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Abstract. A method of extracting information about trapping levels in crystals by 
numerical curve fitting, known for first- and second-order kinetics curves, has now 
been extended to general-order kinetics glow peaks. This generalized method, 
suitable for use by digital computer, enables the evaluation of the activation energy 
as well as the kinetics order. The method has been used on thermoluminescence 
peaks of SrFz : Tb crystals. The results are compared with activation energies and 
kinetics orders found by other methods. 

1. Introduction 
A graphical method has been given by Cowell and Woods (1967) for evaluating the 

activation energy E of first-order (Randall and Wilkins 1945) thermoluminescence or 
thermally stimulated current (TSC) glow curves. A numerical method (Mohan and Chen 
1970) similar to the graphical method was shown to be more objective, and to yield a more 
accurate value of E, the activation energy. Mohan and Chen have also extended the 
method to the case of second-order glow peaks (Garlick and Gibson 1948). 

The kinetics of certain glow peaks are neither of first nor of second order, but rather are of 
'general order' (Partridge and May 1965, Muntoni et al. 1968, Capelletti and de Benedetti 
1968, Chen 1969 a, Taylor 1970). This is the case, for example, when two electrons are 
contained in a single trap (May and Partridge 1964) ; under these circumstances, one has 
I= 1.5. The equation governing the process in this more general case is 

where I represents the glow intensity, n the concentration of trapped carriers (cm-3), t the 
time (s), s' a constant (s-1 cm3(1-1)), I a positive number (usually between 0.5 and 3) 
representing the kinetics order, E the activation energy (eV), k Boltzmann constant (eV K-1) 
and T is the absolute temperature (K). Special cases of this equation are the first-order 
kinetics, for I= 1 and the second-order, for 1=2. The solution of this equation for If 1 
was shown to be (Chen 1969 a) 

where no (cm-3) is the initial concentration of trapped carriers and p (K s-1) the (linear) 
heating rate. Equation (2) gives the expression for the second-order kinetics directly by 
substituting 1=2. The expression for the glow curve of first-order kinetics (Randall and 
Wilkins 1945) results from equation (2) as the limit for Z-tl. Since EjkT usually has 
values of 10 or more, the value of 

can be found to a high accuracy by the suitable asymptotic series (Chen 1969 b). 
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In the present paper we extend the numerical method of glow curve fitting to the case 
of general-order kinetics. Doing so, we are able to extract more accurately the activation 
energy and to find the kinetics order I .  The method has been investigated by applying it to 
(a) ‘synthetic’ peaks generated numerically according to equation (2) and (b)  experimental 
thermoluminescence curves taken from an x-ray irradiated SrFZ : Tb sample. 

2. The method 
Let us use the notation (Chen 1969 a), s=s”+-~. The expression (2) can be normalized 

by dividing I (  T )  by Zm, the maximum intensity, found by substituting Tm for T i n  equation 
(2). We now have 

T m  Z/(Z-I) 
exp (E/kTm - E/kT) 1 +(sip) ( I -  1) / exp (- E/kT)  dt 

I ’ (T)= --- - ~ _ _ _ ~  r T TO -1) ( 3 )  
1 + (s ip)  ( I -  1) / exp (- E/kT’) d T’ i To 

where Z’( T )  is the thus defined normalized glow. 
Using the condition for the maximum, it has been shown (Chen 1969 a) that 

We choose to denote by I ( T )  the experimental results given in a graph form, from which 
we use a certain number of points I(T+,) for i= 1, 2, . . . , N .  The values of TO, Tm, I ,  and 
,B are also known. We define the normalized experimental values as 

I‘(T+,)=f(T+,)/im i= I ,  2, . . . , N. (5) 

Let us start with arbitrary values of E and 1 (for example, we started in most cases with 
E=0.3 eV and I= 1.5). s can be computed by equation (4) using the present values of 
Tm, E, TO, and I .  The normalized curve is computed by equation ( 3 )  and the ‘mean 
deviation’ SI and the ‘root mean square deviation’ SZ are calculated as follows 

i= l  

AV 

SZ=(: 2 (Z‘(Ti)-I’(Ti))2 
i = l  

(7) 

Since I‘ (Ti) and I ‘  (Ti) are both normalized, SI = SZ = 0 would mean a complete coincidence 
of the two curves. Our goal is, therefore, to find values of E and I that minimize SI and SZ. 
For a given value of 1, SI increases for decreasing values of E and vice versa. If SI is 
positive, we increase E by adding a certain constant, say 0.1 eV, to it. Now SI is recalculated 
and if it is still positive, we add the same amount to E. The process is repeated until SI 
changes sign. Now half of the previous amount is subtracted from E (0.05 in the present 
example) and this process is repeated, namely, the correction is halved in each step and its 
sign is determined by the sign of SI. Since SI is the sum of positive and negative differences, 
its absolute value can be reduced to any desired value by changing E, independent of the 
chosen value of 1. Thus, we may carry out this process down to an arbitrarily small 
absolute value of SI or until the correction in E is small enough. 

The dependence on I was checked by SZ. We vary in steps the value of 1 in order to  
reduce Sz and in each step E is recalculated such that SI gets arbitrarily small. We keep 
changing 2in a certain direction as long as SZ decreases. If it increases, we alter the direction 
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of change of I and reduce the amount of this increment. The process can be stopped when 
the changes in I are small enough. Owing to small computational errors (rounding off 
errors, for example), the value of SZ does not reduce to zero even for a 'synthetic' peak 
computed by equation (2) and having definite values of E and 1. SZ is found to reduce 
to some positive minimum which, for the synthetic peak, is relatively small. For experi- 
mental peaks, however, one can expect a much larger minimum value of SZ, partly because 
of experimental inaccuracies but mainly since the assumption that the peak can be described 
by equation (1) is in many cases only an approximation. It has been pointed out, however 
(Chen 1969 a), that this approximation is much better in most cases than just assuming 
first- or second-order kinetics, because of the introduction of the additional parameter 1. 
Since we are always dealing with normalized curves, the smallness of the final SZ can be 
used as a general measure for the validity of the assumption implied by equation (1). 

It is to be noted that in addition to E and I we get as a by-product the value of s = ~ ' n o z - ~ ,  
The value of s to be taken is certainly the one corresponding to the final E and 1. 

3. Analysis of synthetic peaks 
A few synthetic peaks have been computed and analysed. One of them will be described 

here in some detail. This synthetic peak has been calculated according to equation (2) 
with the given parameters E=0.3 eV, I =  1-5, s= loll  s-l, /3= 1 K s-l, To=O K. The curve 
found in this way has its maximum at about 128 K. The results found by using this curve 
as input data for our program are given in table 1. In this case we preferred to start with 
If 1.5 in order to be able to see the convergence toward the value I= 1.5. Although the 
program changes automatically the values of 1 so as to minimize S P ,  few results with differ- 
ent values of I in the vicinity of the final value of 1.5, are also given. All the calculations 
were carried out until SI became as small as 10-7. The very good agreement of the results 
found for the minimal SI, namely, I =  1.5, E=0.300 eV and s= loll  s-1 shows the accuracy 
of the method for this ideal case. The program was very successfully applied to synthetic 
peaks having other values of 1 including second-order peaks (1=2). Because of the nature 
of equations (2) and (3) for I= 1, the method was not usable for a peak which is strictly of 
first-order kinetics. 

Table 1. Calculated values of E, s and 5'2 for some values of 
1 from a synthetic glow peak 

1.3 
1.4 
1 a45 
1 e475 
1.5 
1,525 
1 a 5 5  
1.6 
1.7 

E (ev> 
0-275 
0.288 
0 * 294 
0.297 
0.300 
0.303 
0 * 306 
0.312 
0.323 

s (s-1) sz 

3 . 2 ~  1010 1 . O X  10-4 
5.7 x 1010 3.0 x 10-5 

1 e o  x 1010 5-7  x 10-4 

7.6 x 1O1O 7.3 x 10-6 
1 .ox 1011 8 .5~10-9  
1.3 x l o l l  7.8 x 10-6 
1 e7 x 1011 
2.9 x 1011 
8.1 x 1011 

2.9 x 10-5 
1 . O X  10-4 
4.0 x 10-4 

Details of synthetic glow peak: E=0*3 eV, I= 1.5, 
s= 1011 s-1, p= 1 K s-l, To=O K and Tm= 128 K. 

When a first-order synthetic peak was used as data, the method brought I quite close to 
unity but at a certain stage the improvement in SZ stopped and thereupon 1 kept oscillating 
around the value of 1. The program was then improved in such a way that if this happened 
we switched to an alternative program constructed for first-order peaks (Mohan and 
Chen 1970). 

We have also examined the influence of the chosen temperature range on the results. 
By taking results only around Tm, the decrease of SZ at the 'correct' I is less pronounced. 
While taking broader temperature ranges, the region of temperatures below Tm was found 
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to yield less significant results than the range of higher temperatures. In the higher 
temperature range, the glow curve is highly sensitive to changes of I ,  therefore this range 
can be best used for extracting the correct value of 1. On the other hand, if one is interested 
only in the best attainable value of E, the lower temperature range is better. 
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Table 2. Calculated values of E, s and S2 for some values of 
1 from a TL peak of SrFz : Tb at 145 K 

1 
1.400 
1 *500 
I ,525 
1.573 
1 a600 
1.650 
1 e700 

E (eV> 
0.350 
0.363 
0,367 
0.373 
0.376 
0.382 
0.388 

s (s-1) 
8.3 x 1010 
2.5 x 1011 
3 . 2 ~  1011 
5.3 x 101‘ 
7 - 0  x 1011 
1.1 x 1012 
1.9 x 1012 

4. Experimental results and discussion 
The experimental set-up was similar to that described in previous work (Halperin and 

Chen 1966). Thermoluminescence glow curves were recorded after the Tb-doped SrFz 
samples were excited by x-rays. Our method was applied to a peak appearing at about 
145 K. The computational procedure was again repeated until SI was reduced to about 
10-7. The results for E, s and S2 are given for three values of 1 in table 2. The minimum 
value of SS is found at I= 1.573, at this point we have E=0.37 eV. For comparison, the 
activation energy was calculated by three methods using the temperature at the maximum 
and the two temperatures at half intensity (Chen 1969 a). The results by these methods are 
E,=0.35 eV, E8=0.36 eV and E,=0.36 eV, in very good agreement with our present 
result. The minimum in S2 is certainly not so pronounced as in the case of the synthetic 
peak. As mentioned before, this seems to be due both to experimental inaccuracies and 
inaccuracies produced by the assumption that the behaviour is given by equation (2). 
Additional complication may result from the possibility that peaks are not clean, namely, 
that more than one glow peak contributes to the measured intensity at the same temperature. 
The comparison between the activation energy found by the present and the other methods 
is, however, very good. In order to check the value of I ,  we can use the measured value of 
pg‘ = Sjw where 6 = T2 - Tm, w = TZ - TI and TI and TZ are the lower and higher temperatures 
at half intensity, respectively. The value of pg’ in our curve was found to be 0.486 which, 
according to figure 1 in the paper by Chen (1969 a) corresponds to I= 1.51, again in a good 
agreement with the method described here. 

The advantage of the present method is that it automatically gives the best values of 
E, 1 and s based on many points in the glow curve. Another advantage is that although 
different portions of the curve may have various sensitivities on each of the parameters, 
different ranges of the same peak can be used for finding the parameters. Thus, we can 
avoid ‘dangerous’ regions, namely, regions where neighbouring peaks may interfere. The 
comparison of values of E and I and the final SZ calculated by using various portions of the 
glow curve as data, may be very instructive in many cases and can, in certain cases, reveal 
the existence of minor ‘satellites’. 

In conclusion, we can say that the method shown before to be more objective and accurate 
than the graphical curve fitting method for first- and second-order glow peaks, is now 
extended to general-order peaks. In addition to the calculation of the activation energy E 
and the frequency factor s we now get directly the value of the order of the kinetics 1. 
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