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Apparent stretched-exponential luminescence decay in
crystalline solids
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Abstract

The relaxation of different physical systems has been found to follow the stretched-exponential law, exp½�ðt=tÞb� with
0obo1: In particular, the photoluminescence from porous silicon, nm size silicon in SiO2, glassy materials and other
solids have been reported in the literature to behave this way. It has been pointed out that the key role for this behavior

is played by some kind of disorder in the system. The time constants t reported were between 10�12 and 10–2 s. In the
present work, it is shown using numerical simulation relevant to the case of trapping controlled luminescence, that the

decay from a single crystal with a single trapping state and a single kind of recombination center yields results which

agree very well with the stretched-exponential function. Taking trapping parameters in the ranges known in luminescent

materials for the stimulation of the decay curves yield different values of the parameter b between 0 and 1, and different
values of the time constant t; typically in the micro- to milli-second range. Thus, the stretched-exponential function has
been shown to be even more ubiquitous than thought so far, being able to describe the decay of luminescence in an

ordered crystal.

r 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

Several relaxation phenomena in complex con-
densed-matter systems have been found to follow
the stretched-exponential decay law

fðtÞ ¼ exp �ðt=tÞb
� �

0obo1: ð1Þ

The parameters b and t depend on the material
and the specific phenomenon under consideration,
and can be a function of external variables such as

the temperature [1]. As early as 1863, Kohlrausch
[2] described mechanical creep by this function.
Williams and Watts [3] described dielectric relaxa-
tion in polymers as being a stretched-exponential
function and apparently were the ones who coined
the term ‘‘stretched-exponential’’. The ‘‘Brinkman
Report’’ [4], published in 1986, stated that ‘‘there
seems to be a universal function that slow
relaxations obey. If the system is driven (or
normally fluctuates) out of equilibrium, it returns
according to the function exp½�ðt=tÞb�: Unfortu-
nately, this is not a mathematical expression that is
frequently encountered in physics, so little idea
exists of what the underlying mechanisms are’’.
Scher et al. [5] pointed out that there are several
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derivations of the stretched-exponential for sys-
tems in three dimensions, involving diverse con-
cepts such as percolation, hierarchical relaxation
of constraints and multi-polar interaction transi-
tions. Obviously, for the limiting case of b-1; we
get the ‘‘normal’’ exponential decay with the
characteristic lifetime t: It should be mentioned
that some authors chose to describe the stretched-
exponential decay with bo1 as the result of
superposition of many exponential decays [6]. In
other cases, a use has been made of a time-
dependent rate constant such as that given by
Plonka [7]. He presented a bimolecular reaction
described by a second order kinetics equation

�dnA=dt ¼ kðtÞnAnB; ð2Þ

where nA and nB are the concentrations of two
reactants and with the time-dependent rate con-
stant kðtÞ ¼ Btb�1; 0obp1 and where nA þ c ¼ nB
with c being constant. The specific rate constant
function given here has been explained to result
from the continuous time random walk model
developed for dispersion in amorphous solids and
utilized in describing the decay of excess electrons
trapped in rigid glassy matrices.
A large number of papers have been published

in the last decade describing a stretched-exponen-
tial decay of luminescence in different materials
and in different time scales. This was preceded by a
work by Even et al. [8] who presented a decay law
of the form

PðtÞ ¼ exp �gðt=tÞb � ðt=tÞ
� �

ð3Þ

which is a product of an exponential and
stretched-exponential functions; this function de-
scribed the decay of fluorescence in porous glass
doped with rhodamine B and malachite green.
Chen et al. [9] studied the decay of luminescence in
porous silicon and in CdSe–ZnSe superlattice, and
found that the stretched-exponential behavior

I ¼ I0 exp �ðt=tÞb
� �

ð4Þ

with 0obo0 describes it very well. Here, I0 is the
initial luminescence intensity following the excita-
tion. For CdSe–ZnSe at 13K, the decay time scale
was B100 ns; for porous silicon at room tempera-
ture B100 ms and for porous silicon at 13K,
B10ms. For explaining this behavior which they

call ‘‘anomalous luminescence decay’’, they utilize
the probability distribution cðtÞBt�ð1þbÞ taken
from the above-mentioned paper by Scher et al.
[5]. Chen et al. [9] state that the fitting parameters
b and t were found to depend strongly on
excitation conditions such as the excitation pulse
width, intensity and photon energy.
In the following years, a large number of papers

have been published, describing the decay of
luminescence as a stretched-exponential function.
Much of this work reported results observed in
porous silicon but stretched-exponential decay of
luminescence has been observed in other materials
as well. The point made by most of the authors of
these papers has been that some disorder in the
materials at hand is of prime importance in
producing the stretched-exponential decay of
luminescence. Pavesi and Ceschini [10] studied
the stretched-exponential decay of luminescence in
porous silicon. They suggest that a key role is
played by disorder in the form of (i) a wide
distribution of the size of the Si nanocrystals which
form the p-Si skeleton, (ii) a random spatial
arrangement of the nanocrystals and (iii) the
structure of the nanocrystal surfaces. They further
sum up that all the previously published recombi-
nation models make use of the notion of disorder:
the quantum recombination model assumes that
the luminescence is due to the recombination of
localized excitons in undulating quantum wires or
dots; the surface-state emission model postulates
the formation of localized states due to the
random termination of the Si nanocrystals; the
amorphous model assumes the formation of an
amorphous Si layer on top of the Si nanocrystals
where the carriers recombine, and in the chemical
models the luminescence is due to some chemical
entity (SiHx; polysilane or siloxene groups), the
random distribution of which causes disorder.
Pavesi and Ceschini [10] maintain that the
occurrence of the stretched-exponential decay of
luminescence strongly points to the role of
disorder. They mention the two components in
the decay of luminescence in porous silicon. The
fast in the time range of 10�9 s and the slow in the
time range of 10�6�10�2 s, which can be modeled
by a stretched-exponential (Eq. (4)) where t is a
lifetime and b; a dispersion factor. According to
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these authors, this decay law often encountered in
disordered systems is considered a consequence of
the dispersive diffusion of the photoexcited car-
riers. Carriers’ diffusion among different spatial
sites can be due to the excitation of carriers from
localized to extended states or to hopping between
localized states. In the former, the localized states
act as traps and the disorder causes a distribution
of release rates and of trap energies. The diffusion
arises from a multiple trapping–detrapping
(MTD) mechanism, where the parameter b is
associated with the density of trap states and trap
release rates. Pavesi and Ceschini [10] also
investigated the dependence of b and t on
temperature and found that t decreases with
increasing temperature whereas b increases from
B0.6 to 0.9 in the temperature range of 15–200K.
In a later work, Pavesi [11] reiterated the
importance of disorder in bringing about the
stretched-exponential decay behavior. More speci-
fically, he states that values of bo1 correspond to
the existence of a broad distribution of lifetimes
which describes the elementary relaxation pro-
cesses, either radiative or nonradiative. Pavesi [11]
suggests that b represents a measure of the
departure from the isolated quantum dot (QD)
picture and says that for isolated QDs, one expects
b ¼ 1; with smaller values of b indicating the
presence of exciton dispersive motion. Several
other papers have been published [12–18], discuss-
ing different aspects of the stretched-exponential
decay of luminescence in porous silicon, and
stressing the role of disorder in producing this
kind of decay.
Stretched-exponential decay of luminescence in

other materials has also been reported in recent
years. Dag and Lifshitz [19] discuss the dynamics
of recombination processes in PbI2 monocrystals
embedded in porous silica films. They show that in
the nanoscale regime, the results can be nicely
fitted to a stretched-exponential function. They
distinguish between a shallow trapped state band-
L, related to internal defects in the particle volume
and a deeper trapped states band-G related to
surface defects. They suggest that the recombina-
tion of both L and G are strongly multi-
exponential due to a repopulation process, which
creates a distribution in the decay times.

Kamenitsu [20] describes the PL decay of
nanometer-sized oxidized crystallites and explains
the stretched-exponential decay observed as being
closely associated with the disorder resulting from
a distribution of the crystalline size and shape, and
fluctuations of the surface structure and surface
stoichiometry. Linnros et al. [21,22] also discuss
the photoluminescence decay in nm-sized SiO2 and
Si crystallites in SiO2 and suggest that the
stretched-exponential behavior indicates the mi-
gration of excitons through nearby crystallites
concurrent with trapping at localized states. They
maintain that the stretched-exponential decay
suggest a partially interconnected system of
nanocrystals where excitons may migrate and trap
in large crystals.
Pophristic et al. [23,24] discussed the time-

resolved PL of InGaN light-emitting diodes and
multiple quantum wells. They report a value of b
increasing from 0.75 to 0.85 with increasing
indium phase segregation, and emphasize that
the stretched-exponential kinetics is consistent
with the presence of disorder.
Lebib et al. [25] studied the red emission in

nanoporous SiGe alloys, found a stretched-expo-
nential decay of the PL and showed that t
decreases with temperature and that both t and
b vary with the emission energy.
Teyss"edre et al. [26] report on the results of PL

decay in poly (ethylene terephtalate) films and
show that it is a stretched-exponential function.
They also state that this behavior reflects disorder
of some kind and suggest that in this case, since
phosphorescence is associated with the ground
state dimers, the relative orientation of nearby
chromophores is a likely source of disorder. These
authors show that t and b increase with tempera-
ture in a certain range, and decrease at higher
temperature.
Further work on the PL decay in Si nanocrystals

has been reported [27,28] to result in stretched-
exponential decay function. These authors stated
that bo1 corresponds to a distribution of
single exponentials, each of which characterized
by a different t value. The occurrence of the
stretched-exponential behavior is associated with
migration of excitons from one nanocrystallite to
another.
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Kushovsky et al. [29] report on the decay
dynamics of disordered systems, in particular
heavily doped semiconductors such as amorphous
silicon, glasses or ceramics. They associate the
stretched-exponential decay of luminescence with
recombination in donor–acceptor pairs, provided
that there is an alternate, activated decay path.
Huber [30] and Garc!ıa-Adeva and Huber [31]

give a two-state model for the stretched-exponen-
tial decay-law, assuming a modification of the
Arrhenius law for the trapping process. They make
the point that in contrast with approaches which
assume a hopping mechanism as being the origin
of the stretched-exponentials, it is enough to
consider the simpler model of the detrapping
process localized in the vicinity of the fluorescent
center. The multiphonon absorption can lead to a
b; which is a decreasing function of temperature as
sometimes found experimentally.
In the present work it will be shown that

stretched-exponential decay of luminescence can
be expected from a model of a single crystal with
one trapping state and one kind of recombination
center, when transition of carriers takes place
through the conduction band with no inherent
necessity to have a disorder in the sample,
provided retrapping is not negligible. No analy-
tical proof is given to this behavior due to the
inability of solving analytically the relevant sets of
nonlinear simultaneous equations, however, nu-
merical solution of the equations for plausible
choices of sets of trapping parameters demon-
strates this result of stretched-exponential decay of
luminescence. It is to be noted that Van de Walle
[32] has given a somewhat similar (though with
some important differences) model for the case of
the relaxation process in a-Si:H. He considers the
trapping and retrapping of H, and the occurrence
of deeper energy trap reservoir. This resembles
only to a limited extent the hole recombination
center considered here (see below). The observed
quantity in this work is associated with the total
concentration of H in traps whereas in lumines-
cence it has to do with the rate of electron–hole
recombination. The relevant equations are similar
but not identical. Also, Van de Walle [32] resorts
to a set of simplifying assumptions whereas here
we prefer to perform a numerical solution of the

coupled rate equations with no simplifying as-
sumptions.

2. The model

The energy level diagram depicted in Fig. 1 is
usually employed for the explanation of the
occurrence of the thermoluminescence (TL) and
phosphorescence phenomena [33]. The underlying
assumptions here are that excitation takes place by
an electron–hole production in the conduction and
valence bands by the excitation photon, that direct
band-to-band recombination is negligible and that
at least one trapping state N and one kind of
recombination center M are involved. Due to the
trapping–detrapping process involved, this model
is utilized mainly for long-life phosphorescence,
however, with the right choice of the parameters,
short time luminescence (which is indistinguish-
able experimentally from fluorescence) can also be
explained. In fact, in the present work we limit the
cases under consideration to the relatively simple
situation in which no detrapping is allowed; this is
the situation when the temperature is low enough
so that neither electrons are released thermally
from traps nor holes from the centers. In Fig. 1,
N(m�3) and M(m�3) denote, respectively, the
concentrations of the traps and centers in question
whereas n(m�3) and m(m�3) denote their respec-
tive instantaneous occupancies. x(m�3 s�1) is the
rate of production of electrons and holes by the

N, n
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   M, m 

Fig. 1. Energy level diagram of a crystalline solid with

concentrations of N traps and M recombination centers. The

meaning of the other magnitudes shown is given in the text.
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excitation irradiation, and is proportional to the
excitation intensity of the sample which is assumed
to be constant along the irradiation (this may be a
short pulse of excitation or a longer period one). nc
and nv(m

�3) are the instantaneous concentrations
of electrons in the conduction band and holes in
the valence band, respectively. An(m

3 s�1) and
Am(m

3 s�1) are the retrapping and recombination
coefficients, respectively, and B(m3 s�1) is the
trapping coefficient of free holes during the
excitation. The equations governing the process
during the excitation are

dnv=dt ¼ x � BðM � mÞnv; ð5Þ

dm=dt ¼ �Ammnc þ BðM � mÞnv; ð6Þ

dn=dt ¼ AnðN � nÞnc; ð7Þ

dnc=dt ¼ dm=dt þ dnv=dt � dn=dt: ð8Þ

These equations are solved numerically for a
certain period of excitation time. Once the excita-

tion is terminated, we set x=0 and continue the
numerical solution of the equations for a further
period of time. The luminescence emission inten-
sity during this time is assumed to be associated
with the rate of electron–hole recombination

I ¼ �dm=dt ¼ Ammnc: ð9Þ

3. Numerical results

In this section, some numerical results of
luminescence decay curves will be shown, along
with their best fit to the stretched-exponential
function (4). The ‘‘best fit’’ procedure chosen
consisted of minimizing the sum of squares of
the differences between the simulated experimental
points (Ii) (from Eq. (9)) and the relevant points
on the stretched-exponential function

D ¼
XK

i¼1

Ii � I0 exp �ðti=tÞ
b� �� �2

; ð10Þ

Fig. 2. Decay of luminescence as calculated for a given set of parameters (given in the text) in the range of 0–80ms and its stretched-
exponential best fit with b ¼ 0:45 and t ¼ 11:8ms and FOM=6.7� 10�4.
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using the fmins minimization program in the
Matlab package, with the three variables, I0; t
and b: K is the number of points at which the
luminescence intensities were evaluated. As a
‘‘figure of merit’’ for the goodness of the fit we
have taken

FOM ¼ðD=KÞ1=2=I0: ð11Þ

Here, D is the value of the expression in Eq. (10)
at its minimum. The division by the number of
points, K ; is in order to be able to compare the
goodness of fit between cases with different
number of points, and the square root is taken
so that the numerator has dimensions of intensity.
Thus, FOM as defined in Eq. (11) is dimensionless.
Fig. 2 depicts, on a semilog scale an example

simulated with the following parameters: x ¼
1019 m�3 s�1; Am ¼ 10�17 m3 s�1; An ¼ 10�9 m3 s�1,
B ¼ 10�17 m3 s�1; N ¼ 1018 m�3; M ¼ 1019 m�3.
Luminescence intensities at 800 points along the
decaying curve have been calculated following a

simulated excitation for 0.1 s. The thick line
consists of the 800 computed points whereas the
dashed line is the best fitted stretched-exponential
(Eq. (4)). The best-fit parameters are b ¼ 0:45 and
t ¼11.8 ms. The fit does not look very good, and
the value of FOM (Eq. (11)) is 6.7� 10�4. How-
ever, the main feature of the stretched-exponential
function is seen, namely, that on the semilog scale
it is concave, having a negative first derivative and
a positive second derivative. Furthermore, had we
simulated a moderate noise, the agreement with
the stretched-exponential curve would have been
quite good. However, a closer look at the results
indicates that the behavior at the very beginning of
the curve is different than the rest of it. This brings
to mind the idea that, perhaps, a better agreement
will be reached if different best-fit procedures are
performed for the first short period of time and for
the rest of the curve. This idea seems to be in
accord with the work mentioned in the Introduc-
tion by Pavesi and Ceschini [10] who described a

Fig. 3. Fit of the same simulated luminescence points as in Fig. 2 in the range of 10–80ms, to a stretched-exponential curve. The best fit
yields b ¼ 0:33 and t ¼ 3:3 ms and FOM=1.7� 10�4.
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fast, nearly exponential range of decay in the
luminescence of porous silicon, followed by a
relatively slow, stretched-exponential decay.
Fig. 3 shows the fit of the same results as in

Fig. 2 to a stretched-exponential when the first
10 ms are excluded; thus the time range is 10–80 ms.
The values of the relevant parameters here are b ¼
0:33 and t ¼3.3 ms. As compared to other simu-
lated curves (not reported here in detail), this is a
very low value of b; probably associated with the
fact that the retrapping coefficient An is eight
orders of magnitude larger than the recombination
coefficient Am: The agreement between the simu-
lated and best-fitted curves is significantly better,
which is demonstrated by the value of
FOM=1.7� 10�4, about 4 times smaller than
with the results of Fig. 2. A slight deviation is seen
at the longer time end.
Fig. 4 depicts the results of the best fit for the 50

points in the first 5 ms. Here, b ¼ 0:875; t=17 ms
and FOM=2.65� 10�5, more than 6 times smaller

than in Fig. 3. The large value of b; rather close to
unity, means that the behavior here is close to be a
simple exponential decay, in agreement with the
mentioned results by Pavesi and Ceschini [10] and
the work by Even et al. [8] (see Eq. (3)).
Several other runs of the solution of the sets of

differential equations with different sets of trap-
ping parameters have been performed. Typically,
like in the results shown here, the initial decay was
close to exponential which later turned into
stretched-exponential with the values of b and t
depending on the set of trapping parameters.
Although here, the value of t in the initial, nearly
exponential range has been found to be larger than
that at the stretched-exponential region, with other
sets of parameters, the initial decay had t values
smaller than in the stretched-exponential range.
Obviously, when the parameters were such that
recombination was significantly stronger than
retrapping, the resulting decay curve was a simple
exponential.

Fig. 4. Fit of the simulated luminescence points as in Fig. 2 in the range of 0–5ms. The best fit yields b ¼ 0:875; t ¼ 17 ms and
FOM=2.65� 10�5.
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4. Conclusion

In this work it has been demonstrated that the
stretched-exponential decay of luminescence can
be the result of carriers transport in single crystals
with at least one kind of recombination center and
one trapping state. The well-known rate equations
utilized for the study of TL and phosphorescence
[33] have been solved numerically for the two
stages of excitation by a light pulse and the decay
of light emission following it, and the results have
been best-fitted to the stretched-exponential (4).
Typically, the decay curve has the features of the
stretched-exponential function provided the re-
trapping is stronger than the recombination. The
main feature here is that on a semilog scale, the
decaying curve is concave, namely has a positive
second derivative. The fact that the fit of the whole
decaying curve was not perfect could be masked by
adding a moderate simulated noise, which indeed
is usually seen in the measurements. As demon-
strated here, however, a significantly better fit is
usually reached if the fit is performed separately
for the initial time range where a larger value of b
is found, closer to unity, and for the longer time
range where smaller values of b are found,
indicating ‘‘real’’ stretched-exponential behavior.
It should also be mentioned that perfect agreement
could not be expected since the number of free
parameters entering the model (Eqs. (5)–(8)) ex-
ceeds the number of parameters in the stretched-
exponential expression (I0; b and t in Eq. (4)). The
main point made here is that there is a possibility
of getting the quite common stretched-exponential
decay of luminescence from such a system with no
obvious source of disorder, which is usually
suggested to be the reason for this kind of decay.
It appears that the main reason for the occurrence
of the stretched-exponential decay has to do with
the possibility of retrapping of free electrons from
the conduction band into the electron traps. The
role of retrapping in bringing about stretched-
exponential decay has been suggested before [10],
but always in the context of disordered systems.
Variations of the resulting b and t with the

experimental parameters such as the intensity of
the excitation light and the pulse length have been
observed, however more work is required to

describe in a physical manner the effect of these
experimental factors on the stretched-exponential
parameters. Also, the dependence on temperature
not dealt with here, appears to be of importance.
Previous works [10,11,14,16,18–20,25,26] have
reported temperature dependence of b and t in
different systems with either an increase or
decrease of these parameters observed with in-
creasing temperature. In our preliminary results
similar changes were observed, but more work is
required to understand the physical significance of
these changes.
Finally, it might be suggested that the disorder,

so common in stretched-exponential yielding
systems is manifested in the present case of single
crystals by the random distribution of traps and
centers in the sample. This argument is somewhat
weakened by the fact that when recombination
dominates, the centers are still randomly distrib-
uted but the luminescence decay is a regular
exponential. It is to be noted that in the present
system, there is no straight-forward way of
describing the stretched-exponential decay as a
sum (integral) over a distribution of exponential
decays as explained to be the source of the
stretched-exponential function in several other
systems [6]. It may be argued that the fact that
the decay is not a simple exponential function has
to do with the nonlinear terms Ammnc; BðM �
mÞnv and AnðN � nÞnc; appearing in Eqs. (5)–(7).
It should be stressed that the present work does

not contradict any of the known ways of explain-
ing the stretched-exponential decay of lumines-
cence. It merely suggests one more possibility of
explaining the phenomenon. This should be
considered, for example, when a sample made of
small crystallites emits luminescence. The possibi-
lity that the stretched-exponential decay results
from each of the crystallites rather than the whole
sample should not be ruled out.
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