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Abstract 

Increasingly observed in single-aliquot regenerative 

dose (SAR) optically stimulated luminescence (OSL, 

also termed photon stimulated luminescence or PSL) 

dating studies of sedimentary quartz are dose 

response curves that at high doses are not satisfied by 

a single saturating exponential (SSE) regression 

model.  Commonly these can appear to be satisfied 

by a SSE+Linear (E+L) regression model, but some 

authors have proposed that a double saturating 

exponential (DSE) model would more closely fit the 

observed dose response curves (DRCs), especially in 

the region of highest applied doses. As error analysis 

for SAR equivalent dose (De) values derived from a 

DSE model is not yet available through the widely 

available Risø supplied software (Analyst), we 

present here a regression and error analysis scheme 

for DSE SAR data, and also a simple charge traffic 

model that generates approximate DSE dose 

responses. To illustrate results from our error 

analysis, we employ two SAR high dose data sets for 

fine-grain quartz, and compare graphically the SSE, 

E+L and DSE fits for each data set. These 

comparisons show clearly that such data are more 

closely fitted by a DSE regression than by the other 

two models.  This result, and the charge traffic 

model, lend validity to the physical reality of DSE 

regression models, and have implications for quartz 

SAR dating of older sediments.  

 

Introduction 

Recently there has been increasing interest in the use 

of the high dose part of quartz SAR DRCs to estimate 

burial ages from unheated sediments (e.g., Lowick 

and Preusser, 2011; Lowick et al., 2010a, 2010b; 

Murray et al., 2007, 2008; Pawley et al., 2008, 2010; 

Timar et al., 2010). Most of these reports are 

concerned with how to assess the accuracy of 

equivalent dose (De) values derived from such DRCs 

because some of the age estimates are lower than 

expected based on indirect, independent evidence.  

Although these studies considered several possible 

explanations for the observed age estimate 

discrepancies (e.g. validity of independent ages, 

accuracy and/or variation of estimates of past water 

concentration, soundness of SAR self-consistency 

tests), part of the discussion in these reports of high-

dose DRCs concerns the best-fit model, though the 

examples of age underestimations illustrated by, for 

example, Lowick and Preusser (2011) do not depend 

on the fitting model. 

 

Berger (2010) summarized several published reports 

of high dose TL (thermoluminescence) and SAR 

DRCs that appeared to be best fitted by an E+L 

regression model. Additional examples of high dose 

SAR DRCs that appeared to be best fitted by an E+L 

model are reported in chapter 5 of Bøtter-Jensen et al. 

(2003). All of these examples used relatively few 

dose points and did not extend the DRC to very high 

(many kGy) doses. Berger (2010) noted that some 

authors (Wintle and Murray, 2006; Murray et al., 

2007, 2008) considered that a DSE model would also 

fit their DRCs. Recently, Lowick and Preusser 

(2011), Lowick et al. (2010a), and Pawley et al. 

(2010) showed that a DSE model would fit some of 

their DRCs as well as an E+L model up to applied 

doses of ~1 kGy. These authors used the E+L model 

to calculate interpolated De values from the high dose 

region of the relevant DRCs because an interpolation 

and error analysis scheme for calculation of De values 

from a DSE model was not available to them. 

 

We present here a regression and error analysis 

scheme for DSE DRCs, as well as a simple charge 

traffic model that simulates DSE DRCs. The 

equations for our DSE regression and error analysis 

scheme are extensions of those of Berger (2010) for 

the E+L model. Using the nomenclature of Berger 

(2010), the DSE model is  

 

f = a(1-e
-bx

) + c(1-e
-dx

)     (1) 

 

where the second SSE could manifest a second set of 

charge traps having a different saturation level than 

the type of traps represented in the first SSE. The 
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essential equations are outlined below. We illustrate 

the results with two fine-grain-quartz SAR data sets. 

 

Regression to Obtain Parameters a, b, c and d 

The nomenclature of Berger (2010) is followed here.  

Using the weighted least-squares principle, we wish 

to minimize 

 

   S =           
 

     (2) 

 

where f is defined by Eq 1 and the weights for each yi 

value (L/T, SAR normalized OSL) are 1/σy
2
, and  σ

2
 

is the absolute error variance in each L/T ratio.   

Corrected (Berger, 2011) Eq 12 of Berger (2010)   

 

          
 
      

  

      
 
         

 

for the iterative calculation of the best-fit parameters,  

is used to derive best-fit parameters  θ (a, b, c and d  

herein) by iteration, employing the elements of the 

matrices   U and   Y*, where matrix elements uik 

=        . The elements of the weighted matrices are 

as follows: 

 

wua =              , 

 

wub =     
        , 

 

wuc =              , 

 

wud =      
        , 

 

wy* = [                        ]    . 

 

Solution for De and Error in De 

We solve for De by using the Newton-Raphson 

iterative procedure (e.g. McCalla, 1967) applied to 

the equation  

 

      f ' =  y0 - a(1-e
-bx

) - c(1-e
-dx

)     (3) 

 

because f ' = 0 when x = De , where y0 = L0/T0, the 

L/T ratio for the 'natural' measurement. 

 

As in Berger (2010), we calculate two components of 

the variance in De. The first arises from the variance 

in y0 and is obtained by using the repeated steps of 

Berger (2010) and his equation 16 

 

    

           
    

     
 
  

 

The second error component in De arises from the 

scatter of data about the best-fit curve and from the 

errors in the parameters a, b, c, and d, as well as from 

the covariances of these errors. We calculate this 

second component by use of an extension to equation 

4 of Berger (1990).  This equation is 

 

   Δ
2
 =  

        

         
 , 

 

where SIG is the symmetric error matrix (the 

variance-covariance matrix) and equals VAR·(I)
-1

,  I 

is the information matrix of Berger et al. (1987), and 

VAR is a scalar.   

 

VAR = 
            

 
 

   
    

 

where N is the number of L/T data points including 

the origin. 

 

Thus, in the equation for Δ
2
,  

  

   
          

         , with f given by Eq 1 above. The elements 

of the above transpose matrix V
t
 = 

                              are then as follows: 

 

  
  

  
             

  
  

  
           

  
  

  
           

  
  

  
        ,   

 

and are evaluated with x = De.  

 

To complete our calculation of the second component 

of the error in De (that arising from the scatter of data 

about the best-fit DRC and errors in fitting 

parameters), we need the elements of the above 

symmetric matrix I. These elements are derived from 

Eq 3 of Berger (2010)  

 

        
 

  
 

     

   
  

     

   
  

 

and are as follows (with 1/  
  replaced by wi as in 

Berger, 2010): 

 

Iaa =                , 

 

Iab = Iba =                  
       , 

 

Iac = Ica =                         , 

 

Iad = Ida =                  
       , 

 

Ibb =         
         , 

 

Ibc = Icb =         
                , 
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Figure 1: Comparison of DSE and E+L best-fit 

DRCs for sample ATP-37. Error bars for L/T data 

here and in Fig. 2 are ±1σ. Here and for sample 

ATP-18, a preheat of 240°C(10s) was employed.  The 

dose rate for the beta source used is 0.12 Gy/s. 

 

 

 

Ibd = Idb =         
          

       , 

 

Icc =                , 

 

Icd = Idc =                  
       , 

 

Idd =          
        . 

 

The two calculated components of the variance in De 

are then summed as in Eq 15 of Berger (2010) to 

yield the total variance in De. 

 

   

      

          

      

 

Comparison of Results from Data Sets 

The DRC for the data set ATP-37 of Berger (2010) 

showed an apparently near linear component 

superimposed upon an SSE. The top of Berger's 

(2010) Fig. 2 compared the best-fit SSE with the 

best-fit E+L regressions. In Fig. 1 here we use the 

same data set to compare the E+L and DSE fits to 

this high-dose data set. While the differences in the 

DRCs might appear slight to the eye, they are 

significant. The 'Fit' value (weighted sums of squares 

of residuals) for the E+L fit is 1.42, and that for the 

DSE (0.80) is significantly smaller. Such a Fit value 

provides a more discriminating estimate of the fit of a 

regression model than does the less sensitive R
2
 value 

often cited by authors.  In this example, the estimated 

De from the DSE regression is smaller (2860 ±190 s) 

than that from the E+L regression (3060±260 s) as 

expected, though not statistically different at 1σ.  

 
 

Figure 2: Comparison of SSE, E+L and DSE best fit 

DRCs for sample ATP-18. The dose rate of the beta 

source used is 0.12 Gy/s. 

 

 

Table 1: SAR data for sample ATP-18 

Dose (s) L/T 

Natural 3.184 ± 0.068 

300 0.757 ± 0.016 

650 1.290 ± 0.028 

1000 1.679 ± 0.036 

1400 1.994 ± 0.043 

2200 2.425 ± 0.052 

3000 2.747 ± 0.059 

3800 2.925 ± 0.063 

4800 3.103 ± 0.067 

5800 3.201 ± 0.069 

7000 3.338 ± 0.074 

8500 3.437 ± 0.074 

10000 3.465 ± 0.074 

recup'n 0.005 ± 0.002 

Recycle 0.84 ± 0.03 

 

Note: These L/T ratios are from the screen display of 

Analyst v3.24, which truncates errors to the third 

decimal place.  

 

Our second high dose data set (sample ATP-18, 

Table 1) is also from a 4-11 µm fraction of purified 

quartz (extracted using H2SiF6 acid), apparently 

having (as does sample ATP-37) only a fast 

component of quartz OSL. In Fig. 2 we compare the 

best fit regression curves of SSE, E+L and DSE for 

the ATP-18 data. Clearly, the SSE model is 

inappropriate. The SSE Fit value is 3.08. The E+L 

model evidently provides a better fit, having a Fit 

value of 1.69, and yielding a De value of 6280±700 s.  



12                                                                                                                                                                        Ancient TL Vol. 29 No.1 2011 

However, the DSE model provides the closest fit (Fit 

= 0.40), and the De value is smaller (5270±550 s) as 

expected, with a smaller error. It is clear that a DSE 

model is more appropriate for these data than is an 

E+L model, though the error analysis reveals that the 

difference in estimates of De values is not statistically 

significant at 1σ for these data. 

 

A Charge-traffic Model for a DSE Dose Response 

One of the conceptual problems with the use of the 

E+L regression model is that, although it can 

represent a realistic physical process under 

application of high laboratory doses (trap creation 

superimposed upon filling of existing charge traps, 

Berger (2010) and citations therein), it is difficult to 

understand how this model can represent what occurs 

naturally over geological time scales under much 

lower dose rates. Notwithstanding, Lowick and 

Preusser (2011, pg.40) found no empirical evidence 

in their experiments "to suggest that the presence of a 

high dose linear response in quartz OSL is only a 

laboratory generated phenomenon and does not occur 

in the natural environment". In general,  however, 

several authors (cited in the introduction above) have 

assumed that a DSE model is more physically 

realistic, but that in most cases an E+L model 

provides sufficiently accurate estimates of De values 

from the high dose region of the DRC (and our 

example data do not show otherwise, at the 1σ level 

of significance). A particular difficulty has been in 

conceptualizing a specific charge traffic process or 

set of competing processes that could account for a 

DSE dose response. 

 

One envisioned process (e.g. Wintle and Murray, 

2006) is that the second SSE term in Eq 1 above 

manifests the filling of a set of traps different from 

those manifested by the first SSE term. But what is 

meant by 'different', and what other charge transport 

processes might account for such DRCs? 

Ankjærgaard et al. (2006) provided experimental 

evidence for discrimination among possible charge 

traffic schemes of OSL (and TL). They employed 

optically stimulated electron emission (OSE) and 

OSL in a comparative study of some natural 

dosimeters (NaCl, quartz and feldspar). Whereas 

OSL (and TL) manifest the end results of both charge 

eviction and charge recombination, OSE reflects only 

charge eviction. They observed that OSE from quartz 

and feldspar decays more quickly than OSL, and 

suggested that this difference manifests the 

recombination step, possibly involving a delay in the 

recombination process of OSL (and TL). They also 

observed differences in the OSE and OSL DRCs, 

which they attribute to "a dose dependent  change  in   

luminescence recombination  efficiency”,  associated 

 

Figure 3:  Charge traffic model used in this study. 

 

with OSL. However, Ankjærgaard et al. (2009) 

observed no significant differences in DRC shapes 

resulting from similar OSE and OSL experiments on 

additional quartz samples, inferring that 

luminescence recombination is not generally the 

main limit to the dose range of DRCs. Furthermore, 

Lowick et al. (2010a, p. 983) inferred from their 

experiments with quartz OSL that the high dose 

behaviour in the DRC could be accounted for by "a 

change in competition for electrons between the UV 

recombination centres whose emission is seen 

through the detection window and recombination 

centres that do not emit in this spectral region...". 

 

In the context of the above, we present a simple 

charge traffic model that produces statistically good 

DSE DRCs, but that involves only one electron 

trapping state (N) and one type of recombination 

centre (M), and (significantly) a 'long' relaxation 

time. The model is sketched in Fig. 3. Parameters N 

(cm
-3

) and M (cm
-3

) denote the concentrations of the 

traps and centres, respectively, and n (cm
-3

) and m 

(cm
-3

) their corresponding instantaneous occupancies.  

The parameters nc (cm
-3

) and nv (cm
-3

) are the 

instantaneous concentrations of free electrons and 

holes, respectively. Parameter B (cm
3
s

-1
) is the 

probability coefficient for capturing free holes in the 

recombination centre.  Parameter Am (cm
3
s

-1
) is the 

recombination probability coefficient for electrons to 

recombine with holes in the centres, and An (cm
3
s

-1
) 

the probability coefficient for retrapping. Parameter X 

(cm
-3

s
-1

) is the rate of production of electron-hole 

pairs by the irradiation, which is proportional to the 

excitation dose rate. If an excitation of constant 

intensity takes place for a period of time tD (s), the 

total number of pairs produced is XtD (cm
-3

), which 

is proportional to the total applied dose D. 

 

The set of rate equations governing the process is: 

 
  

  
                (4) 

 

nc 

nv 

N, n 

M, m 
X 

B 

Am 

   An 

M, m 
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Figure 4: Simulated charge traffic dose response and 

best fit regressions. These regressions (from 

SigmaPlot v11.2) use 1/y
2
 weighting. 

 

 
  

  
                      (5) 

 
   

  
                 (6) 

 
   

  
  

  

  
  

   

  
  

  

  
      (7) 

 

In order to demonstrate the behaviour of the 

dependence of excitation on the dose, we have 

chosen the following set of parameters:  N=10
15

 cm
-3

; 

M=10
16

 cm
-3

; n0=m0=0; B=10
-9

cm
3
s

-1
; An=210

-9
 

cm
3
s

-1
; Am=10

-7
cm

3
s

-1
 and X=310

15
cm

-3
s

-1
. The 

simulated irradiations had varying lengths between 3 

and 75 s, which produced the different 'applied' 

doses.  

 

In order to simulate the excitation process properly, 

each excitation was followed by a long relaxation 

time during which, the remaining holes in the valence 

band were captured in the recombination centre. The 

remaining electrons in the conduction band were 

either retrapped or recombined with holes in the 

centre during the relaxation time. The final 

concentrations of electrons following excitation and 

relaxation were recorded. Note that in this simple 

model of one trap and one recombination centre, the 

concentrations of electrons in the trap and holes in 

the centre must be equal at the end of the relaxation 

time. 

 

The recorded values of the final trap occupancy are 

assumed to represent the luminescence signal. In the 

case of TL, this represents the area under the glow 

peak measured following the excitation and 

relaxation. For OSL it represents the integral under 

the decay curve, again, following excitation and 

relaxation.  

 

The results of the simulation with the above 

mentioned set of parameters are shown in Fig. 4. The 

analysis shows that the DSE regression model yields 

significantly better agreement with the simulated 

results than does the single saturating exponential 

(SSE) model. The exponential constants b and d in 

the regression model (Eq 1) seem to be associated 

with the processes of electron capture in traps 

(probability coefficient An) and of holes in centres 

(probability coefficient B) during the excitation and 

relaxation. 

 

Conclusions 

A scheme for regression and estimation of total 

variance in paleodose (De) values derived from SAR 

OSL experiments is presented for a double saturating 

exponential (DSE) dose response curve (DRC).  With 

real SAR data from two samples of fine-silt quartz 

given relatively high laboratory doses, the DSE 

regression model provides a better fit to the DRCs 

than does the saturating exponential plus linear (E+L) 

regression model. Additionally, the estimated errors 

in the respective De values are smaller (as expected 

because of the better regression fits) than otherwise.  

The implication of the DSE behaviour of real sample 

data for OSL dating by SAR is that there is an upper 

limit to the OSL of the DRCs and this provides one 

constraint on the maximum age for such dating that 

would not be encountered if an E+L model 

represented actual dose response in nature. The upper 

age limit is likely constrained by the behaviour 

represented by the second SSE, which may be related 

to hole-capture behaviour. 

 

Our simple charge traffic model simulates closely a 

DSE dose response. This simple model has only a 

single electron trapping state and a single type of 

recombination centre, and incorporates a 'long' 

relaxation time as per the experimental procedure.  

While this simple charge traffic model appears to 

provide a sufficient match to the observed best-fit 

DSE regression, other more complicated charge 

traffic models might also produce similar results.  

Nonetheless, the two exponents in our simple model 

may be associated with the two processes of filling of 

traps and centres, but the full process is likely to be 

more complicated. 
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