which is proportional to nc. One can write 

o = e u n c  (5) 

where a is the thermally stimulated conductivity,  e is the electronic charge 
and tL is the mobili ty of  electrons (or holes). 

Another  alternative that  is to be considered is that,  while heating the sam- 
ple, electrons are raised to an excited state which is not  the conduct ion band 
and recombine via tunneling with a hole in a center which should usually be 
in geometrical proximity to the trap. The equations in this case are slightly 
different. To complicate things further, glow peaks quite of ten overlap, 
which makes the analysis more difficult. This can be overcome, at least partly, 
by "thermal cleaning" [4]. 

3. Solution of  the kinetic equations 

The three simultaneous equations can be solved numerically [5,6] to give a 
TL and its corresponding TSC peak for a given set of  parameters. One can, 
however,  obtain valuable results by  making the customary assumptions: 

nc < <  n,  Idnc/dt[  < <  Idn /d t[ .  (6) 

Basically, this means that  electrons do not  accumulate in the conduct ion 
band, but  rather recombine or retrap rapidly. From (1), (2), (3) and (6) one 
obtains 

I = - d m / d t  = sn e x p ( - E / k T ) A m  m / [ A m  m + A n ( N  - n)]. (7) 

This equation can be solved for cer ta in  eases if additional assumptions are 
made. Assuming negligible retrapping, A m  m > >  A n  ( N -  n)  we obtain 

I = - d m / d t  = - d n / d t  = sn e x p ( - E / k T ) ,  (8) 

which is the original Randall--Wflkins [7] first, order (monomolecular)  equa- 
tion. Another  well-known case is the second-order [81 (bimolecular) kinetics 
which occurs in either of  the following two cases: 

1. m = n ,  A n ( N  - n)  > >  Am m (dominating retrapping), and N > >  n for 
which 

I = - d n / d t  = ( s A m / N A n ) n  2 e x p ( - E / k T ) .  (9) 

2. m = n,  A n  = A m  (equal retrapping and recombination probabilities) 
with the result 

I = ( s / N ) n  2 e x p ( - E / k T ) .  (10) 

In both  cases, we have I = d n / d t  ~ n 2. 

One should remember  that  the relation between A n ( N  n) and A m m is 
between functions (rather than constants) which, in certain cases, may 
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change when both m and n decrease. Thus, A m m > >  A n ( N  -- n)  may cease 
to be true in the fall-off part of  a peak. The relation m = n seems to be ob- 
vious in the naive approach taken so far. This is by no means necessarily so, 
since we would like to consider cases where deeper traps or low recombina- 
tion probability centers store electrons (holes) which do not  take part in the 
glow process. The term "bimolecular" is sometimes used as a synonym to 
"second order". 

In both cases we find 

I = - d n / d t  = s ' n  2 e x p ( - E / k T )  (11) 

where s' is the "pre-exponential" factor which has units of cm 3 s -1 and, 
therefore, should not  be confused with the first-order frequency factor s. 

It  is to be stated at this point that  both the first- and second-order cases 
are very special ones and definitely do not  represent all the possibilities, even 
when only one trap and one center are involved. 

Whereas the first-order peak is asymmetrical, having ~ ~ 5, the second-order 
peaks are nearly symmetrical. The symmetry can be measured by the form 
factor introduced by Halperin and Braner [ 1 ] pg = ~ / ~ .  For first-order peaks 
one obtains pg = 0.42 and for second-order peaks tzg = 0.52, practically irre- 
spective of  the values of E and the pre-exponential factor involved [9]. 

As mentioned, a peak may be of  neither first nor second order. We can 
therefore speak about " intermediate"  cases for which the peak is neither of 
the two. One of the possible features of such a general peak is a pg which 
differs from 0.42 or 0.52. Many investigators have found it useful to assume 
a general order equation of the form 

I = - d n / d t  = s ' n  b e x p ( - E / k T ) ,  (12) 

where b is not  necessarily 1 or 2 but rather a number ranging between 0.6 
and 3.0. Now, the units of the constant s '  are [s ']  = s -1 cm 3(b -1~. 

Although certain investigators [10] described cases behaving like eqn. (12) 
with b ¢ 1 and b q= 2, such a generalised equation should only be considered 
for TL as an empirical equation since it is not  derived directly fro m the three 
differential equations mentioned above. This approach is, however, widely 
used since real glow peaks can thus be closely approximated and the param- 
eters E, s ( s ' )  and b can be evaluated. 

4. Application to other phenomena 

A large number of other phenomena are being researched using exactly the 
same mathematical equations, some with more theoretical justification and 
others with less. The differences between the mathematical representations 
of these phenomena are usually minor. They include, in addition to TL and 
TSC the following: thermally stimulated electron emission (TSEE), ionic 
thermoconductivi ty (ITC) and related phenomena, thermal annealing, partial 
thermo-remanent magnetization (PTRM), thermal desorption and evolved gas 
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analysis (EGA), derivative thermogravimetry (DTG), differential thermal 
analysis (DTA).and differential scanning calorimetry (DSC). 

For  a linear heating rate T = To + ~t the solution of  the above mentioned 
general order equation is 

I = s'no b exp ( -E / kT )  1 1 + [(b - 1)s'no b -1[{3] 
T }-b](b - 1) 

f e xp ( -E / kT ' )dT '  
To 

(13) 

This includes the well-known second-order case for b = 2. Writing s = s'no b - 1, 
we have 

I -- sno exp ( -E / kT )  1 + [(b - 1)s/~l e x p ( - E / k T ' ) d T '  (14) 
To 

s now has the units of  s -~ and in this sense it is similar to the frequency fac- 
tor  in the first-order case. The present s depends, however, on the initial con- 
centration no and, therefore, on the excitation dose. 

For  b = 1 one obtains the well-known first-order equation: 

T 

I = sno exp ( -E / kT )  exp [ - ( s /~ )  f e x p ( - E / k T ' ) d T ' ]  . (15) 
To 

Although most  investigators analysed the phenomena assuming solutions 
like eqns. (13)--(15), other  cases are sometimes to be taken into account.  
For example, considering a TSC peak corresponding to the second-order TL 
one, we should remember  that  nc = I/Am m. Since a = e~nc and assuming 
that ~ is temperature-independent,  we have [11] 

-1 
T 

o =(eps 'no/Am)exp(-E/kT) [1 + (s'no/~) f e x p ( - E / k T ' ) d T '  1 (16) 
To 

This cannot  be analysed in the previous way since no general order ac- 
counts for this case in which ~g ~- 0.8. The exact similarity in shape between 
TL and TSC peaks exists only when r = const., which means Am m = const. 

5. Calculation of  the kinetic parameters 

One certainly wishes to deduce parameters related to impurities or defects 
in a sample by the use of  the glow curves. Even in the simplified model, three 
parameters exist, namely, E, s and b, whereas eight parameters are involved in 
the differential eqns. (1)--(3). A method for finding a certain parameter 
means finding a proper ty  of  the glow curve which is sensitive to one param- 
eter and insensitive to the others. For example, in the well-known initial rise 
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method, one plots In I versus 1 / T  and obtains a straight line in the initial rise 
range, the slope of which is - E / k .  Thus, E can be found practically irrespec- 
tive of the other parameters or of  the exact mechanism. Two other groups of 
methods for evaluating E are also quite well known. One group uses the value 
Tin, the temperature at the maximum and the magnitudes r, 8 and co explain- 
ed in reference to eqn. (1) (c.f. Fig. 1). The other group uses the changes in 
the peak temperature or maximum intensity due to changes in the heating 
rate. 

Urbach [12] gave an empirical equation E(eV) = Trn (K)/500 which has 
been shown to be correct to an accuracy of a multiplicative factor of 2. 
Lushchik [13] gave the equation E6, = kTm2/8 for first-order and E82 = 2kTm2/5 
for second-order. Halperin and Braner [1] found 

Erl = 1 . 7 1 ( k T m = / r ) ( 1 -  1.58A) (17) 

where A = 2k T m / E  for first-order and a similar equation with other constants 
for second-order. Chen [9] found 

E ~  = 2.52kTm2/¢o - 2 k T  m (18) 

for first-order and a similar equation with other constants for second-order. 
He also suggested corrections to the equations of Lushchik, and Halperin 
and Braner to make them non-iterative and more accurate. This was done 
using numerical calculations in the following ranges of E and s: 0.1 eV <~ E ~< 
2.0 eV and l0 s s-' ~< s <~ 10 '3 S -l .  

The six equations for the r, 5 and ¢0 methods can be summed up as 

Ea = ca (kTm2/a) - ba (2kTm), (19) 

where Ea stands for E r, E8 and E~ and a stands for r, 8 and ¢o, respectively, 
and where ba and ca are given in Table 1. The comparative advantages and 
disadvantages of the r, 5 and ¢o methods have been discussed by Chen [9]. 
The equations have been shown [14] in a semi-empirical way to be extend- 
able to cases with b 4= 1 and b 4= 2 in the range 0.7 ~< b ~< 2.5 by using the 
measured value of pg = 8/oo as an extrapolatior, parameter as follows: 

Cr = 1.51 + 3(pg - 0.42) br = 1.58 + 4.2(~g - 0.42) 

c~ = 0.98 + 7.3(pg -- 0.42) b8 = 0 (20) 

c~ = 2.52 + 10.2(Ug - 0.42) b~ = 1 

T A B L E  1 

f i r s t -o rder  s e c o n d  -order  

r 6 co r 6 

c a 1.51 0 .98 2 .52 1.81 1.71 3 .54 
ba 1.58 0 1 2 0 1 
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The reason for using pg as an extrapolation parameter is that,  as shown in 
Fig. 3, ~g depends strongly on b and hardly depends on E and s. In regard to 
the applicability of  eqns. (19) and the coefficients given in (20), it should be 
mentioned that  they have been successfully used [6] (especially the r method)  
for synthetic peaks computed  by  the three differential equations (1)--(3). 
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Fig. 3. Dependence of the geometrical factor ## on the kinetic order b. The dotted lines 
represent the highest and lowest Ug found for a given b, the solid line gives average values. 

In cases where the order is known, one can get an equation for the maxi- 
mum condition by  differentiating the appropriate expression for I and 
equating the derivative to zero. For  first-order, for example, this yields 

{3E/(leTm 2) = s e x p ( - E / k T m ) .  (21) 

One can use this equation to evaluate s once E is found. This equation can 
also be writ ten as ~E/(ks)  = Trn 2 e x p ( - E f l e T m ) .  This shows that if ~ increases, 
Tm increases as well, since the right-hand side is a monotonical ly increasing 
function of  Tin. The changes in Tm with/3 can be used to evaluate E by  
repeating the experiment with various heating rates. Plotting ln({3/Tm 2) = 
f ( 1 / T m )  should give a straight line, the slope of  which is -E / l e .  This is known 
to be true for first-order kinetics and linear heating rates. It is, however, also 
correct for non-linear heating rates when ~m, the instantaneous heating rate 
at the maximum, replaces ~ [15].  The same method has also been proved 
to be correct, to a very good approximation,  to the second-order case and the 
" intermediate"  ( - d n / d t  ~ n b) order cases [15].  

In another TSP case, namely, thermal annealing, it has been shown [16] 
that  the process is governed by  various equations of  the form - d n / d t  c~ F(n)  
where F(n)  is not  necessarily n b. Even in this case, if F(n)  is a well-behaving 
function, it was shown that the above-mentioned various heating rates (VHR) 
method is applicable. Another  variant of  the VHR method [16] uses the 
variations of  the maximum in~ns i ty  Im with the heating rate ~m. 

In several cases [2],  it has been shown that  the pre-exponential factor s'  
(or s) is temperature-dependent  i.e. s'  ¢~ T a with --2 ~< a < 2. This occurs in 
practically all the thermally stimulated phenomena.  For  all three methods for 
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evaluating E (initial rise, symmetry,  VHR) it has been shown [9,15,17] that a 
correction of  the form Ec = E - akT  should be made to the otherwise accept- 
ed values. Various methods of  curve fitting [18],  usually employed with the 
aid of  a computer ,  should be mentioned. These may yield directly the values 
of  E, s '  and b. 

6. Simultaneous measurements of  TL and TSC 

Simultaneous measurements of  TL and TSC have quite frequently been 
performed. Let us consider only one of  the three mentioned differential 
equations, eqn. (1), writing now A instead of  A m 

I(t) = - d m / d t  = Amn  c (1')  

This equation merely states that  the TL intensity equals (more precisely, 
is proportional to) - d m / d t ,  and this, in turn, is proportional to m and nc. 
This is expected to be correct for cases where more than a single trap is 
responsible for the electrons (holes) in the band, if transitions into only one 
recombination center are measured. Even if more than one recombination 
center is involved, one can improve the situation by using a suitable filter to 
isolate one kind of  transition from the others [19].  Supposing that nc(t) is a 
known function (as measured by TSC for example), and assuming that A is a 
constant one obtains 

t 

I( t )= A m o n c ( t ) e x p  ( - A  f n c ( t ' ) d t ' ) .  (22) 
0 

Writing this equation for two arbitrary points tl and t2 and dividing one by 
the other  we obtain 

/ ~  ne(t)dt  ) (23) I(t2)/I(tl) = [nc(t2)/nc(tl)] exp { • - A  
t~ 

All the quantities in this equation are measurable except  for A which can 
thus be evaluated (Fig. 4). 

Since A = am v, one can evaluate am by using the known value of  the ther- 
mal velocity v. It is to be noted that for the evaluation of  A in this way, one 
needs only relative values of  I(t) whereas for nc(t) an absolute measurement 
is needed (in the integral only). One can now differentiate eqn. (22), set the 
derivative to zero and obtain the condition for the maximum of the TL peak: 

(dnc/dt)max = A [nc(tmax)] 2. (24) 

An important  feature of  eqn. (24) is that  m0 does not  appear in it, which 
means that  if a certain excitation changes mo, Tm does not  shift. This 
resembles the simple first-order case. On the other  hand, excitation that  
changes the initial trap filling may change ne(t) and therefore would influence 
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Fig. 4. Schemat i c  i l lus t ra t ion  o f  a s i m u l t aneous  m e a s u r e m e n t  o f  I ( t )  and  n c ( t )  curves.  The  
p a r a m e t e r s  needed  for  t he  eva lua t ion  of  A are shown.  

Tm,  usually shifting it to a lower temperature similar to the second-order case. 
Since the right-hand side of  eqn. (24) is always positive, we have 

(dnc/dt)max > 0 and this means that  the TL maximum occurs at a lower 
temperature than its no(T)  counterpart.  This may not  be the case if A = am v 
is an increasing function of  temperature [20]. It has been shown that  am may 
depend on temperature like T ~ with - 4  ~< a ~< 0, but  v ~ Tk and therefore 
A = A 'T  a with --7/2 ~< a ~< 1/2. The condition for the occurrence of  the TL 
maximum at a temperature higher than the TSC one is 

A m  Tm ncm < a[Jm, (25) 

where A m is now the recombination probability at the maximum. This in- 
equality will be obeyed quite rarely. However, if one compares, the TL peak 
with the TSC peak, one should also take into account the dependence of  the 
mobility on temperature. Since o = epnc and if [2] p = p 'T  b, one obtains the 
condition for inversion: 

A m  Tm Omax < c~m, (26) 

where c = a - b and A m  = (A '/p 'c)Tm c. For b = - 1 . 5 ,  for example, we find 
- 2  < c < 2 and for the higher possible values of  c, the inequality can hold 
more easily. 

7. Final remarks 

Several other aspects of TL, TSC and other thermally stimulated processes 
are of  importance. More information can be achieved by making the following 
measurements: 

(1) Dependence on the dose of  excitation, which can be linear, superlinear 
(Im c¢ D n for n > 1) or sublinear (including saturation effects). 
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(2) The area under a glow curve can be measured, in absolute units if 
possible, which yields information on no or m0 as the case may be. 

(3) The limiting (saturation) value of no can give in certain cases the 
magnitude of N. 

(4) The related effect of phosphorescence decay at a constant temperature 
can add some information [21]. 

(5) Effects of bleaching, enhancement,  pre-bleaching and pre-enhancement, 
i.e. changes in TL due to subsequent illumination by two different wavelengths 
(or, for example, 7-rays followed by u.v. or visible light), can sometimes give 
more information on the processes involved. 
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