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Notes 

On the Computation of the Generalized Integral 
in Glow Curve Theory 

An improvement in the method for computing the value of the integral 
Jio exp(-l?/kT’) dT was given previously [l]; where T,, is the temperature (in OK) 
at which the crystal is excited, T the variable temperature (“K), k the Boltzmann 
constant, and E the activation energy (ev). A more general theory taking into 
account a possible dependence of the frequency factors on temperature, s = sITa, 
where S” is a constant [2, 31, includes the integral SF0 T’@ exp(--E/kT’) dT’. The 
value of a was reported [4, 51 to be usually between -2 and 2, and in most cases 
it is an integer or half-integer. The purpose of the present note is to improve 
the computation of this generalized integral in a way similar to that which was 
done for the specific case of a = 0 [I]. It is obvious that for another specific 
case, a = -2, the function is integrable and therefore its evaluation is trivial. 

Let us define 

F(T, E, a) = 1: T’” exp(-E/kT’) dT’, 

then the integral we are interested in will be 

(1) 

1 
T 

T’a exp(-E/kT’) dT’ = F(T, E, a) - F(T, , E, a). 
TO 

By integrating by parts we have from Eq. (1) 

F(T, E, a) = y exp (3,) 

I 
1 

x l - m + 2) n=2 1 ($y’ (-l)“-1 r(u + n + l)/. (3) 

If we take N terms in this series the absolute value of the possible error 1 RN I 
would not exceed the (N + 1)th term. The integral is represented to a good 
approximation by the series in the case where E/kT is larger than unity. In most 
cases dealt with in glow curve theory, E/kT y 20; only in extreme cases does it 
get as low as 10. The absolute value of the terms decreases with IZ up to a certain 
n = N, after which the absolute values of the terms start to increase. The turning 
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point would be N for which I (E~/(E~-~ I w 1, which in the general case would give 

N M EIkT - a. (4) 

As explained previously [l] for the case of a = 0, it is of advantage to take 
N - 1 terms in the series (Eq. (3)) and to add one half of the Nth term. The 
possible error would thus be equal to aN/2. 

In a way similar to that which was done for a = 0, we now develop a method 
for estimating the possible error incurred in the evaluation of the integral by 
the series. This possible error, RN, would be given as a function of a and E/kT, 
without actually computing the terms of the series. In accordance with Eq. (3) 
we have 

If we choose N to be the largest integer smaller than EjkT - a, we have 

N = EjkT - a - 01, 

where 01 is a positive number between 0 and 1. Thus we have 

1 R, ] gg i$-)“-’ ‘cEEa++12, a) . 

(5) 

(6) 

(7) 

Using the generalized Stirling formula (see, for example, [6]) 

T(x + 1) G x5+1/2e-2 1/G, (8) 

and making use of the fact that E/kT - (y. is always 10 or more, we have to a 
good approximation that 

1 R, 1 g (&&)“-’ (??mr+‘12 (1 _ +)ElkT-a+1’2 

Again, since EjkT is rather large, we have that 

l - E,iT 
E/kT 

M e-u. 

Thus our final result is 

(9) 

(10) 

(11) 
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The relative error can be found according to Eq. (3) by dividing the value 
given in Eq. (11) by the expression 

l - r(a: 2) n=2 f ($)“-’ (-1)” P(u + n + I) 

This expression is usually smaller than unity by only 10-20 % ; thus the value 
of RN itself is a good approximation for the relative error. It is immediately 
seen that Eq. (11) reduces to Eq. (13) of [l] for a = 0. 

The evaluation of r(u + 2) for Eq. (11) is trivial for integral values of a. For 
half-integers or other nonintegrals its value can be found using tables (for example, 
see [7]) and the equation l-‘(m + 1) = m&z). 

It is to be noted that although the r-function appears twice in Eq. (3), one 
does not have to find its values for calculating each term in the series; it is 
much easier, especially while working with the computer, to use the fact that 
r(u + n + l)/r(u + 2) is the same as (a + n)(u + n - 1) *.* (a + 2). Finally, 
the conventional assumption that F(T, E, a) > F((TO, E, a) can be checked in a 
way similar to that explained in [I] for a = 0. When one does not want to bother 
about the validity of this assumption there is no problem in calculating F(T, , E, a) 
and using Eq. (2). 
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