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Abstract
Constant temperature hot gas readers are widely employed in
thermoluminescence dosimetry. In such readers the sample is heated
according to an exponential heating function. The single glow-peak shape
derived under this heating condition is not described by the TL kinetics
equation corresponding to a linear heating rate. In the present work TL
kinetics expressions, for first and general order kinetics, describing single
glow-peak shapes under an exponential heating function are derived. All
expressions were modified from their original form of I (n0, E, s, b, T ) into
I (Im, E, Tm, b, T ) in order to become more efficient for glow-curve
deconvolution analysis. The efficiency of all algorithms was extensively
tested using synthetic glow-peaks.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Constant temperature hot gas readers are widely employed
in thermoluminescence dosimetry (TLD) and over the years
have shown excellent performance. In these readers the gas
flow is always present and the temperature of the gas is kept
strictly constant. This keeps the conditions in the heating
chamber very stable and consequently makes the heating of
the sample very reproducible [1]. As the sample is inserted
in a high temperature environment, it is heated according to
an exponential heating function (EHF) [2]. The glow-curve
obtained is characterized by a relatively poor resolution of the
individual glow-peaks making the glow-curve deconvolution
(GCD) procedure a difficult task [3].

The application of GCD analysis to TLD leads to
significant improvements in dosimetric techniques. The
dosimetric data in conventional TL readers are usually taken
as the integrated area under a glow-curve, whereas in the case
of hot gas readers, the total amount of light emitted during
readout is taken to represent the dosimetric data. However, this
method requires in most cases the application of complicated
heat treatments in order to erase the TL signal in the low

temperature part of the dosimetric area. In all cases the TL
signal in the temperature region above the dosimetric area
cannot be used and its removal is a difficult task. All of these
practical problems are automatically removed by applying a
GCD analysis to the data. A deconvoluted glow-curve is highly
informative. For example, the analysis of the individual glow-
peaks in the glow-curve gives (a) their trapping parameters
E and s, contributing thus to our basic understanding of
the TL mechanism in TL detectors, (b) the exact integral
of each glow-peak can be used to represent the dosimetric
data and to improve the accuracy of the dose evaluation and
(c) the background signal can be analysed accurately and the
dosimetric TL signal can be determined even in the case of
very low doses.

A single glow-peak algorithm is the basic unit for the GCD
analysis procedure. Such single glow-peak algorithms exist for
linear heating rates [4] but not for an EHF. Previous efforts to
analyse the glow-curve obtained by constant temperature hot
gas readers [1, 3] are not based on single glow-peak models
corresponding to an EHF. Recently Kumar et al [5] used an
EHF model to fit the glow-curve of CaSO4. Lawless and
Lo [6] derived single glow-peak expressions for a variety of
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non-linear heating applied to the glow-curves resulting from
laser heating of the samples.

The aim of the present work is to derive single glow-
peak algorithms for the first and general order kinetics,
which describe experimental glow-peaks received by stable
temperature hot gas readers in which the sample is heated
according to an EHF [7].

2. TL kinetics with an EHF

Chen and Kirsh [2] (and references therein) review TL kinetics
under non-linear heating rates. Among them is the case of
an EHF, first proposed by Osada [8] and used by Dijk and
Julius [1], for the case of the stable temperature hot gas TL
readers in the form

T (t) = Tg − (Tg − T0)e
−αt , (1)

where Tg is the hot gas temperature approached asymptotically
with time, T0 is the temperature at t = 0, with α in s−1 given
by the expression

α = δA

mcp

, (2)

where δ is the heat transfer efficiency, A is the heated area, m

the mass of the sample and cp the heat capacity.
This heating scheme described above is the one we get

‘naturally’ if we let a cold sample warm up while being in
thermal contact with an infinite thermal bath at temperature
Tg . This situation exists in the stable temperature hot gas
TL readers, where the ‘cold’ TL chip at room temperature
is inserted in the readout chamber, which is at the much higher
temperature, Tg , of the hot gas.

The heating rate β will be

β = dT

dt
= α(Tg − T ). (3)

Figure 1 shows an example of the temperature profile
according to the EHF (equation (1)) and the respective heating
rate given by equation (3). The heating starts with the highest
heating rate and tends to zero when the temperature becomes
equal to the gas temperature Tg . A TL with zero heating rate
is equivalent to a prompt isothermal decay (PID).

Using equation (3), the first order kinetics equation [10],
after elementary algebra, will become

I (T )=n0s exp

(
− E

kT

)
exp

(
− s

α

∫ T

T0

exp(−(E/kT ′))
Tg − T ′ dT ′

)
.

(4)

The general order equation is derived in a similar manner

I (T ) = n0s
′′ exp

(
− E

kT

) [
1 +

(b − 1)s ′′

α

×
∫ T

T0

exp(−(E/kT ′))
Tg − T ′ dT ′

]−b/(b−1)

, (5)

with s ′′ = s ′n(b−1)
0 .

The second order is obtained by equation (5) by setting
b = 2, with s ′ = s/N .

For the sake of simplicity, in the following, it is convenient
to use the parameter s = s ′nb−1

0 , having units of s−1.
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Figure 1. Temperature profile of an EHF according to equation (1)
and the respective heating rate according to equation (3).
Tg = 573 K and α = 0.4 s−1.

All the above derived expressions for the TL intensity
I (T ) involve the integral

F(T , Tg, E) =
∫ T

0

exp(−(E/kT ′))
Tg − T ′ dT ′. (6)

Replacing 1/T ′ with x, E/k with p and Tg with α the
exponential integral of equation (6) becomes an integral of the
form

−
∫ u

∞

e−px

x(ax − 1)
dx =

∫ ∞

x=u

e−px

x(ax − 1)
dx

= −
∫ ∞

u

e−px

x
dx −

∫ ∞

u

e−px

((1/α) − x)
dx. (7)

Concerning the limits of integration the limit 0 becomes
∞, whereas the limit T goes to (1/T ) = x.

The second term of the right-hand side of equation (7) is
of the following form, given by Gradshteyn and Ryzhik [11],
which for p > 0 and c < u is

∫ ∞

u

e−px

c − x
dx = e−pcEi(pc − pu), (8)

where Ei(−u) is the exponential integral defined by [10, 11]

E1(u) = −Ei(−u) =
∫ ∞

u

e−x

x
dx. (9)

According to equation (8) the right-hand side of
equation (7) becomes

−
∫ ∞

u

e−px

x
dx −

∫ ∞

u

e−px

((1/α) − x)
dx

= Ei(−px) − e−p/αEi
(p

α
− px

)
. (10)

Replacing x with 1/T , p with E/k and α with Tg , the
solution of the integral in equation (6) is obtained i.e.

F(T , Tg, E) = − exp

(
− E

kTg

)
Ei

(
E

kTg

− E

kT

)

+Ei

(
− E

kT

)
. (11)
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Thus, the exponential integral of equation (6) can be
written as

∫ T

T0

exp(−(E/kT ′))
Tg − T ′ dT ′ = F(T , Tg, E) − F(T0, Tg, E).

(12)
For the case of linear heating function the respective

exponential integral is [9]

∫ T

T0

exp

(
− E

kT ′

)
dT ′ = F(T , E) − F(T0, E). (13)

As shown by Chen [9], the values of the exponential
integral at T0, F(T0, E) are negligible relative to the values
F(T , E) at some higher temperature T , since F(T , E) is a
very fast increasing function of T . Using the first two terms
in the appropriate asymptotic series approximation (ASA) for
the exponential integral (see equation (26)) and following the
procedure of Chen [9], according to equation (11) we have

F(T , Tg, E) � − exp

(
− E

kTg

)
exp

(
E

kTg

− E

kT

)

× KT Tg

E(T − Tg)
− kT

E
exp

(
− E

kT

)

� −kT 2

E

1

T − Tg

exp

(
E

kT

(
1 − T

Tg

))
.

(14)

After some algebra one can obtain

F(T0, Tg, E)

F(T , Tg, E)
� T 2

0

T 2

T − Tg

T0 − Tg

exp

(
E

kT

(
1 − T

T0

))
. (15)

The respective ratio for the case of linear heating rate given
by Chen [9] is

F(T0, E)

F (T , E)
� T 2

0

T 2
exp

(
E

kT

(
1 − T

T0

))
. (16)

Comparing equations (15) and (16) it is clear that the
expression in equation (15) decreases with T faster than the
expression in equation (16) by the factor (T − Tg)/(T0 − Tg).

Figure 2 shows the behaviour of equations (15) (curve (a))
and (16) (curve(b)) for the two extreme values of the activation
energy E, where one can see that the term F(T0, Tg, E),
indeed, becomes negligible very fast with increasing T and
so can be ignored. Therefore, the following approximation of
equation (12) can be considered a very good one for values of
T not too close to T0.

∫ T

T0

exp(−(E/kT ′))
Tg − T ′ dT ′ ∼= F(T , Tg, E). (17)

The conditions at the maximum for the first and general
order kinetics are evaluated by the condition

dln(I (T ))

dT
= 0. (18)
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Figure 2. Behaviour of equation (15), curve(a), and equation (16),
curve (b), for E = 1 and E = 2 eV.

The conditions at the maximum obtained for equations (4)
and (5) are

αE(Tg − Tm)

kT 2
m

= se−E/kTm, (19)

α(Tg − Tm)E

bkT 2
m

(
1 +

(b − 1)s

α
F (Tm, Tg, E)

)
= s ′′e−E/kTm,

(20)
where F(Tm, Tg, E) is the value of F(T , Tg, E) at the
temperature of the maximum TL intensity, Tm.

Normally, the expressions giving the TL intensity are
of the form I (n0, E, s, T ). However, in many practical
situations, such as the GCD expressions of the form
I (Im, Tm, E, T ) are highly desirable. The reason is that the
peak maximum intensity and temperature Im, Tm, respectively,
can be directly and accurately evaluated for the experimental
glow-curve, whereas the values of n0 and s are unknown. The
I (n0, E, s, T ) → I (Im, Tm, E, T ) transformation procedure
is described below.

The first order kinetics expression equation (4) becomes

I (T ) = n0s exp

(
− E

kT

)
exp

(
− s

α
F(T , Tg, E)

)
. (21)

By substituting the value of s obtained from equation (19),
into equation (21) the latter becomes

I (T ) = n0
αE(Tg − T )

kT 2
m

exp

(
−E(Tm − T )

kT Tm

)

× exp

(
−E(Tg − T )

kT 2
m

exp

(
E

kTm

)
F(T , Tg, E)

)
. (22)

Taking the value Im of I (T ) at Tm and after some algebra
one obtains

n0
αE(Tg − T )

kT 2
m

= Im exp

(
E(Tg − T )

kT 2
m

exp

(
E

kTm

)
F(Tm, Tg, E)

)
.

(23)
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Inserting the right-hand side of equation (23) into
equation (22) the following is obtained:

I (T ) = Im exp

(
−E(Tm − T )

kT Tm

+
E(Tg − T )

kT 2
m

× exp

(
E

kTm

)
(F (Tm, Tg, E) − F(T , Tg, E))

)
. (24)

In a similar manner the respective expression for the
general order case is obtained.

I (T ) = Im exp

(
−E(Tm − T )

kT Tm

)

×
(

1 − (b − 1)(Tg − Tm)E

bkT 2
m

exp

(
E

kTm

)

×(F (Tm, Tg, E) − F(T , Tg, E))
)−b/(b−1)

. (25)

Equations (24) and (25) represent single glow-peak
expressions, which depend on the experimental parameters Im

and Tm and not on n0 and s. They will be ready for use by
evaluating the appropriate values ofF(T , Tg, E), i.e. the values
of the exponential integrals appearing in both the terms of
equation (11). This can be achieved by two methods. The first
method consists of a numerical evaluation of the exponential
integrals in F(T , Tg, E). This method was followed by Dijk
and Julius [1]. This method is also followed in some modern
software packages such as Mathematica, where the exponential
integral is treated as a built-in like function. However, the most
practical, flexible and software independent method is to obtain
an analytical expression for a single glow-peak by replacing
the term F(T , Tg, E) by an appropriate approximation for the
exponential integral.

The appropriate approximation depends upon the values of
the argument z of the exponential integral Ei[z]. The function
F(T , Tg, E) given by equation (11) consists of two terms. In
the case of the second term Ei[−E/kT ] the values of the
argument z = E/kT are, in all practical cases, always greater
than 15 (i.e. E > 15kT ). In this case the exponential integral
can be approximated by the asymptotic series [9, 10], which
for z > 0 is given by

− Ei(−z) = e−z

N∑
n=0

(−1)nn!

zn+1
. (26)

It is of interest in the present work to discuss the accuracy
of the ASA, which approximates the exponential integral in
the region of arguments z relevant to the hot gas readers.
The question is how many terms are needed for the most
accurate approximation. According to Chen [9, 10], the
number of terms N of the ASA to be taken is the largest integer
smaller than z (in absolute value). For example, z = 10, one
should take 10 terms. The error is minimized by adding one
half of the next term with the appropriate sign. Therefore, the
second term Ei[−E/kT ] of equation (11) is always very well
approximated by the ASA of equation (26) by following the
above described rule of Chen [9, 10].

The situation is different with the first term ofF(T , Tg, E),
in equation (11), with argument z = (E/kTg) − (E/kT ).
Figure 3 shows the values of z in a temperature region typical
of glow-curves received by a stable temperature hot gas reader.
Practically, as seen in figure 3, the major part of such glow-
curves should be characterized by arguments z between 10
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Figure 3. The argument z = (E/kTg) − (E/kT ) of the exponential
integral appearing in the first term of equation (11) as a function of
temperature for three values of activation energy.
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Figure 4. Approximation to the exponential integral used in the
present work. (a) ASA with 10 terms plus one half of the 11th term,
(b) CSA with 50 terms.

and 0. However, the accuracy of ASA drops substantially as
z approaches 0. So instead of ASA, in the range of z (10,
0), the integral can be evaluated by another very well-known
approximation of the exponential integral, the convergent
series approximation (CSA) [10], which, for z > 0, is given by

Ei(−z) = γ + ln(z) +
∞∑

n=1

(−z)n

n · n!
, (27)

where γ = 0.577 215 664 9 is the Euler constant.
The question is how many terms are needed in order to

have an accurate approximation in the whole region of |z|
between 10 and 0. It is found that using 50 terms of the CSA,
the exponential integral is very accurately approximated up to
|z| = 10, as shown in figure 4(b). Curve (a) in figure 4 shows
the ASA approximation with N = 10. The argument value of
|z| = 10 is a limit, which leads to the following suggestion.
For z greater than 10 the ASA approximation must be used
with the accuracy being kept at the sixth significant figure by
increasing appropriately the number of terms in equation (26)
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and for |z| between 10 and 0 the CSA must be used with the
accuracy being kept at the sixth significant figure by decreasing
the number of terms in equation (27).

3. Analytical single glow-peak algorithms

Analytical single glow-peak kinetic equation of the first and
general order of kinetics of the form I (n0, E, s, T ) and
I (n0, E, s, b, T ) can be derived by substituting the above-
described exponential integral approximations to the general
expression given by equations (4) and (5).

The next step is to use the general form given by
equations (24) and (25) and the appropriate approximation
for the F(T , Tg, E) in order to transform the I (n0, E, s, T )

and I (n0, E, s, b, T ) equations into equations of the forms
I (Im, E, Tm, T ) and I (Im, E, Tm, b, T ), respectively, which
are much more efficient and easily implemented for GCD.

3.1. Asymptotic series approximation

Using the ASA for both the terms of F(T , Tg, E) in
equation (11) the first and general order kinetics equations,
I (n0, E, s, T ) and I (n0, E, s ′′, b, T ), for an EHF glow-peak
are

I (T ) = n0s exp

(
− E

kT

)
exp

[
− skT

αE
exp

(
− E

kT

)
Z(T )

]
,

(28)

I (T ) = n0s
′′ exp

(
− E

kT

)

×
[

1 +
(b − 1)s ′′kT

αE
exp

(
− E

kT

)
Z(T )

]−b/(b−1)

, (29)

where

Z(T ) =
N∑

n=0

(−1)nn!Dn(Bn+1 − 1) + EC, (30)

B = Tg

Tg − T
, (31)

D = kT

E
. (32)

where E · C is an error correction term which has to be taken
into account when ASA, (equation (30)), is used [9, 10] (see
also the discussion on equation (30)). However, in this case
special care must be taken about the number N of terms in
equation (30), since it is a combination of two asymptotic
series each having a different optimal value of N . Suppose, for
example, that the arguments (in absolute value) of the terms
z = |(E/kTg) − (E/kT )| and z = |E/kT | in equation (11)
are 10 and 20, respectively. Then the number of terms in
equation (30) will be N1 = 10 and N2 = 20. In equation (30)
taking N = 20 for the combination is not good because once
the optimal number for the term with z = 10 is passed the
error grows quite significantly. On the other hand taking
N = 10 in equation (30), i.e. the optimal value for the first
term but not for the second, the combination will be good
because when the argument is that large (in absolute value)
the approximation will be good even with a smaller number of
terms, 10 in the present example. Note that the contribution of

the exponential integral with argument z = |E/kT | = 10 is
much smaller than the contribution of the exponential integral
with z = |(E/kTg) − (E/kT )| = 20, so that the accuracy in
the exponential integral with z = |(E/kTg) − (E/kT )| = 20
is of major importance. In conclusion, the number of terms
in equation (30) will be given by the value of the term z =
(E/kTg) − (E/kT ), which is represented in equation (30) by
the term B.

The equivalent I (Im, E, Tm, T ) equation for the first and
I (Im, E, Tm, b, T ) general order kinetics, which are obtained
from equation (24) and equation (25), respectively, are

I (T )) = Im exp

[
−E(Tm − T )

kT Tm

+
Tg − Tm

Tm

×
(

Zm − T

Tm

exp

[
−E(Tm − T )

kT Tm

]
Z(T )

)]
, (33)

and

I (T ) = Im exp

[
−E(Tm − T )

kT Tm

] [
1 − (b − 1)

b

Tg − Tm

Tm

×
(

Zm − T

Tm

exp

[
−E(Tm − T )

kT Tm

]
Z(T )

)]−b/(b−1)

, (34)

where Zm is the value of Z(T ) at Tm.
The second order kinetics is obtained by setting b = 2.

3.2. Convergent series approximation

Using the CSA for the first term of the F(T , Tg, E),
(equation (11)) and the asymptotic series for the second term,
the first I (n0, E, s, T ) and general order kinetics equations,
I (n0, E, s ′′, b, T ), for an EHF glow-peak are

I (T ) = n0s exp

(
− E

kT

)
exp

[
− s

α
exp

(
− E

kTg

)
Z1(T )(CSA)

−kT

E
Z2(T ) exp

(
− E

kT

)]
, (35)

I (T ) = n0s
′′ exp

(
− E

kT

)

×
[

1 +
(b − 1)s ′′

α
exp

(
− E

kTg

)
Z1(T )(CSA)

−kT

E
Z2(T ) exp

(
− E

kT

)]−b/(b−1)

, (36)

where

Z1(T )CSA = γ + ln |G(T )| +
50∑

n=1

G(T )n

n · n!
, (37)

Z2(T ) =
N∑

n=0

(−1)nn!Dn + EC, (38)

G(T ) = E

kT

T − Tg

Tg

, (39)

D = KT

E
, (40)

where EC is an error correction term which is equal to the one
half of the (N +1)th term of equation (38), with the appropriate
sign, which is added in order to minimize the error due to the
use of a limited number of terms in ASA [9, 10] (see also the
discussion on equation (30)).
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The equivalent I (Im, E, Tm, T ) equations for the first and
I (Im, E, Tm, b, T ) for the general order kinetics, which are
obtained from equation (24) and equation (25), respectively,
are

I (T ) = Im exp

[
−E(Tm − T )

kT Tm

− E(Tg − Tm)

kT 2
m

× exp

(
E(Tg − Tm)

kTmTg

)

×(Z1(Tm) − Z1(T ))(CSA) − Tg − Tm

Tm

×
(

Z2(Tm) − Z2(T )
T

Tm

exp

(
−E(Tm − T )

kT Tm

))]
(41)

and

I (T ) = Im exp

(
−E(Tm − T )

kT Tm

)

×
[

1 − (b − 1)(Tg − Tm)

bTm

(
E

kTm

exp

(
E(Tg − Tm)

kTgTm

)

×(Z1(T ) − Z1(Tm))(CSA) +
T

Tm

Z2(T )

× exp

(
−E(Tm − T )

kT Tm

)
− Z2(Tm)

)]b/(b−1)

, (42)

where Z1(Tm) and Z2(Tm) the values of Z1(T ) and Z2(T ) at
Tm.

4. Simulations of glow-peaks under EXF

The analytical expressions derived in the present work should
be tested with synthetic glow-peaks evaluated without the need
to approximate the exponential integral. Such synthetic glow-
peaks called reference glow-peaks (RGP) can be produced by
software packages in which the exponential integral is very
accurately evaluated by numerical integration, for example,
Mathematica. The parameters used for the evaluation of
RGP are E = 1 eV, s = 1012 s−1, n0 = 1013 cm−3. The
parameter α of the EHF was taken equal to 0.1 s−1 and T0 =
293 K. By keeping the listed parameters constant, RGPs were
simulated as a function of Tg , i.e. the temperature of the hot
gas. Simultaneously, the first order kinetics glow-peaks were
simulated using the analytical glow-peak expressions given by
equations (28) and (35).

The curve fitting procedure is performed using the
MINUIT program [12] and goodness of fit was tested using
the figure of merit (FOM) introduced by Balian and Eddy [13]
given by

FOM =
∑

i

|YExper − YFit|
A

, (43)

where YExper is the experimental glow-curve, Yfit is the fitted
glow-curve and A is the area of the fitted glow-curve.

4.1. Tests of the I (Im, E, Tm, T ) algorithms

The GCD analysis of complex TL glow-curves can be
performed using equations (28), (35), (29) and (36). In
these equations the free parameters are the n0, E, s and
b. Moreover, the parameter α of the EHF is usually not
known. Therefore, single glow-peak algorithms, which will

Table 1. Tests of algorithms derived assuming both ASA and CSA
for the exponential integral.

Tgas (K) FOM E s

Fit of I (Im, E, Tm, T )(equation (33)) to RGP
500 7.6 × 10−2 0.975 3.9 × 1011

550 1.8 × 10−2 0.979 5.3 × 1011

600 4.5 × 10−3 0.995 8.4 × 1011

650 4.7 × 10−4 1.0 1.0 × 1012

700 2.1 × 10−4 1.0 1.0 × 1012

Fit of CSA I (Im, E, Tm, T ) (equation (41)) to RGP
360 1.8 × 10−5 1.0 1.0 × 1012

380 1.6 × 10−5 1.0 1.0 × 1012

400 3.5 × 10−6 1.0 1.0 × 1012

420 4.7 × 10−6 1.0 1.0 × 1012

460 2.1 × 10−5 1.0 1.0 × 1012

480 1.0 × 10−4 1.0 1.0 × 1012

500 7.8 × 10−4 1.0 1.0 × 1012

520 1.2 × 10−3 1.0 1.0 × 1012

550 9.6 × 10−3 1.0 9.5 × 1011

600 1.4 × 10−2 1.0 7.2 × 1011

Fit of ASA plus PSA I (Im, E, Tm, T ) to RGP
480 7.7 × 10−5 1.0 1.0 × 1012

500 3.5 × 10−5 1.0 1.0 × 1012

520 1.8 × 10−5 1.0 1.0 × 1012

550 4.1 × 10−6 1.0 1.0 × 1012

600 3.2 × 10−5 1.0 1.0 × 1011
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Figure 5. Fit of the first order RGP, (◦) with the CSA expression
given by equation (41) (——) for various gas temperatures Tg (a)
480 K, (b)500 K, (c) 520 K, (d) 550 K and (e) 600 K.

be dependent on experimentally obtainable parameters, such
as Im and Tm and independent of α, are highly desirable. These
kinds of algorithms derived in the present work are based on
equations (33), (34), (41) and (42).

The newly obtained algorithms have to pass a double
test. The first test is to examine how successful the
I (n0, E, s ′′, b, T ) → I (Im, E, Tm, b, T ) transformation is for
b = 1 and 2. The test was applied to all algorithms, of the
first and general order kinetics, derived. The goodness of fit
was tested by FOM defined above. The FOM values obtained
were in all the cases between 9×10−6–8×10−7. These values
mean that the algorithms of the form I (n0, E, s ′′, b, T ), in fact,
coincide numerically with their respective I (Im, E, Tm, b, T )

form.
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Figure 6. Fit of the first order RGP (◦) with the CSA expression given by equation (41) (——) for various gas temperatures Tg (a) 360 K,
(b) 380 K, (c) 400 K and (d) 420 K. The figure on the right-hand side shows the same data as the figure on the left-hand side on a time-scale
instead of a temperature scale.

The second test is to find the degree to which the first order
kinetics I (Im, E, Tm, T ) algorithm fits the RGP directly. The
fitting of the RGP with the ASA I (Im, Tm, E, T ) algorithm
given by equation (33) is very good. The FOM, E and s values
obtained are listed in table 1. As is seen the FOM values are
highly improved as the Tg temperature increases. The reason
is that at low Tg temperatures, for a part of the glow-peak, the
argument z of the exponential integral is less than 10, where
the accuracy of ASA is not sufficient. However, as the Tg

increases the argument, z, of the exponential integral is shifted
to values greater than 10, where the ASA is very accurate as
shown in figure 4(a).

The fitting of the RGP by the first order kinetics CSA
I (Im, Tm, E, T ) algorithm, given by equation (41), is very
successful as shown by the FOM values obtained and listed
in table 1. The very good FOM values at low Tg are due
to the fact that the argument z of the exponential integral is
exactly within region (10,0), where the CSA approximates the
exponential integral very accurately. However, as seen from
table 1, as the Tg increases the FOM values are increased,
which means that the fitting becomes worse. The reason is, as
discussed in the previous paragraph, that as the Tg increases the
argument z of the exponential integral becomes greater than 10
where only the ASA holds.

From the above two series of fitting it becomes clear
that there exist glow-peaks for which (see also figure 4)
one part of the glow-peak requires use of the ASA of the
exponential integral, whereas the other part requires a CSA
of the exponential integral. For these cases a fitting function
can be used, which takes the values of the ASA when the
argument z of the exponential integral is greater than 10 and
it takes the values of CSA when the argument z is between 10
and 0. Examples of such fitting are listed in the last part of
table 1, where one can see that the FOM values obtained are
significantly improved.

Examples of the glow-curve shapes calculated under EHF
are shown in figure 5. The open circles correspond to the RGP
and the solid lines to the fitting using the CSA approximation
(equation (41)), as a function of Tg . As the Tg increases,
the heating rate increases according to equation (3), so that

the behaviour of the glow-peaks in figure 5 is similar to the
behavior of the glow-peaks obtained with a linear heating
function (see, e.g. [10, pp 30,32].

The CSA shows its capabilities when Tg is set to
a temperature, which is just below the peak maximum
temperature of a glow-peak. In such a case, the part of
the glow-peak up to Tg is a normal readout, whereas as the
temperature approaches asymptotically Tg , the TL seems to
decay under isothermal conditions and it is very similar to
the PID readout. Examples of such glow-peaks are shown in
figure 6. The left-hand side figure 6 shows the simulated RGPs
(open circles) in a temperature scale, fitted by equation (41)
represented by solid lines. Let us take as an example the
curve (a), for which the FOM is 1.8 × 10−5. Initially the
temperature rises rapidly and a rising part of the glow-peak is
obtained. However, when the temperature gets very close to
temperature Tg = 360 K, the TL simply decays at an almost
constant temperature, so that the TL seems to be accumulated
at the same point. However, if curve (a) on the left-hand side
of figure 6 is plotted as a function of time then curve (a) on
the right-side of figure 6 is obtained, where one can see a very
good fit. Curves (b)–(d) show the same effects as curve (a) at
a higher temperature Tg .

5. Conclusions

Thermoluminescence kinetics equations of the first and general
order kinetics describing glow-peaks received under an EHF
are derived. The derived equations of the forms I (n0, E, s, T )

and I (n0, E, s ′′, b, T ) were transformed into I (Im, E, Tm, T )

and I (Im, E, Tm, b, T ). The latter depends on parameters Im

and Tm instead of n0 and s, which are directly obtained from
the experimental glow-peaks thus making the derived single
glow-peak equation more effective for the computerized GCD.

The newly obtained equations of the form I (Im, E, Tm, T )

were successfully tested using synthetic RGP obtained for a
variety of exponential heating conditions.
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