Notes

On the Computation of the Generalized Integral in Glow Curve Theory

An improvement in the method for computing the value of the integral $\int_{T_{0}}^{T} \exp \left(-E / k T^{\prime}\right) d T^{\prime}$ was given previously [1]; where T_{0} is the temperature (in ${ }^{\circ} \mathrm{K}$) at which the crystal is excited, T the variable temperature (${ }^{\circ} \mathrm{K}$), k the Boltzmann constant, and E the activation energy (eV). A more general theory taking into account a possible dependence of the frequency factor s on temperature, $s=s^{\prime \prime} T^{a}$, where $s^{\prime \prime}$ is a constant $[2,3]$, includes the integral $\int_{T_{0}}^{T} T^{\prime a} \exp \left(-E / k T^{\prime}\right) d T^{\prime}$. The value of a was reported $[4,5]$ to be usually between -2 and 2 , and in most cases it is an integer or half-integer. The purpose of the present note is to improve the computation of this generalized integral in a way similar to that which was done for the specific case of $a=0$ [1]. It is obvious that for another specific case, $a=-2$, the function is integrable and therefore its evaluation is trivial.

Let us define

$$
\begin{equation*}
F(T, E, a)=\int_{0}^{T} T^{\prime a} \exp \left(-E / k T^{\prime}\right) d T^{\prime} \tag{1}
\end{equation*}
$$

then the integral we are interested in will be

$$
\begin{equation*}
\int_{T_{\mathbf{a}}}^{T} T^{\prime a} \exp \left(-E / k T^{\prime}\right) d T^{\prime}=F(T, E, a)-F\left(T_{0}, E, a\right) \tag{2}
\end{equation*}
$$

By integrating by parts we have from Eq. (1)

$$
\begin{align*}
F(T, E, a)= & \frac{k T^{a \mid 2}}{E} \exp \left(\frac{-E}{k T}\right) \\
& \times\left\{1-\frac{1}{\Gamma(a+2)} \sum_{n=2}\left(\frac{k T}{E}\right)^{n-1}(-1)^{n-1} \Gamma(a+n+1)\right\} \tag{3}
\end{align*}
$$

If we take N terms in this series the absolute value of the possible error $\left|\boldsymbol{R}_{N}\right|$ would not exceed the $(N+1)$ th term. The integral is represented to a good approximation by the series in the case where $E / k T$ is larger than unity. In most cases dealt with in glow curve theory, $E / k T S 20$; only in extreme cases does it get as low as 10 . The absolute value of the terms decreases with n up to a certain $n=N$, after which the absolute values of the terms start to increase. The turning
point would be N for which $\left|a_{N} / a_{N-1}\right| \approx 1$, which in the general case would give

$$
\begin{equation*}
N \approx E / k T-a \tag{4}
\end{equation*}
$$

As explained previously [1] for the case of $a=0$, it is of advantage to take $N-1$ terms in the series (Eq. (3)), and to add one half of the N th term. The possible error would thus be equal to $a_{N} / 2$.

In a way similar to that which was done for $a=0$, we now develop a method for estimating the possible error incurred in the evaluation of the integral by the series. This possible error, R_{N}, would be given as a function of a and $E / k T$, without actually computing the terms of the series. In accordance with Eq. (3) we have

$$
\begin{equation*}
\left|R_{N}\right| \cong\left|\frac{a_{N}}{2}\right|=\left(\frac{k T}{E}\right)^{N-1} \frac{\Gamma(a+N+1)}{2 \Gamma(a+2)} \tag{5}
\end{equation*}
$$

If we choose N to be the largest integer smaller than $E / k T-a$, we have

$$
\begin{equation*}
N=E / k T-a-\alpha \tag{6}
\end{equation*}
$$

where α is a positive number between 0 and 1 . Thus we have

$$
\begin{equation*}
\left|R_{N}\right| \cong\left(\frac{k T}{E}\right)^{N-1} \frac{\Gamma(E / k T+1-\alpha)}{2 \Gamma(a+2)} \tag{7}
\end{equation*}
$$

Using the generalized Stirling formula (see, for example, [6])

$$
\begin{equation*}
\Gamma(x+1) \cong x^{x+1 / 2} e^{-x} \sqrt{2 \pi} \tag{8}
\end{equation*}
$$

and making use of the fact that $E / k T-\alpha$ is always 10 or more, we have to a good approximation that

$$
\begin{align*}
\left|R_{N}\right| \cong & \left(\frac{k T}{E}\right)^{N-1}\left(\frac{E}{k T}\right)^{N+a+1 / 2}\left(1-\frac{\alpha}{E / k T}\right)^{E / k T-\alpha+1 / 2} \\
& \times \exp \left(\frac{-E}{k T}\right) \frac{e^{\alpha} \sqrt{2 \pi}}{2 \Gamma(a+2)} \tag{9}
\end{align*}
$$

Again, since $E / k T$ is rather large, we have that

$$
\begin{equation*}
\left(1-\frac{\alpha}{E / k T}\right)^{E / k T} \approx e^{-\alpha} \tag{10}
\end{equation*}
$$

Thus our final result is

$$
\begin{equation*}
\left|R_{N}\right|=\sqrt{\pi / 2}\left(\frac{E}{k T}\right)^{a+3 / 2} \frac{\exp (-E / k T)}{\Gamma(a+2)} \tag{11}
\end{equation*}
$$

The relative error can be found according to Eq. (3) by dividing the value given in Eq. (11) by the expression

$$
1-\frac{1}{\Gamma(a+2)} \sum_{n=2}^{N}\left(\frac{k T}{E}\right)^{n-1}(-1)^{n} \Gamma(a+n+1)
$$

This expression is usually smaller than unity by only $10-20 \%$; thus the value of R_{N} itself is a good approximation for the relative error. It is immediately seen that Eq. (11) reduces to Eq. (13) of [1] for $a=0$.

The evaluation of $\Gamma(a+2)$ for Eq. (11) is trivial for integral values of a. For half-integers or other nonintegrals its value can be found using tables (for example, see [7]) and the equation $\Gamma(m+1)=m \Gamma(m)$.

It is to be noted that although the Γ-function appears twice in Eq. (3), one does not have to find its values for calculating each term in the series; it is much easier, especially while working with the computer, to use the fact that $\Gamma(a+n+1) / \Gamma(a+2)$ is the same as $(a+n)(a+n-1) \cdots(a+2)$. Finally, the conventional assumption that $F(T, E, a) \gg F\left(T_{0}, E, a\right)$ can be checked in a way similar to that explained in [1] for $a=0$. When one does not want to bother about the validity of this assumption there is no problem in calculating $F\left(T_{0}, E, a\right)$ and using Eq. (2).

References

1. R. Chen, J. Comput. Phys. 4 (1969), 415.
2. P. N. Keating, Proc. Phys. Soc. 78 (1961), 1408.
3. R. Chen, J. Appl. Phys. 40 (1969), 570.
4. G. Bemski, Phys. Rev. 111 (1958), 1515.
5. M. Lax, Phys. Rev. 119 (1960), 1502.
6. G. H. Hardy, "Divergent Series," p. 333. Clarendon Press, Oxford, 1949.
7. J. W. Mellor, "Higher Mathematics," p. 426. Dover, New York, 1955.

Received: December 30, 1969
Revised: February 12, 1970
Reuven Chen

