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Abstract, Numerical curve fitting of glow peaks, using a computer, is shown to be 
more objective and accurate than the existing graphical curve fitting method in evaluat- 
ing trap activation energies. Besides using the numerical curve fitting method for glow 
peaks of first-order kinetics, the method is extended to the case of second-order 
thermoluminescence or thermally stimulated current peaks. The method was checked 
both for numerically generated peaks and experimental thermoluminescence curves of 
NaCl and ZnS : Er3+ samples. The results are in good agreement with the given 
values of activation energies in the former case and values calculated by other means 
in the latter. 

1. Introduction 
Several methods for calculating trap activation energies of first- and second-order thermo- 

luminescence (TL) and thermally stimulated current (TSC) curves are known. Many of 
them are based on the measurement of the maximum and the high and low half-intensity 
temperatures (Grossweiner 1953, Lushchik 1955, Halperin and Braner 1960, Nicholas and 
Woods 1964, Chen 1969). More reliable values can be found in many cases if more data 
are used. 

Cowell and Woods (1967) suggested a graphical method of curve fitting for finding 
activation energies of first-order TSC curves. The method can be used for first-order TL 
curves (Randall and Wilkins 1945) as well. A first-order curve can be written as 

One of these methods is the initial rise method of Garlick and Gibson (1948). 

Ip 

I (  T )  = A exp {g- j exp ($1 dT') 
To 

where A is a constant, E the activation energy in ev, k the Boltzmann constant in ev degK-1, 
T the temperature in OK, TO the initial temperature in OK, v the frequency factor of the trap 
in s-l and ,8 the linear heating rate in degK s - ~ ,  An asymptotic series for evaluating the 
integral in equation (1) has been given by Haake (1957) 

By using two terms of equation (2), a good approximation to equation (1) can be obtained 
from 

where B is a constant given by B= vE/,8k, and t = E/kT. 

I ( T )  E A exp { - t - B exp (- t )  t r 2 }  (3) 
B can be approximated by 

where tm=E/kTm. Tm is the temperature in OK at  maximum intensity Im. By using B' 
instead of B, the free parameters become E and Tm instead of E and v. This leads to a 

t Now at Department of Physics and Astronomy, Tel-Aviv University, Ramat-Aviv, Tel-Aviv, 
Israel. 
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convenient method of curve fitting, with only one variable parameter E, since Tm is known 
experimentally. 

Once the glow curve is measured, an estimate for 
E is obtained by using one of the known methods and a theoretical curve is plotted using 
equation (3) in conjunction with equation (4). The constant A is adjusted so that the 
intensity maxima of the experimental and theoretical curves coincide. The fitting of the 
rest of the curve is then checked. if the chosen value of E is too small, the theoretical curve 
will lie above the experimental curve (except for the maximum) and the reverse is true for too 
high a value for E. Using this as the criterion, a new value of E is chosen and the procedure 
is repeated until the desired fit is obtained. 

By 
doing so, we have a more objective method for finding the best fit for the curve and, thus, 
the accuracy in the evaluation of the activation energy E is expected to be much better than 
in the graphical method. A similar method for second order peaks is also developed. 
Both methods are checked by ‘synthetic’ glow curves-peaks calculated by the use of the 
asymptotic series (Haake 1957) up to 15 terms. In addition, both methods are checked by 
using experimental peaks of sodium chloride for first-order peaks and zinc sulphide doped 
with erbium for second order. The results are in good agreement with those known from 
other methods. 

The procedure for this was as follows. 

i n  the present paper, the method of curve fitting is followed in a numerical way. 

2. First-order method 
From the experimental curve, the intensities It corresponding to a certain number N of 

temperatures of Ti are taken. We usually chose Ti from a range of about 0*9-1*lTm, and 
used N=20. The curve is normalized by dividing each It by I m  to give the intensities 16’. 
Using equations (3) and (4), the definition of t ,  and a ‘guess’ for E (the ‘guess’ may be the 
value obtained by using any other known method), a theoretical curve is calculated at the 
same temperatures taken from the experimental curve and a similar normalization is used. 
The sum SI of the differences between corresponding intensities (hereafter called ‘mean 
deviation’ for convenience of reference) is then calculated from 

N 

2.=1 
sl= c {I’( Ti) - It’}/N (5) 

where I’(Ti) is the normalized intensity of the theoretical curve at temperature Tz. If SI is 
positive, E is increased by 10 %, and if Si is negative, E is decreased by 10 % of its original 
value. Again, a new theoretical curve is generated with the new value of E and the pro- 
cedure is repeated until Si changes sign. At this point, the percentage of variation of E is 
reduced to 5 % in addition to the direction of correction of E (increments or decrements). 
From this point on, the percentage of correction of E is reduced to half its previous value in 
each step while the direction of correction is still dictated by the sign of SI. 

This process can be stopped after a given number of steps, or when Si becomes smaller 
than a given number, or when the last correction in E is smaller than a given value, for 
example, 0.1 %. i n  this way the ‘best’ value of E can be obtained to the desired accuracy. 

Apart from the ‘mean deviation’ of equation ( 5 ) ,  the ‘mean-square deviation’ (this name 
is also used for convenience of reference) 

1V 

i= l  
Sz =E {I’( Ti) - Zi‘}’/N (6) 

is calculated and, by its very definition, it should be a good measure of the closeness of fit 
between the two curves, That is, the smaller the value of S2 the more reliable the calcu- 
lated value of E. The final value of SZ could be used as a criterion for the closeness of the 
experimental peak to first-order kinetics, since a large value of Sz would mean that the peak 
is not strictly of first-order kinetics. 

To check the method, a generated peak is used as the experimental data. Values of E, 
li and Ti (twenty values are taken) are chosen and the corresponding intensities 1i are calcu- 

Hence, the SZ criterion seems to be essential. 
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lated using equations (1) and (2). For a ‘synthetic’ peak with E=0.4 ev, v =  1010 s-1, the 
calculated E value is 0.4 ev after 10 steps. The first three significant figures did not change 
after additional steps. The absolute value of SI is down to 1-0 x after 50 steps, 
whereas SZ converges to 3.2 x 10-8 (see table 1). 

Table 1. Check of both methods using ‘synthetic’ peaks 

(1) (2) 
A I 0 .4  
B 1 0 .1  
C 1 0 .4  
D 1 0 .1  
E 1 0 .1  
F 2 0 .1  
G 2 0.1 
H 2 0 .1  
I 2 0 .1  

(3) 
1010 
105 
105 
109 
109 
1012 
1012 
10’2 
109 

(4) (5) .(6) 
0 . 2  175.0 1 
0 .2  175.0 1 
0 .2  78.5 1 
0 .5  52.1 2 
0 .5  52.1 2” 
0 .5  40.4 1 
0 .5  40.4 1 ”  
0 .5  40.4 I C  

0 .5  52.0 2 

(7) 
0 * 4000 
0.0996 
0.3990 
0,1490 
0.1180 
0.0844 
0,0878 
0.0940 
0*1000 

(8) 

2.33 x 10-7 
3 -22 x lo-* 

4 . 9 2 ~  10-7 
1 *40 x 
1 . s o x  10-4 
2.60 x lo-* 
8.00 x 

8.00 x 
1.20 X 10-5 

(1) order of generated curve; (2) E value of generated curve in ev; (3) frequency factor, v or 
v’no, in s-1; (4) /3 in OK s-1; (5) temperature at maximum intensity, T,, in O K ;  (6) order of method 
used in computation for the numerical method; (7) value of E in ev obtained by the present numeri- 
cal method; (8) value of SZ. 

a, used only the first half of curve for computation. 
b, used only the first quarter of the curve in computation. 
c, same as b with the normalization at the first quarter point. 

To simulate the case of using this method for peaks which are not strictly of first order, we 
The took the extreme case of a second-order generated peak as an experimental curve. 

second-order curve is generated using (Garlick and Gibson 1948) 

where VI is a constant and no is the initial concentration of trapped carriers, v’izo has the 
dimensions (time)-l (as v before) and may be of same order of magnitude as v. We chose 
v’no= 1012 ss1 and E=0*1 ev, for the generated peak. The calculated E is 0.084 ev with 
Sz = 0.026. 

However, a better fit may be expected if only points below the maximum temperature 
(Tm) are taken, since the main difference between afirst-order peak and a second-order peak, 
according to Nicholas and Woods (1964) and others, is in the region above the maximum. 
This is confirmed since we obtained a value of 0,088 ev for E, with SZ= 1.6 x 10-3, when we 
considered points only up to the first quarter of the curve (0.9-0.947‘m) with the normaliza- 
tion still at Tm. The value improved further when the normalization was changed to points 
below T m  (for example, the first quarter point) and points below the normalization tempera- 
ture were taken for Ti. The lower the normalization temperature the better the final Evalue 
is expected to be. This, in principle, is similar to the initial rise method of Garlick and 
Gibson (1948) and may be efficient in high intensity peaks but cannot be relied upon (because 
of experimental reasons) when all the information has to be taken from the initial rise range 
of a low intensity peak (see also Chen and Haber 1968). A slight improvement is seen when 
more than two terms in the series are used in approximating for the integrals (thus having 
more terms in equation (3)). All the results obtained with the ‘synthetic’ peaks are shown 
in the table. 

3. Second-order method 

similar to the one above. 
To deal with peaks of second order, or close to second order, we have developed a method 

Again, the first task is to have E and T m  as independent variables 
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rather than E and V I ,  so that Tm can be found from experiment and E can be varied to get the 
best fit between the experimental and theoretical curves. 

The condition for the maximum is obtained from equation (7)  by differentiating with 
respect to T and equating the derivative to zero. This leads to 

Again, the integral on the right-hand side may be approximated by using equation (2). 
From equation (7) we can find the maximum intensity which leads to the evaluation of 
normalized intensity 1’( Tz) at temperature Ti 

(9) 1 Tm 

Y‘O 
Ti 1 To 

exp (- E/kTt) 1 + (v’no//3) J exp ( - E / k T )  d T  

exp (- E/kTm) 1 + (v’no/P> J exp (-E/kT) d T  
It( Ti) = 

which, when used with equation (8), will have E and Tm as independent parameters, since /3 
is known. 

The procedure for curve fitting is similar to the case of the first-order method from this 
point on. Intensities It at temperatures Ti are taken from the experimental curve, which is 
normalized using the maximum intensity Im at the temperature Tm. The intensities I’(Tz) 
of the normalized theoretical curve are compared with the aid of equations (8) and (9), since 
Tm and /3 are known from experiment. A ‘guess’ for E is made, as before, using other 
methods of evaluation of E. The same criteria for the variation of E are constructed with 
the aid of SI and Sp, which are calculated as before, until the desired fit is obtained. 

As before, the final value of Se could be used as an indication of the deviation of the 
experimental curve from second-order kinetics. 

4. Results and discussion 
The results obtained with the ‘synthetic’ peaks are given in table 1 and have already been 

discussed in detail in $2 of this paper. It is seen that the results from the generated peaks are 
very good if the proper order kinetics is used in the computation. 

Experimental TL peaks in x-ray excited NaCl samples, reported to be of first order 
(Halperin et al. 1960 a), and in ultra-violet excited ZnS : 1 % ErF3, 5 % NH4F, reported to 
be of second order (Halperin et al. 1967), were analysed by means of the present technique. 
In both cases, both the first- and second-order methods were tried, yielding smaller S2 values 
with the first-order method in the former and with the second-order one in the latter. The 
activation energies found by the present method for the NaCl peaks were within 15% of 
those found by other known methods. I t  is possible that the values found here (0.51, 
0.88, 1.14 and 1.15 ev for peaks at 207, 268, 360 and 5 2 4 ” ~  respectively) are better than the 
previously reported ones, since much more information of the peak is included. The 
variations between the present and previous activation energies in the ZnS samples are 
larger, probably because the peaks are not ‘clean’ (Halperin et al. 1967). 

In conclusion, we feel that this method of computing E is more objective and accurate 
than the graphical curve fitting method. The smallness of SZ seems to be a good criterion 
with which to obtain a value for E, and it will also help us in determining the order of the 
kinetics. The order of kinetics with which we get a smaller SZ is the closer one. I t  seems 
reasonable to assume that SZ should be in the range of or less than 10-2 in order to obtain a 
good fit. The only disadvantage is that it is sometimes necessary to put into the program a 
‘guess’ value for E, not too far from the actual one. This problem exists only when the 
kinetics is not definitely known or when the peak is not ‘cleaned’. In such a case it may 
happen that, if the first approximation is too far from the real activation energy, the process 
may converge to a wrong value of E, giving also a very high value of SZ. However, in the 
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‘synthetic’ peaks, which represent perfectly clean peaks, very good results were found, even 
when the first approximation was three times as high as the final one. I t  is to be noted that 
the use of more than two terms in the approximation for the integral in equation (2) did not 
cause any inconvenience, since the calculations were done by the computer. 
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