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Abstract
The sensitization of the ∼110˚C thermoluminescence peak in quartz, also
termed the ‘pre-dose’ effect, was previously explained using an energy level
model including two electron trapping states and two hole centres. The
experimental procedure includes a stage of high temperature activation
following a relatively large irradiation of the sample. The response to a
small test-dose was found to depend on this activation temperature. With
different quartz samples, different behaviours of the thermal activation
characteristics (TACs) were found. In typical TACs, the sensitivity reached a
maximum at ∼500˚C, followed by a rather sharp decline in some samples;
in others a maximum was reached at ∼350˚C followed by a slight decline
towards a plateau level. In this work, we show that these behaviours can
rather easily be explained within the framework of the two traps–two centres
model. This is done by numerical solution of the relevant sets of differential
equations governing the different stages of the experimental procedure. The
different kinds of dependence were simulated with different sets of trapping
parameters. A better insight into the processes taking place is reached,
which may have implications in the application of pre-dose dating of
archaeological quartz samples and in retrospective dosimetry.

1. Introduction

The sensitization of various thermoluminescence (TL)
materials by β or γ irradiations followed by activation at
high temperature is a quite well-known phenomenon (see, e.g.
Cameron et al [1], Zimmerman [2, 3], Aitken [4], Chen [5],
Yang and McKeever [6], Bailiff [7] and Pagonis et al [8]).
By sensitization one means the change of sensitivity, namely
the response to a given (usually small) test-dose, by a heavier
irradiation, followed by a thermal activation. In particular,
this effect was reported by Fleming and Thompson [9] and
by others in quartz, and therefore it is of importance when
dealing with the dating of archaeological pottery [10] and
with retrospective dosimetry [7]. The sensitization effect, also
called the pre-dose effect, of the 110˚C peak in quartz has
further been reported by Zimmerman [2] who also gave a model
to account for the phenomenon. Briefly, the Zimmerman

model deals with an electron trapping state T and two hole
centres, R and L. The cross section for trapping holes is
assumed to be much larger for R than for L, and therefore,
during irradiation, practically all the free holes accumulate in
R whereas the generated electrons (or at least some of them—
see later) concentrate in T. This trap is, however, rather shallow
(yielding a peak at ∼110˚C at a heating rate of 5˚C s−1), and is
emptied at room temperature within hours, or may be emptied
by heating to, say, 150˚C. It is assumed that R is not a very deep
state in the sense that it is close enough to the valence band so
that heating, say, to ∼500˚C would release the holes from R.
Although the probability of their trapping in L is rather low,
as mentioned above, at this high temperature the favourable
direction of the holes is to go from R to L. This is so since L
is assumed to be much further from the valence band so that
once a hole is captured at L, it cannot be thermally released
back to the valence band. In this sense, R is a ‘reservoir’
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which holds holes following the irradiation and prior to the
thermal activation. The increase of the concentration of holes
in L represents, according to Zimmerman [2] an increase in the
sensitivity, since L is the luminescence centre, the transition
into which yields the measured 110˚C peak.

Chen [5] suggested an amendment to the Zimmerman
model. He argued that since the measured response of the
TL to a test-dose is a monotonically increasing function of
the concentration of trapped holes in L following the ‘large’
excitation plus thermal activation, on one hand, and also a
monotonically increasing function (sometimes linear) of the
size of the test-dose on the other hand, the existence of a
second trapping state for electrons is to be assumed. This
has to be a deeper trap, and should act as a competitor to
the released electrons during the ‘read-out’ stage in which the
sample is heated following the application of the test-dose, and
the emission is recorded at ∼110˚C. Let us denote from here on
the shallower trap by T and the competitor by S (see figure 1).
For more details see Chen [5] and Chen and McKeever [11].

The activation temperature was quoted above as 500˚C.
According to Aitken [12], depending on the type of quartz
and the temperature and duration of firing of archaeological
quartz in antiquity, there are significant variations of the
thermal activation characteristic (TAC) by heating the sample
to successively increasing temperatures from 200˚C upwards,
the sensitivity being measured after each heating. Aitken [12]
(figure 3.9) describes in detail a graph previously presented by
Fleming and Thompson [9]. This is redrawn in figure 2 here;
curve (b) shows ‘early activation’ at ∼350˚C and curve (a)
a ‘late activation’ at ∼520˚C. Aitken assumes a distribution
of hole traps and suggests that the form of the TAC reflects
this distribution in a manner that traps close to the valence
band have their holes transferred to the L centres at a lower
temperature than traps that are not as close. An important
feature seen in figure 2 is that the sensitivity reaches a
maximum and falls off when higher temperatures are used.
This is referred to as thermal deactivation which, according to
Aitken [12] is presumed to be due to thermal eviction of holes
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Figure 1. An energy-level diagram including the electron trapping
state, T, the competitor, S, the hole reservoir, R and the
luminescence centre L. nc and nv are the free electron and hole
concentrations, respectively, and x is the rate of production of free
electrons and holes. The thin solid arrows indicate transitions during
excitation, the bold solid arrows are transitions taking place during
the high temperature activation and the dotted arrows show
transitions occurring during the heating to ∼150˚C.

from L centres into the valence band. Aitken points out that
the temperature at which the sensitivity maximum of the TAC
is reached depends on the time spent at high temperature. If
the heating rate is slow, and more particularly, if the maximum
temperature is held for, say, a minute before cut off, then the
maximum will shift downwards in temperature. Obviously,
when different samples are compared, it is essential that exactly
the same thermal treatment is maintained in all activations.

Other works on the pre-dose sensitization include a
paper by David and Sunta [13] who reported on their
experimental results, which showed that the optimum
temperature of activation is dependent on growth conditions of
the quartz crystal, and therefore correlated with the formation
temperature of the natural quartz. Haskell and Bailiff
[14] discuss the retrospective dosimetry of bricks using the
sensitivity changes in quartz. They describe the details of the
TACs which, generally speaking, show a significant increase
in sensitivity starting with activation at ∼250˚C, reaching a
maximum at 500–550˚C and decreasing to rather low values
(<10% of the maximum) following activation at ∼700˚C.
Chen et al [15] compared the TACs for the 110˚C TL peak
and for the related phenomenon of OSL in quartz, and found
rather similar results.

Two independent groups have recently simulated the pre-
dose effect of the ∼110˚C peak in quartz. Figel and Goedicke
[16] gave a model with two electron trapping states and three
hole centres, the reservoir R and the centres L1 and L2,
associated with the two kinds of TL emission in quartz at 380
and at 460 nm. Apart from the addition of a second centre, the
model is very similar to that by Chen [5], with one significant
difference, namely, that Figel and Goedicke considered the
competitor denoted above by S to be thermally connected.
They assumed that the electrons in S may be thermally
evicted into the conduction band, which may bring about the
reduction of sensitivity at temperatures above ∼550˚C due to
the recombination of the released electrons with trapped holes.
Chen and Leung [17, 18], using the original model by Chen [5]
of two trapping states, T thermally connected and S thermally
disconnected, as well as the reservoir R and the luminescence
centre L, elaborated upon the dependence of the sensitivity
on several dose increments and showed that, as previously
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Figure 2. The data of Fleming and Thompson [9] redrawn.
Curves (a) and (b) show the ‘late activation’ and ‘early activation’
phenomena, respectively.
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found experimentally, the behaviour could be presented as an
exponential dependence on the accumulated dose D. Chen and
Leung did not explain the TAC behaviour within the framework
of their model.

The main purpose of this work is to offer an explanation
different from that given by Figel and Goedicke to the TAC
of the 110˚C peak in quartz. It is demonstrated by numerical
simulation and also explained on an intuitive basis that the
different kinds of measured TACs can be reached by using the
two trap–two centre model and one need not resort to assuming
a whole distribution of R centres, as suggested by Aitken, or to
the thermal release of competitor traps, as suggested by Figel
and Goedicke [16]. Furthermore, the deactivation occurring
at higher temperatures is shown to be a direct result of this
simpler model, rather than assuming that deactivation is due
to thermal eviction of holes from L [12].

2. The model

The description of the energy level model given by Chen
and Leung [17] is briefly repeated, and shown in figure 1.
The transitions shown are during the excitation and during
the read-out stages (see figure caption). T is the active
trapping state having a concentration of Nt (cm−3) and an
instantaneous occupancy nt (cm−3); the activation energy is
Et (eV) and the frequency factor st (s−1). S is the thermally
disconnected trapping state with concentration Ns (cm−3) and
occupancy of ns (cm−3). At (cm3 s−1) and As (cm3 s−1)

are the trapping coefficients into T and S, respectively.
L is the luminescence centre with concentration M (cm−3)

and instantaneous occupancy of m (cm−3). The transition
coefficient of the free holes from the valence band into L is
Al (cm3 s−1) and the recombination coefficient of free holes
is Am (cm3 s−1). R is the reservoir having a concentration
of Nr (cm−3) and instantaneous occupancy of nr (cm−3);
Er (eV) is the activation energy of freeing holes into the valence
band and sr (s−1) the relevant frequency factor. The rate at
which electron–hole pairs are produced by the irradiation is
x (cm−3 s−1), which is proportional to the dose-rate imparted
on the sample. Thus, if the irradiation time is tD, the total dose
given to the sample is proportional to x · tD (cm−3), which, in
fact, is the concentration of electrons and holes produced by
the irradiation per unit volume.

The set of equations governing the process during the
excitation stage and that governing the process during the
heating stage were given by Chen and Leung [17] and will
not be repeated here. The set of equations (2)–(7) in [17] has
been solved for certain sets of the parameters using the ode23s
Matlab package solver. This particular solver is designed
to deal with ‘stiff’ sets of equations and the present set is
such a one, in particular, since in equations (4), (5) and (7)
in [17], the derivative on the left-hand side is given as a
small difference between two large quantities. In parallel, the
same equations were solved using the Mathematica differential
equations solver, and the results found were practically the
same. Of course, the procedure described here which takes
care of the process of excitation, is being used for both the
test-dose and high-dose simulations.

A second part of the procedure deals with the transitions
taking place during the heating of the sample, also shown in

figure 1. In order to simulate more accurately the experimental
procedure, we have to add an intermediate stage of ‘relaxation’
in which the irradiation has ceased, and the set of equations is
solved with x = 0 for a period of time so as to bring nc and nv

down to negligible values. We then take the final values of nt ,
ns, m and nr at the end of the relaxation time as initial values
for the heating stage.

We assume now that during the high temperature heating,
thermal release of holes is possible from the reservoir R (this is
at the basis of the Zimmerman model), which may be trapped
preferably in L, and that holes from L cannot be thermally
released into the valence band in the relevant temperature
range. The rate equations governing the process here are
equations (8)–(13) in [17]. This second set of equations
was also solved using both the ode23s Matlab solver and the
Mathematica solver, and the results were found to be the same.

The intensity of the emitted light is assumed to be the
result of recombination of free electrons with trapped holes in
the centres. Therefore, it is given by

I (T ) = Ammnc. (1)

In the simulation, the conventional linear heating function,
T (t) = T0 + βt , is used, where β is the constant heating rate,
chosen to be 5˚C s−1.

Two important points are to be mentioned with regard to
the simulations reported here. One is that we always start
the simulations with empty traps and centres. This is usually
considered to be the case in samples previously annealed at
high enough temperature. The other point is that we have
simulated here the ‘multi-aliquot’ case, namely, that for the
measurement of S(T ), the sample is heated to a temperature T ,
and when the sensitivity is to be measured at another value of
T , a different aliquot of the same weight is given the same
irradiation, activated at the new temperature and then given
the test-dose to find the value of S(T ) as a function of the
temperature.

3. Numerical results

The parameters were chosen so as to demonstrate the
possibility of getting numerical results which mimic those
given by Fleming and Thompson [9] and Aitken [12]. The
graph by Fleming and Thompson is reproduced in figure 2.
The parameters were rather similar to those chosen by Chen
and Leung [17, 18], with some changes. Figure 3 resembles
the TAC curve (b) in figure 2 which reaches a maximum at
∼350˚C, followed by a slight decrease, and then by a plateau
for activation temperatures above 400˚C. The main difference
as compared to the Chen–Leung parameters is the inversion
of the values of As and Am, and a small change in the value
of Er. The values used were: st = 1013 s−1; Et = 1.0 eV;
sr = 1013 s−1; Er = 1.6 eV; At = 10−12 cm3 s−1; Ar =
10−10 cm3 s−1; As = 10−12 cm3 s−1; Am = 10−11 cm3 s−1;
Al = 10−12 cm3 s−1; Nt = 1013 cm−3; Ns = 1013 cm−3;
Nr = 1013 cm−3; M = 1014 cm−3; x = 109 cm−3 s−1 and
tD = 3000 s for the ‘long’ excitation and t = 1 s for the
test-dose.

Figure 4(c) simulates the sensitivity shown in curve (a)
in figure 2. Curves (a) and (b) give the dependences of
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Figure 3. A simulated TAC, in which the curve reaches a maximum
at ∼350˚C, decreases slightly and reaches a plateau at higher
temperatures. The parameters used are given in the text.

nt (following a given test-dose irradiation) and of m on
the activation temperature, which helps the explanation of
curve (c) as elaborated below. The parameters here are the
same as in figure 3, except that Er was changed to 1.8 eV; sr to
1010 s−1 and tD to 7000 s. The results are a good simulation of
curve (a) by Aitken in the sense that the sensitivity increases
with the activation temperature, reaching a maximum at
∼520˚C and reducing significantly at ∼650˚C. The behaviour
at higher temperatures is not seen in the experimental graph.

Figure 5 shows the results of the simulation of the test-dose
dependence of the measured ∼110˚C TL peak (curve (a)) and
of the natural-simulated ‘large’ dose (curve (b)), as a function
of the activation temperature. In curve (a), the maximum
intensity both at the optimal activation temperature and lower
and higher temperatures is seen to be practically linear with the
test-dose. In curve (b), it is seen that the whole TAC curve goes
up with increase in the natural-simulated dose, monotonically
though sub-linearly, when the size of the test-dose is kept
constant. The sublinearity appears to be a result of the filling
of the recombination centre M.

4. Discussion

The main achievement of this work is that it is possible
to explain the peak-shaped TAC appearing in several quartz
samples, using the two trap–two centre model. This behaviour
has been found numerically as shown in figure 4(c); we would
like to give an intuitive explanation for this result. The
processes involved are quite complex and the explanation is
rather subtle. In order to understand the peak shape shown
in figure 4(c), we should consider the curves of nt and m

as a function of the activation temperature following a given
excitation dose as shown in figures 4(a) and (b). m(T )

shown in figure 4(b) is the concentration of holes in the
recombination centre following the ‘large’ excitation which
brings a large number of holes into nr and a small number of
holes directly into m. The heating to a temperature T within
the given range transfers holes from Nr into M , so that when
the sample is cooled back to room temperature, the value of
m is determined to be an increasing function of the activation
temperature T as seen in curve (b).
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Figure 4. For a chosen set of parameters, nt at the end of the
test-dose excitation as a function of the activation temperature T is
shown on (a); the occupancy of the recombination centres as a
function of T is shown in (b) and the resulting sensitivity S(T ) is
given in (c). The parameters are given in the text.

As for nt(T ) shown in curve (a), it should be noted that
these are the values calculated following the administration of
the test-dose subsequent to the application of the ‘high’ dose
and activation at temperature T . This point is illustrated by the
fact that in the example shown, the values of nt are in the range
1×108–7×108 cm−3 as compared to the values of m which go
up to 7×1012 cm−3. The dependence of this nt(T ) is a result of
the dependence of m on the activation temperature. When the
test-dose is imparted, the larger the value of m, the more the
number of electrons that are ‘lost’ through the recombination,
which takes place during this ‘short’ irradiation, and therefore
at the end of the irradiation less electrons are trapped at the
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Figure 5. The dependence of the simulated intensity as a function
of the activation temperature is shown in (a) for three test-doses
with relative values of 1 : 2 : 3. In (b), the curves shown are of the
TACs for simulated-natural doses with relative values of 1 : 2 : 3 : 4.
The set of parameters used is the same as that in figure 3.

active trapping state Nt . This explains the decreasing function
nt(T ). During the following ‘short’ heating, to ∼150˚C, fewer
electrons reach the conduction band, and therefore, for higher
activation temperatures, the concentration of free electrons nc

will be smaller. It should be stressed that, of course, the values
of nc are associated with the temperature of heating following
the test-dose irradiation; however, here, we are interested
in their dependence on the temperature of activation T . It
should also be noted that since the test-dose is relatively small,
m changes only slightly due to recombination during the test-
dose irradiation. For a qualitative description, let us assume
that nc as a function of T behaves, more or less, like nt(T ).
Finally, the TL intensity following the test-dose excitation is
given by equation (1), namely, it is proportional to m and
nc. As long as nc behaves as a function of the activation
temperature likent(T ), S(T ) should look like the product of the
two curves, the decreasing function in (a) and the increasing
one in (b) of figure 4. The product function yields a peak-
shaped curve like the one shown in figure 4(c). It should be
noted that whereas this explanation (in particular regarding
the relation between nt and nc) is intuitive but not rigorous,
the results shown in figures 4(a)–(c) are those of the numerical
solution of the relevant sets of differential equations in the
appropriate sequence, and therefore are even more convincing
in demonstrating the possibility of explaining the peak-shaped
curve of the TAC. Another point to be mentioned is that in
figure 4(c), S(T ) goes to under 50% of the maximum value.

In some experimental cases, the reduction was even more
dramatic. With the present model, with another choice of the
set of parameters, such a decrease can easily be reached, but
figure 4(c) is sufficient to demonstrate the effect.

As pointed out above, figure 5 demonstrates the capability
of the model to explain the experimental results of the
approximately linear dependence of the TL intensity on the size
of the test-dose, and the monotonic dependence of the emitted
TL on the size of the natural-simulated dose.

It is noted that the results of the simulation may have
important practical implications for the application of pre-dose
dating in quartz samples and in retrospective dosimetry. The
results of figure 5(b) shows that aliquots of the same quartz
sample can exhibit significant variations in the location of the
maximum TL sensitivity, which corresponds to the optimum
activation temperature used during application of the pre-
dose technique. Specifically, figure 5(b) suggests that these
variations in the activation temperature may be due to the
aliquots having received different doses in nature.

Furthermore, the results of figure 4 show that the exact
shape of the TAC and the location of the optimum activation
temperature are the results of the complex competition process
between the two concentrations nt(T ) and m(T ) shown in
figures 4(a) and (b).

5. Conclusion

In this work, we have demonstrated that the usually seen
behaviour of the TAC can be directly explained in the
framework of a relatively simple model. The model includes
one recombination centre, one reservoir, one active trap, and
one disconnected trap, which competes with the active trap
and the recombination centre for free electrons both during
the excitation and the heating of the quartz sample. In fact,
this is the model originally given by Zimmerman [2] and later
amended by Chen [5]. What is new here is that the special
behaviour of the TACs in some quartz samples, namely, that it
reaches a maximum at ∼520˚C and decreases substantially at
higher activation temperatures, is directly shown to result from
the model without the need to assume either the possibility that
holes are thermally evicted to the valence band as suggested by
Aitken [12], or that the competing trapping state can thermally
release electrons as suggested by Figel and Goedicke [16].
Concerning the Aitken assertion, it should be mentioned that
the possibility of releasing thermally holes from the centres to
the valence band is not very reasonable, since the band gap of
quartz is ∼8.5 eV [19] and the emission photons resulting from
transition from the conduction band into the centre are ∼3.3 eV
(corresponding to the wavelength of 380 nm). This puts the
hole centres >5 eV above the valence band, and they cannot
be thermally released at the temperature range in question.

In view of the results reported here, it is hard to tell whether
the peak shape of the TAC reported by Figel and Goedicke
results indeed from the thermal release of electrons from
the competitor as suggested by them, or would be observed
anyway, without the thermal release from the deep traps, as
demonstrated here. The features described are explained both
using intuitive considerations and by numerical simulation
which follows the experimental steps taken in the process
of measuring the TAC. It should be mentioned that we do
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not claim to have the exact set of parameters related to the
mentioned experimental curve (curve (a) in figure 2), but
rather that we can easily choose a set of parameters that
yields the general shape of S(T ). In fact, while comparing
this experimental curve to our figure 4(c), it can be seen that
when the experimental curve starts to increase at ∼300˚C,
the theoretical one takes off at ∼400˚C although both of
them reach a maximum at ∼520˚C. The simple explanation
is that whereas the simulation attempts to show the essence of
the behaviour within the framework of the simplest possible
model, in the real material there probably are perturbations
such as additional trapping states and centres that may change
the details of the measured phenomena. The behaviour seen
in other samples, in which the TAC reaches a maximum
at a certain temperature (e.g. ∼350˚C), reduces slightly and
remains constant for higher activation temperatures, is also
demonstrated and shown to result directly from the model,
using different sets of parameters. All the sets of parameters
used are within the same range as those reported in the literature
[16, 20]. It should be noted that there is no uniquely accepted
set of parameters in the literature, which simply reflects the fact
that there are significant variations in the parameters between
different samples, which among other things is exhibited in
the large variations in brightness of different samples. Finally,
the nearly linear dose-rate dependence of TL as well as the
monotonically increasing dependence on the natural dose are
also explained within this rather simple model.
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