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Abstract

Optically stimulated luminescence (OSL) and pulsed OSL have been utilized broadly for luminescence dosimetry as well
as archaelogical and geological dating. It has been pointed out that in many cases, the decay of the OSL during continuous
stimulating light (cw-OSL) and that of pulsed OSL following a pulse of stimulating light, do not generally behave according
to a simple exponential function. In the present work, it is shown by the use of numerical simulation, that with the simplest
model of a single trapping state and a single kind of recombination center, a decay curve significantly slower than a “normal”
exponential can emerge. These results could be fitted to a stretched-exponential law, exp[ — (¢#/1)"] with 0 < § < 1 with
surprisingly good agreement for the decay of OSL following a stimulating light pulse. As for the decay of OSL during the
exposure to stimulating light, a typical behavior found in the simulation is an initial nearly exponential decay, followed by
stretched-exponential decay at longer times. In particular, the cases where f is significantly smaller than unity (e.g., f ~ 0.5)
are of interest. It is to be pointed out that several relaxation phenomena in complex condensed-matter systems have been found
to follow the mentioned stretched-exponential decay law. This includes some reports in the literature of stretched-exponential
decay of luminescence, usually in the very short time range. It has been suggested, however, that this behavior is always
associated with some kind of disorder in the sample, e.g. the disorder occurring in porous silicon. The main new points in the
present work are that this kind of relaxation can be expected to occur in the two kinds of OSL mentioned above and that they
result from a single crystal with only one trapping state and one kind of recombination center. The concept of half-life of the
decay in these cases is considered in view of the present results.
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1. Introduction several researchers both experimentally and theoretically,

and has been extended for dosimetry and archaeological dat-
ing. Smith and Rhodes (1994) elaborated on the decay of
OSL and stated that the decrease of OSL emission with laser
exposure does not follow a simple exponential (in quartz)
as would be expected from first-order detrapping from a
single trapping site. The authors explain this as being due
to at least two sources of charge when OSL measurements
are made at 17°C. They tried to simplify the results by re-
peating the measurements at 220°C, but still found a decay

The use of optically stimulated luminescence (OSL) for
dating of sediments has first been suggested by Huntley
et al. (1985). These authors stated that the discrimination
of induced luminescence from scattered incident light can
be made on the basis of wavelength or time, and opted for
the former. They reported that the decay of OSL during
the laser illumination of previously irradiated (during antiq-
uity or in the laboratory) quartz grains, is non-exponential.

The method of OSL has further been investigated by
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which was not a simple exponential. They explained this
as being due to phototransfer into a trapping state stable at
220°C. These authors mention the role of retrapping in their
samples (based on a previous work by Aitken and Smith,
1988), but suggest that this retrapping produces only a minor
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modification to the exponential OSL decrease so long as the
traps are not near saturation. In the present work, we will
show, using numerical simulation, that substantial retrapping
can cause significant deviation from the simple exponential
decay even when only a single trapping state and a single
kind of recombination center are involved. This is opposed
to the conclusion of Smith and Rhodes (1994) that the re-
leased charge originates necessarily from trapping sites with
more than one mean life under optical stimulation. Poolton
et al. (1995) studied the OSL decay of porcelain and found
that the RT signal shows highly non-exponential decay char-
acteristics which they ascribed to a range of defects with
varying depth and/or optical capture cross-sections.

McKeever et al. (1997a) presented results of computer-
simulated OSL (cw-OSL) during the stimulation, based
on a model with three trapping states and two recombi-
nation centers which explained a number of TL and OSL
phenomena occurring in the single aliquot technique. They
found a decay curve, which is approximately exponential at
short times, but deviate from exponential at longer times.
They define the “OSL intensity” as the area under the OSL
curve between 0 and 100 s. Further theoretical work by
McKeever et al. (1997b) describes the behavior of OSL as
a function of temperature. The authors consider retrapping
by shallow traps, thermally assisted optical stimulation,
thermal quenching and localized donor—acceptor recom-
bination. They repeat the point that the decay is usually
non-exponential, typically exhibiting a long “tail” to the
decay at long illumination times. Bailey (2000) reported a
sub-exponential decay of OSL in quartz, which could be
fitted to the stretched-exponential function (Bailey, private
communication).

As pointed out above, Huntley et al. (1985) mentioned
the possibility of discrimination of the induced luminescence
from the incident light on the basis of time, but did not use
this option. Markey et al. (1995) introduced the pulsed OSL
(later termed POSL) where the laser excitation source was
pulsed with pulse widths of 10 ns. The OSL emission (of
a-Al,03: C) was followed as a function of time after the ex-
citation pulse. The decay curve under these circumstances
was found not to be a simple exponential, and in the anal-
ysis, was fitted to the sum of two exponentials. Akselrod
et al. (1998) further studied the TL and OSL properties of
Al,03: C and reported a non-exponential decay of the “de-
layed” OSL (following the stimulating pulse), and ascribed
it to the occurrence of shallow trapping states. Similar re-
sults were reported by McKeever and Akselrod (1998) who
found that the decay after the light exposure shows multiple
components.

Another demonstration of the non-exponential decay of
OSL, both during and following the stimulation has been
given by Chen and Leung (2001) and by Chen (2002). They
showed that within the framework of the simplest model of
a single trapping state and one kind of recombination center,
and provided that retrapping is substantial, the dose depen-
dence of the initial part of the decay curve is quadratic. On

the other hand, the whole area under the decaying lumines-
cence curve is linearly dependent on the dose. Obviously,
these properties are characteristic of a non-exponential
decay curve.

In the present work, we would like to demonstrate that a
possible decay function of OSL during as well as following
the exposure to stimulating light might be closely approx-
imated by the quite ubiquitous stretched-exponential func-
tion exp[ — (#/7)"] with 0 < 8 < 1. As early as in the 19th
century, Kohlrausch (1863) described mechanical creep by
this function. Williams and Watts (1970) ascribed dielec-
tric relaxation in polymers as being a stretched-exponential
function, and apparently were the ones who coined the term
“stretched exponential”. The ‘Brinkman Report’ (1986)
stated that “there seems to be a universal function that slow
relaxations obey. If a system is driven (or normally fluctu-
ates) out of equilibrium, it returns according to the function
exp[ — (#/7)]... Unfortunately, this is not a mathematical
expression that is frequently encountered in physics, as
little idea exists of what the underlying mechanisms are”.
In general, the parameters f§ and 7 depend on the material
and the specific phenomenon under consideration, and can
be a function of external variables such as temperature as
shown by Klafter and Shlesinger (1986).

A large number of papers have been published in the last
decade describing a stretched-exponential decay of lumines-
cence in different materials and in different time scales. Chen
et al. (1992) studied the decay of luminescence in porous
silicon and in CdSe-ZnSe superlattice, and found that the
stretched-exponential behavior

I =1Iyexp[ — (/)" (1

with 0 < f# < 1 describes it very well. Here, Iy is the ini-
tial luminescence intensity following the excitation. For
CdSe—ZnSe at 13 K, the decay time scale was ~ 100 ns;
for porous silicon at room temperature it was ~ 100 ps and
for porous silicon at 13 K, ~ 10 ms. Chen et al. reported
that the fitting parameters f§ and t were found to depend
on excitation conditions such as the excitation pulse width,
intensity and photon energy.

In the following years, many papers have been pub-
lished, describing the decay of luminescence as a stretched-
exponential function. Much of the work reported results
observed in porous silicon, but stretched-exponential de-
cay of luminescence has been observed in other materi-
als as well. Pavesi and Ceschini (1993) who studied the
stretched-exponential decay of luminescence suggested
that a key role is played by disorder in the form of (I) a
wide distribution of the size of the Si nanocrystals which
form a p-Si skeleton, (II) a random spatial arrangement of
the nanocrystals and (III) the structure of the nanocrystal
surfaces. In conclusion, they state that the occurrence of
the stretched-exponential decay of luminescence strongly
points to the role of disorder. These authors report two
components in the decay of luminescence in porous
silicon—the fast in the time range of 10~° s and the slow
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in the time range of 107°~1072 s, which can be modeled
by a stretched exponential (Eq. (1)) where 7 is a lifetime
and f, a dispersive factor. The authors suggest that this
decay law, often encountered in disordered systems, can
be considered a consequence of the dispersive diffusion of
the photoexcited carriers. The diffusion of carriers among
different spatial sites can be due to either the excitation of
carriers from localized to extended states or due to hop-
ping between localized states. In the former, the localized
states act as traps and the disorder causes a distribution of
release rates and of trap energies. The diffusion arises from
a multiple trapping—detrapping (MTD) mechanism, where
the parameter f§ is associated with the density of trap states
and trapping release rates. In a later work, Pavesi (1996)
reiterated the importance of disorder in bringing about the
stretched-exponential decay behavior. He states that values
of f < 1 correspond to the existence of a broad distribu-
tion of lifetimes which describe the elementary relaxation
processes, either radiative or non-radiative.

Several other papers have been published, discussing
different aspects of the stretched-exponential decay of lu-
minescence in porous silicon as well as other materials
such as Pbl, monocrystals embedded in porous silica films,
nanometer-sized oxidized crystallites such as SiO, and Si,
InGaN light-emitting diodes and multiple quantum wells.
Stretched-exponential decay of luminescence has also been
found in nanoporous SiGe alloys and in poly(ethylene
terephtalate) films. All these works point out the impor-
tance of some disorder in the samples in question for the
stretched-exponential decay.

In the present work, it will be shown that stretched-
exponential decay of OSL can be expected from a model
of a single crystal with one trapping state and one kind
of recombination center, when transition of the carriers is
through the conduction band, with no inherent necessity to
have a disorder in the system. This is the case for both OSL
during the application of the stimulating light or following
it. The differences in the nature of the decay in these two
cases are indicated. No analytical proof is given to this
behavior since it is not possible to solve analytically the rel-
evant sets of non-linear simultaneous equations. However,
numerical solution of the equations for plausible choices
of sets of trapping parameters demonstrates this result of
stretched-exponential decay of OSL.

2. The model

As pointed out above, we follow the electronic transi-
tions in the simplest possible relevant model, namely, a
model with a single trapping state and a single kind of re-
combination center. The process to be followed first is the
radiation-induced excitation of the sample by transferring
electrons from the valence into the conduction band. The
forbidden gap, the relevant levels and the transitions taking
place are shown in Fig. 1. N (m—>) and n (m~>) denote,

Ny

Fig. 1. Energy level diagram of a solid with one trapping state and
one kind of recombination center. N and M are the concentrations
of the trap and center, respectively and n, m their instantaneous oc-
cupancies. n¢ and ny are the free electron and hole concentrations,
respectively. 4, and 4, are the retrapping and recombination co-
efficients, respectively. x is the rate of production of electrons and
holes by the excitation irradiation, and f is the optical stimulation
rate.

respectively, the concentration of the trapping state and
its instantaneous occupancy. M (m~>) and m (m~*) are
the concentration of the center and its instantaneous occu-
pancy, respectively. 4, (m* s~') and 4,, (m*> s™") are the
retrapping and recombination coefficients, respectively and
B (m® s!) is the trapping coefficient of the free holes dur-
ing the excitation. n, (m~>) and n, (m~>) are the instanta-
neous concentrations of electrons in the conduction band and
holes in the valence band, respectively. x (m—> s~!) is the
rate of production of electrons and holes by the excitation
irradiation, and is proportional to the excitation intensity of
the sample which is assumed to be constant along the irradi-
ation. It is also assumed that the excitation is homogeneous
across the sample, which is typical of y irradiation, X-rays
as well as f§ particles, provided the sample is relatively thin.
We assume here that during the irradiation, the temperature
is low enough so that there is no thermal release of trapped
electrons (or, in other words, that the trap is deep enough
not to allow the thermal release of electrons during the ir-
radiation). The equations governing the process during the
excitation are:

dny/dt =x — B(M — m)ny, (2)
dm/dt = —A,mn. + B(M — m)n,, (3)
dn/dt = 4,(N — n)ne, (4)
dn/dt = dm/dt + dn,/dt — dn/dt. (%)

This set of equations can be numerically solved using a
standard Matlab solver for given sets of the parameters. At
the end of the excitation, electrons and holes may remain in
the conduction and valence bands, respectively. In order to
simulate the experimental conditions properly, we set x =0
and continue the numerical solution for a further period of
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relaxation time so that the concentrations #. and n, decay
to negligible values.

The next stage is that of optical stimulation and we
assume that the applied light releases electrons from the
trapping state at a rate of fi (m™> s~') where f (s7!) is
the optical stimulation rate (see Fig. 1). We assume here
homogeneous illumination of the sample. fi is analogous to
x (m™3 s7!) in the excitation stage, except that x is constant
whereas fi varies with n. We can take now the final values
of the functions n,m,n. and n, (the latter two having very
small values) at the end of the relaxation as initial values
for the optical stimulation. Three simultaneous differential
equations are to be considered:

— dm/dt = Amnc, (6)
dn/dt = — fn+ A,(N — n)ne, (7)
dne/dt = dm/dt — dn/dt. (8)

These are also solved using the Matlab package. Since we
associate the intensity of the OSL signal with the recombi-
nation rate, we can write the OSL intensity / as

[ = —dm/dt. (9)

Here, a proportionality factor should have preceded the
right-hand side of Eq. (9); however, omitting it merely
means that we measure the emission intensity in some
different units.

While considering the OSL decay during stimulation, the
solution of these Eqs. (6)—(9) should yield the decaying
curve. As for the OSL following stimulation, we should run
Egs. (6)—(8) for the length of time of the simulated pulse,
and continue the run setting /" = 0. Here, the decay time is
taken starting from the end of the light pulse, and the emitted
light intensity is given again by Eq. (9).

3. Numerical results

Several runs of the mentioned sets of differential equa-
tions have been performed with different sets of the rele-
vant parameters. As mentioned above, an important condi-
tion for getting a decay which is far from being a simple
exponential is the occurrence of a relatively high retrap-
ping coefficient. However, the conditions for getting differ-
ent values of  depended on all the relevant trapping pa-
rameters. Anyway, in practically all the cases checked, a
very good agreement with the stretched-exponential func-
tion took place with values of f§ typically ranging from 0.5 to
unity. Also, it has been pointed out that the agreement with
the stretched-exponential is usually better in the pulsed OSL
where the emitted light is monitored following the stimulat-
ing light pulse than in the case of decay of OSL during the
exposure to the stimulating light.

The “best fit” procedure chosen consisted of minimizing
the sum of squares of the differences between the simulated

experimental points (/;) and the relevant points on the
stretched-exponential function

K
A=Y {li—hexpl — (/)1 (10)
i=1
using the finins minimization program in the Matlab pack-
age, with the three variables, Iy, t and f. K is the number
of points at which the luminescence intensities were evalu-
ated. As a “figure of merit” for the goodness of the fit, we
have taken

FOM = (4/K)"/I,. (11)

The division by the number of points, K, is in order to
be able to compare the goodness of fit between cases with
different number of points, and the square root is taken so
that the numerator has dimensions of intensity. Thus, FOM
as defined in Eq. (11) is dimensionless.

Before going to some numerical examples, it should be
mentioned that within the limited framework discussed here
of one trapping state and one kind of recombination center,
performing the numerical solution of Egs. (2)—(5) is not
needed. The reason is that here at the end of the stages of
excitation and relaxation, and if the latter is long enough, we
end up with equal final occupancies of the trap and center.
These values are the initial occupancies for the next stage of
optical stimulation, and therefore we can just choose some
values of no =my and proceed. Egs. (2)—(5) were mentioned
since they are required when one is interested in the decay
of luminescence following the initial excitation. Also, the
extension of this set of equations is of interest if the system
in question has more than only one trapping state and one
kind of recombination center, and in this case, the solution
of the relevant set of coupled equations during the excitation
stage is essential.

The relevant parameters to be chosen here are 4,, and 4,
the recombination and retrapping coefficients, N the total
concentration of trapping states, no = my the initial filling of
traps and centers following the excitation and relaxation, and
£, the optical stimulation rate. In the case of OSL following
the light pulse, the length of the pulse ¢/ is also of interest.

Fig. 2 shows the results of a simulation of cw-OSL
with the chosen parameters: 4,, = 1072 m? sfl; A, =
1078 m® s N=10" m™3; ng=mo=10"° m’3;f:1 s7h
The results are shown on a semilog scale. The solid line
consists of 1000 simulated points at intervals of 0.01 s.
The dashed line is the best-fitted curve to the logarithm of
Eq. (1), namely, In I — (¢/t)". The simulated decay curve is
seen to be sub-exponential; however, it is visually observed
that the agreement is not very good. The effective fitting
parameters found are 1 =0.79 s and § = 0.57. The value of
the FOM defined in Eq. (11) here is FOM =4.9 x 1073,

Bearing in mind the possibility mentioned by McKeever
et al. (1997a) that the decay curve may consist of two com-
ponents, at short and long times, the numerical OSL values
were fitted separately for the first second and for the period
of time from ¢ =2 to 10 s. Fig. 3 shows the latter. The fit
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DECAY OF OSL AS STRETCHED EXPONENTIAL
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Fig. 2. Simulated decay curve (solid line) during optical stimulation (cw-OSL), and the best-fitted stretched-exponential function (dashed
line) for a given set of parameters specified in the text and for a time range of 0—10 s, on a semilog scale.

DECAY OF OSL AS STRETCHED EXPONENTIAL
35 T T T T T T T

345

Log (OSL Intensity)
w
w
(3.}

33

325

32 1 1 1 1 1 1 1
2 3 4 5 6 7 8 9 10

Time (sec)

Fig. 3. Simulated decay curve and best fitted stretched exponential on a semilog scale. The results are the same as in Fig. 2, but only in the
time range of 2-10 s.

looks significantly better with the fitting parameters f=0.35 cay is nearly exponential. Here we get FOM =3.3 x 107>,
and 1=0.057 s with FOM = 1.7 x 10~*, more than an order 5 times better than in Fig. 3.

of magnitude better than for the whole curve. Fig. 4 shows Fig. 5 depicts the numerical results for a decay follow-
the best fit for the first second. Here, we get § = 0.94 and ing the exposure to the stimulating light. The parameters

T = 1.47 s. The high value of f§ means that the initial de- chosen here are: 4,, = 1072 m?> sfl; A, =107 m’ sfl;
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DECAY OF OSL AS STRETCHED EXPONENTIAL
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Fig. 4. The best-fitted curve for the same trapping parameters as in Figs. 2 and 3, in the time range of 0—1 s.

DECAY OF OSL AS STRETCHED EXPONENTIAL
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Fig. 5. Simulated decay curve (points) and best-fitted stretched-exponential function (solid line) following a light pulse. The set of chosen
parameters and the resulting stretched-exponential parameters are given in the text. The results here are shown on a linear scale.

N=10"m™> np=my=9x10"m™> f =10s"" and results here are on a linear (not logarithmic) scale in order
the length of the stimulation pulse is #; = 0.1 s. One hun- to demonstrate the possibility of fitting the curve this way.
dred numerically simulated points are seen and the solid line Repetition of the curve fitting with the same data and on a
indicates the best-fitted curve. The fitting parameters here logarithmic scale resulted in practically the same f§ and t©

are f =0.75 and © = 0.041 s. As opposed to Figs. 24, the values. The FOM here is 3.1 x 107%.
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4. Discussion

It has been demonstrated that within the framework of a
model with a single trapping state and a single kind of re-
combination center, the decay of OSL with time can be ap-
proximated by the stretched-exponential function (Eq. (1)).
For the case of the decay of OSL following a stimulating
light pulse, the agreement has been quite good; more often
than not, the decay curve was found to be nearly simple ex-
ponential. Values of f significantly smaller than unity have
been found either when the initial pulse has been very large
(large value of f, meaning that the system is initially sig-
nificantly out of equilibrium), or when the trapping state
is initially close to saturation. As for the OSL decay dur-
ing simulation (cw-OSL), the characteristic behavior found
has been of an initial nearly exponential decay, followed
by a stretched-exponential decay. This is in good agreement
with simulation based on a system with three trapping states
and two kinds of recombination centers (McKeever et al.,
1997a). These authors found a nearly exponential decay at
short times and slower decay at longer times. Our present
results indicate that this behavior may be associated with the
basic process occurring in our simpler model, and not nec-
essarily with the model by McKeever et al. which obviously
includes many more parameters.

It is to be noted that even in our simpler model, the
stretched exponential appears to be merely an approximation
to the decay curve. We start with five parameters, namely,
Apm, An, N,no =myg and f, and in the pulsed OSL also a sixth
one, namely ¢, (the length of the stimulating pulse) and
fit the results to a function depending on three parameters,
Iy, p and 7. Obviously we cannot expect a perfect agreement.
An attempt can be made in the future to try to define ana-
lytically under what circumstances (namely, what relations
between the given parameters), the stretched-exponential
decay should be expected. It is encouraging to note that
the decay of OSL enters into a larger group of relaxation
phenomena, which exhibit the stretched-exponential behav-
ior. At the same time, the fact that with all those phenomena
no analytical proof for this time dependence was found is
somewhat discouraging.

A common feature of the stretched-exponential functions
for different values of f§ is that if we define the “lifetime”
as the time required to decay to e~' of the initial intensity,
one gets t/. = 7 irrespective of . As for the time needed
to decay to half intensity, we get #,,, = t(In2)"#. Thus, for
p =1, we get the well-known relation ¢, = t1n 2, and for,
say, f=0.5, we get t;,=1(In 2)?. In this respect, we mention
the fact that both in the stretched and simple exponential,
the expression for half-life is simple and independent of the
initial intensity /. This is opposed to other expressions such
as A exp[ — (¢/71)] + B exp[ — (¢/72) ] where the expression
for half-life is significantly more complicated and depends
on the parameters 4 and B as well as on 1y, 7, and f.

It might be thought that in the systems discussed here, the
strong retrapping plays the role of disorder usually quoted

as being the source of the stretched-exponential behavior.
We tend to believe that this is not the case. Even when the
retrapping is rather strong, we are talking about a rather
sparse random distribution of trapping states, and the crys-
tal under consideration basically remains unchanged. Fur-
thermore, if we had a mean to arrange the trapping states
in a perfect orderly manner, the rate equations would still
be the same and therefore the consequences of having a
stretched-exponential decay would remain unchanged. It has
been suggested by Huber (private communication) that the
real reason for the stretched-exponential behavior here has
to do with the non-linearity of Eqs. (6) and (7), in which
terms like A,,mn. and A,(N — n)n. are included.

It should be noted that simulated experimental results here
were ideal in the sense that, as opposed to real experimental
results, no noise was included. Some preliminary calcula-
tions have been made in which different levels of simulated
noise have been added. Without going into details, we re-
port here that, as could be expected, the FOM increased with
the level of the noise, and from a certain noise level up, the
FOM depended nearly linearly on the noise level. In spite
of this, the minimization procedure brought about nearly the
same best-fitted decay curves with nearly the same values
of f§ and t, practically independently of the noise level.

It might be interesting in the future to check whether the
fit to other decay curves such as the “general order” decay
yield similar goodness of fit, as reflected by the calculated
values of the FOM. In particular, it would be of interest to
test whether such best-fit programs can distinguish between
different decay functions in the presence of rather high noise
levels.
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