
European Journal of Operational Research 225 (2013) 36–43
Contents lists available at SciVerse ScienceDirect

European Journal of Operational Research

journal homepage: www.elsevier .com/locate /e jor
Continuous Optimization

Optimal algorithms for the a-neighbor p-center problem

Doron Chen a,⇑, Reuven Chen b

a IBM Research, Haifa University Campus, Mount Carmel, Haifa 31905, Israel
b Raymond and Beverly Sackler, School of Physics and Astronomy, Tel-Aviv University, Tel-Aviv 69978, Israel
a r t i c l e i n f o

Article history:
Received 4 December 2011
Accepted 22 September 2012
Available online 2 October 2012

Keywords:
a-Neighbor p-center
Continuous optimization
Discrete optimization
Relaxation
0377-2217/$ - see front matter � 2012 Elsevier B.V. A
http://dx.doi.org/10.1016/j.ejor.2012.09.041

⇑ Corresponding author. Tel.: +972 3 7689401.
E-mail addresses: cdoron@il.ibm.com (D. Chen), ch
a b s t r a c t

Assigning multiple service facilities to demand points is important when demand points are required to
withstand service facility failures. Such failures may result from a multitude of causes, ranging from tech-
nical difficulties to natural disasters. The a-neighbor p-center problem deals with locating p service facil-
ities. Each demand point is assigned to its nearest a service facilities, thus it is able to withstand up to
a � 1 service facility failures. The objective is to minimize the maximum distance between a demand
point and its ath nearest service facility. We present two optimal algorithms for both the continuous
and discrete a-neighbor p-center problem. We present experimental results comparing the performance
of the two optimal algorithms for a = 2. We also present experimental results showing the performance of
the relaxation algorithm for a = 1, 2, 3.

� 2012 Elsevier B.V. All rights reserved.
1. Introduction

The a-neighbor p-center problem, presented by Krumke [17], is
a generalization of the p-center problem (see, for example, [12]).
Given the locations of n demand points, the objective in the classic
p-center problem is to locate p service facilities so as to minimize
the maximum distance between a demand point and its nearest
service facility. In the a-neighbor p-center generalization, each
demand point is assigned a service facilities, so that each demand
point could withstand the failure of a � 1 service facilities; thus
the objective is to minimize the maximum distance between a
demand point and its ath nearest service facility. It is assumed that
all service facilities perform the same kind of service, and that the
number of demand points that can get service from a given center
is unlimited.

There are two main variants to the classic p-center problem.
In the continuous p-center problem the service facilities may be
located anywhere on the plane. In the discrete p-center problem
there is a finite set of potential service points to choose from. Re-
search on the a-neighbor p-center problem has so far concentrated
on approximation algorithms for the discrete cases, where the set
of potential service points is the same as the set of demand points
[1,16,17].

The a-neighbor p-center problem (like the classic p-center
problem) is a problem of locating p service centers. It can also be
viewed as a problem of locating p circles so that each demand point
is covered a times, where the centers of the p circles are the loca-
tions of the p service facilities. The goal is to minimize the radius of
ll rights reserved.

enr@tau.ac.il (R. Chen).
the maximal circle. For convenience, in this paper we treat the
a-neighbor p-center as a problem of locating p circles.

Following the work by Toregas et al. [25] which dealt with sin-
gle coverage in location of emergency service facilities problems,
several authors studied different versions of problems with multi-
ple coverage of demand points. Daskin and Stern [8] considered a
hierarchical objective set covering (HOSC) problem: finding the
minimum number of vehicles needed to cover all the zones while
simultaneously maximizing the extent of multiple coverage of
zones. This was followed by a work by Daskin [5] who extended
the maximum covering location model to account for the chance
that when demand arrives at the system, it will not be covered
since all facilities capable of covering the demand are engaged
serving other demands. Daskin presented a heuristic solution algo-
rithm dealing with the location problem on networks. Hogan and
ReVelle [13] discussed the problem of backup coverage, namely
the second coverage of a demand node on a network. More pre-
cisely, first coverage is traded off against backup coverage. Using
an example problem, they showed that significant levels of backup
coverage may be provided in a system without substantial loss of
first coverage.

ReVelle and Hogan [21] introduced the maximum available
location problem (MALP) which positions p servers in such a way
as to maximize the population which will find an available server
within a time standard with a reliability. The authors point out
that the MALP builds on the probabilistic location set-covering
problem in concept, and on backup covering and expected covering
models in technical detail. Marianov and ReVelle [18] suggested a
more realistic model for emergency systems, namely, the
Queueing-MALP or Q-MALP. Whereas in MALP, it is assumed that
the probabilities of different servers being busy are independent,

http://dx.doi.org/10.1016/j.ejor.2012.09.041
mailto:cdoron@il.ibm.com
mailto:chenr@tau.ac.il
http://dx.doi.org/10.1016/j.ejor.2012.09.041
http://www.sciencedirect.com/science/journal/03772217
http://www.elsevier.com/locate/ejor


D. Chen, R. Chen / European Journal of Operational Research 225 (2013) 36–43 37
in Q-MALP, results from queueing theory are utilized to relax this
assumption.

Khuller et al. [16] provided a polynomial time approximation
algorithm for the a-neighbor p-center problem that achieved an
approximation factor of 3 for any a, and an approximation factor
of 2 for a < 4. Guha et al. [11] considered a similar problem, the
fault-tolerant location problem on networks; they discussed the
factor approximation of the fault-tolerant location problem and
provided a greedy local-search technique that yields an approxi-
mation ratio of 2.41. A further improvement by Swamy and
Shmoys [24] showed that there is a 2.076-approximation of the
problem. Church and Gerrard [4] considered the multi-level loca-
tion set-covering model (ML-LSCP) as a search for the smallest
number of facilities needed to cover each demand a preset number
of times. In their version of the problem, one has a number of
potential sites that can be used for the placement of a facility.
These may be nodes of a network or discrete points on a continu-
ous terrain. Eiselt and Marianov [9] presented a practical applica-
tion of the solution of this problem, namely, a mobile phone
tower location for survival after natural disasters. Their work was
motivated by the aftermath of a magnitude 8.8 earthquake that
had hit Chile in 2010. One outcome was that cellular phones
stopped working in large areas for a long time, and the lack of
communication had a distressing effect. Eiselt and Marianov
assumed that in case of a disaster, there will be exactly one failure.
The reason for the assumption is that radio base stations are
usually separated by a significant distance so that natural disasters
such as landslides are unlikely to affect more than one at a time.
They also suggest that, according to past experience, terrorists
always strike one target at a time. Thus, the double cover is a
sufficient demand. However, Eiselt and Marianov [9] did not solve
the same problem of a full double cover which is the subject of the
present work, but rather concentrated on minimization of the
worst-case loss using constant-radius circles.

Some works on assigning multiple service facilities have al-
lowed locating several service points at the exact same location,
while others have not. In Church and Gerrard [4], it is assumed that
the facilities cannot be co-located and must be distributed at most
one per site. This is the case, for example, in the problem discussed
by Eiselt and Marianov [9] dealing with phone tower survival after
natural disasters. On the other hand, the possibility of co-location
is allowed in other cases. Hogan and ReVelle [13] demonstrated
that when backup coverage is employed as one of the primary
objectives in a problem, co-location of facilities may result. In an
extended review report by Serra and Marianov [22], different as-
pects of co-location are discussed, along with several references.
In the present paper we address both problems, with and without
co-location. We concentrate mainly on the a-neighbor p-center
problem where co-location of multiple service points is allowed.
In another review paper, Goldberg [10] discusses models for the
deployment of emergency service vehicles. Among other subjects,
he reviews the literature concerning models that incorporate back-
up coverage.

In this paper we present an optimal algorithm for both the con-
tinuous and discrete a-neighbor p-center problem. To the best of
our knowledge, no optimal algorithm has previously been sug-
gested for the a-neighbor p-center problem, and the continuous
variant of the problem has never been considered.
1 More precisely, Minieka shows that there is a finite number of service points to
consider, but the transition to circles is immediate.
2. Optimal algorithm

2.1. Minieka’s algorithm

Minieka [19] provided an optimal algorithm for the p-center
problem on a graph. In this variant of the p-center problem, the
service points could be placed anywhere on the graph edges and
vertices. Minieka’s algorithm has also been modified to solve the
discrete and continuous p-center problem.

Algorithm 1. Skeleton of Minieka’s Algorithm

Feasible RANDOMLYCHOOSEPSERVICEPOINTS()
Best_Candidate Feasible
Upper_Bound GetValue(Feasible)
while (true)

Feasible FINDBETTERSOLUTION(Upper_Bound)
if (no feasible solution found)

halt and return Best_Candidate
else

Best_Candidate Feasible
Upper_Bound GETVALUE(Feasible)

The basic idea for Minieka’s algorithm is very simple, and is rep-
resented in Algorithm 1. One begins with an arbitrary set of p ser-
vice points, and at each iteration solves a subroutine which
attempts to find a better solution to the p-center problem. The
algorithm halts when no better solution is found.

Function GETVALUE returns the value of a feasible solution, which
in the p-center case is the maximum distance between a demand
point and its nearest service facility.

The heart of Minieka’s algorithm is subroutine FINDBETTERSOLUTION,
which, given an upper bound, is able to determine whether there
exists a solution to the p-center problem with value better than
that upper bound. The subroutine also finds a better solution if
one exists. Subroutine FindBetterSolution, which we will describe
in further detail, solves a set-covering problem. The ability to
translate the problem of finding a better p-center solution to a
set-covering problem depends on there being a finite number of
circles. Minieka [19] shows that is the case for the p-center
problem on graphs.1

We now describe how subroutine FINDBETTERSOLUTION is
implemented:

� Input: n demand points, a value p, and a value Upper_Bound
� Output: a set of p circles with radii less than Upper_Bound that

cover each demand point (if such a set exists).
(1) Construct C, the finite set of circles induced by the n demand

points. Note: C need not be constructed each time subrou-
tine FINDBETTERSOLUTION is called, for C is constant for any set
of n demand points.

(2) Construct C0, the set of all circles in C with radii less than
Upper Bound. C0 is constructed by discarding from C all cir-
cles with radii greater or equal to the current upper bound;
these circles cannot be used in a solution with value less
than Upper Bound.

(3) Determine whether there is a subset of at most p circles that
cover all demand points. To do this, we:

(a) Assign one size-n vector, vc, to each circle c in C0. For

each circle c, the value of vc in the position corre-
sponding to demand point i is 1 if and only if point i
is covered by circle c:

vcðiÞ ¼
1 circle c covers point i

0 otherwise

�
:

(b) Run a set-covering algorithm on this set of vectors to
obtain Vmin, a minimal set of vectors whose sum is



38 D. Chen, R. Chen / European Journal of Operational Research 225 (2013) 36–43
greater than the 1-vector (the size-n vector which
consists only of 1’s). If Vmin contains no more than p
vectors, return the corresponding set of circles.
In step 3b, determining whether there are at most p vectors
whose sum is greater than the 1-vector is equivalent to determin-
ing whether there are at most p circles that cover all demand
points.

Minieka’s algorithm [19] is a sequence of set-covering
problems; each step solves a set-covering problem to find Vmin. If
Vmin contains no more than p vectors, then the corresponding set
of circles is a better solution to the p-center problem, as they cover
all demand points, and their radii are smaller than the current
upper bound. If Vmin contains more than p vectors, then there
can be no better solution to the p-center problem, and we can halt.

Note that solving the set-covering problem to optimality does
not guarantee that we solved the p-center problem to optimality.
Though we only consider circles with radii smaller than the current
upper bound, when solving the set-covering problem we com-
pletely ignore the radii of the candidate circles.

Step 3b in FINDBETTERSOLUTION can be replaced by a feasibility
problem, as suggested by Ilhan et al. [15]. Instead of solving ‘‘find
the minimal number of vectors whose sum is greater than the
1-vector’’, Ilhan et al. suggest solving a slightly easier problem,
‘‘find a subset of at most p vectors whose sum is greater than the
1-vector (if such a subset exists)’’. This feasibility sub-problem, like
the set-covering problem, is NP-hard, but it has been experimen-
tally shown that replacing the set-covering algorithm with the
feasibility sub-problem algorithm improves the performance of
the p-center algorithm [2].

Both the set-covering problem and the feasibility sub-problem
can easily be represented as Integer Programming problems, the
former an optimization Integer Programming problem, the latter
a feasibility Integer Programming problem. Both problems can be
solved by any integer programming software. The difference be-
tween the set-covering problem and the feasibility sub-problem
is that in the set-covering problem one tries to minimize the num-
ber of vectors; in the feasibility sub-problem there is no function to
minimize, but there is one extra constraint which limits the num-
ber of vectors to p.

Although Minieka’s algorithm was written for a variant of the
p-center problem where the service points could be placed
anywhere on the graph edges and vertices, it also applies to the
discrete and continuous p-center problems. In order to apply
Minieka’s algorithm to the discrete and continuous p-center prob-
lems, one needs there to be a finite set of circles to consider. As in
the version of the p-center problem solved by Minieka, the set of
circles to consider for the discrete and continuous p-center prob-
lems is the set of critical circles. Intuitively, a circle is critical if it
cannot be shrinked, even slightly, without hurting the coverage
of at least one demand point. For the discrete p-center problem,
one needs only to consider circles whose centers reside at the
potential service points and whose radii are determined by one
of the demand points. Chen and Handler [3] show that in the case
of the continuous p-center problem on a two-dimensional plane,

given n demand points, there are n
3

� �
þ n

2

� �
þ n critical circles

to consider. The circles to consider are n
3

� �
circles determined

by three points on their circumference, n
2

� �
circles defined by

two points determining the diameter and n null circles located at
the demand points. Chen and Handler [3] also show that of the cir-
cles determined by three demand points, the circles determined by
three points forming an obtuse triangle may be disregarded.

2.2. Adjustment for the a-neighbor p-center problem

We explain how to adjust Minieka’s algorithm to solve both the
continuous and discrete a-neighbor p-center problems. Algorithm
1 clearly also applies to the a-neighbor p-center problems, but
the implementations of FINDBETTERSOLUTION and GETVALUE need to
change. We concentrate on the a-neighbor p-center problem
where co-location of multiple service points is allowed, but we also
address the other problem, where co-location is forbidden.

In subroutine FINDBETTERSOLUTION, the set of circles to consider for
the a-neighbor p-center problem is the same set of critical circles
as in the classic p-center problem. Since we work with the same
set of circles, we also use the same set of vectors as in the p-center
problem. However, rather than finding the minimal number of vec-
tors whose sum is greater than the 1-vector, we now attempt to find
the minimal number of vectors whose sum is greater than the
a-vector (the size-n vector which consists only of a’s). This is
equivalent to finding the minimal set of circles that cover each
demand point at least a times. This is exactly the redundant
set-covering problem, presented and solved by Van Slyke [23], with
the redundancy level set to a. Note that for the redundant set-cover-
ing problem, several service facilities could be located at the exact
same position, which was not possible for the classic
p-center problem. This means that if, for the p-center problem, we
programmed our integer programming software to limit the integer
values of our variables to be either 0 or 1, we must remove that con-
straint for the a-neighbor p-center problem. (If co-location of service
facilities is not allowed, then the binary constraint should remain.)

Inspired by the improvement suggested by Ilhan et al. [15] for
the original p-center problem, we propose implementing
FINDBETTERSOLUTION as the feasibility Integer Programming problem
described in Section 2.1, where the 1-vector is replaced by the a-
vector.

Function GETVALUE returns the value of a feasible solution. When
adapted to the a-neighbor p-center problem, it computes the max-
imum distance between a demand point and its ath nearest service
facility, rather than the maximum distance between a demand
point and its nearest service facility.

3. Relaxation algorithms

3.1. Relaxation algorithm for the p-center problem

Relaxation (in the context of this paper) [3,12] is a method for
optimally solving a large location problem by solving a succession
of small sub-problems. The classic relaxation algorithm [3,12]
starts with an upper bound of infinity, and keeps updating it until
the optimal value is reached, similarly to Minieka’s algorithm [19]
(though Minieka’s algorithm does not involve relaxation).
Although one cannot know in advance how many sub-problems
need to be solved, once the global optimum is reached, it is identi-
fied as such. This as opposed to many heuristic methods which
usually yield local minima.

Relaxation algorithms are iterative; at each step a candidate
solution to the original full problem is considered, which provides
us with an upper bound on the optimal solution. Like Minieka’s
algorithm, we keep searching for a feasible solution which im-
proves upon the current candidate solution until we prove that
none exists.

Relaxation applies to a location problem if it has the following
properties:



D. Chen, R. Chen / European Journal of Operational Research 225 (2013) 36–43 39
� (Property 1) There must be an algorithm capable of answering
the question: ‘‘is there a solution to the problem with value bet-
ter than x’’, and of finding such a solution if one exists
� (Property 2) The problem must be such that if there is no solu-

tion to a sub-problem with value better than x, then there can
be no solution to the full problem with value better than x.

Lemma 1. The p-center problem satisfies Properties 1 and 2.

Proof. Property 1 is satisfied, since FINDFEASIBLESOLUTION, as
described in Section 2.1, identifies a better solution if one exists.
Property 2 is also satisfied, as any set of circles that covers all
demand points also covers any subset of the demand points. There-
fore any feasible solution to the full problem is also a feasible solu-
tion to any sub-problem. As a result, the value of the optimal
solution to the full problem must be greater or equal to the value
of the optimal solution to any sub-problem. Suppose that there is
no solution to a sub-problem with value better than x. Assume to
the contrary that there exists a feasible solution to the full problem
with value better than x. Then this must also be a feasible solution
to the sub-problem. Therefore, there exists a solution to the sub-
problem with value better than x, a contradiction. h

We now describe the relaxation algorithm in greater detail, and
show why it halts with the optimal solution for any location prob-
lem with the two above properties.

Algorithm 2. Skeleton of Relaxation Algorithms.

Upper_Bound 1
Sub CHOOSERANDOMSUBSET()
while (solution not found)

Feasible FINDFEASIBLESOLUTION(Sub, Upper_Bound)
if (no feasible solution found for sub-problem)

halt and return Best_Candidate
else

if (Feasible is a feasible solution to the original full
problem)

Best_Candidate Feasible
Upper_Bound GETVALUE(Feasible)

else
ADDDEMANDPOINTS(Sub)

Algorithm 2 describes the skeleton of a relaxation algorithm. We
begin with an upper bound of infinity. CHOOSERANDOMSUBSET chooses
an initial random subset of the demand points. The algorithm does
not state how to choose the initial random subset, nor its initial
size, but the algorithm’s correctness does not rely on that choice.

At each iteration we work with a subset of the demand points,
and run FINDFEASIBLESOLUTION. Its inputs are Sub, the current demand-
point subset, and a value Upper_Bound, the current upper bound.
The subroutine answers the question: ‘‘Is there a solution to the
sub-problem with value less than Upper_Bound?’’. In other words,
it finds a feasible (not necessarily optimal) solution to the relaxed
(smaller) p-center problem, with value less than Upper_Bound (if
such a solution exists).

If FINDFEASIBLESOLUTION finds a better solution to the sub-problem,
we check whether this solution also happens to be a solution to the
full problem. For the p-center problem, for instance, we check
whether the set of circles which cover the subset of demand points,
also happens to cover all demand points. If the found solution is
also a feasible solution to the full problem, then it is better than
the best solution we have found so far; we update Best_Candidate
to be the set of service points returned by the subroutine, and
we update Upper_Bound to be the value of this new solution.
If, on the other hand, the solution returned by FINDFEASIBLESOLUTION

is not a feasible solution to the original problem, then we have not
learned much from this iteration. We call such steps ‘‘uninforma-
tive’’, since they do not help us improve our bound on the solution.
When this happens, we simply add more demand points to our sub-
set, and try again. The algorithm does not state how to add a demand
point to the subset in the uninformative steps, and the correctness of
the algorithm does not rely on that choice. The algorithm remains
correct even if we add more than one demand point following each
uninformative step [2]; in fact, this may help reduce the overall
number of uninformative steps. A good heuristic for adding k de-
mand points, for the classic p-center problem, is to add the k farthest
demand points from the current service points.

If FINDFEASIBLESOLUTION proves that there is no solution to the sub-
problem with value less than Upper_Bound, then the algorithm
halts and returns the best feasible solution we have found so far,
Best_Candidate.

Lemma 2. For any problem satisfying Property 2, if Algorithm 2 halts,
it return the optimal solution.
Proof. At the point where Algorithm 2 halts, we have already
found a feasible solution to the full problem with value
Upper_Bound. We halt when we find no solution to a sub-problem
with value less than Upper_Bound. From Property 2 it follows that
there can be no solution to the full problem with value less than
Upper_Bound. Therefore, the feasible solution we have found, with
value Upper_Bound, is optimal. h

We have shown that if Algorithm 2 halts, then it must return
the optimal solution. Is it possible that the algorithm will never
halt? The algorithm must always halt as there is a limit to the
number of uninformative steps. Whenever there is an uninforma-
tive step, we increase the size of the sub-problem. In the worst
case, at a certain point the sub-problem will reach the size of the
full problem, i.e. Sub will become the set of all demand points.
When that happens, there can be no more uninformative steps.
There can be no set of circles which are a feasible solution to the
sub-problem but not a feasible solution to the full problem, when
the sub-problem and full problem are the same.
3.2. Relaxation algorithm for the a-neighbor p-center problem

In this section we show that the relaxation algorithm also
applies to the a-neighbor p-center problem.

Lemma 3. The a-neighbor p-center problem satisfies Properties 1
and 2.
Proof. Property 1 is satisfied, since FINDFEASIBLESOLUTION, as described
in Section 2.2, identifies a better solution if one exists. Property 2 is
also satisfied; given a set of circles, if all demand points are covered
by at least a circles, then this must also be true for any subset of the
demand points. It follows that the value of the optimal solution to
the full problem must be greater or equal to the value of the opti-
mal solution to any sub-problem. Suppose that there is no solution
to a sub-problem with value better than x. As before, we assume to
the contrary that there exists a feasible solution to the full problem
with value better than x. Then this must also be a feasible solution
to the sub-problem. Therefore, there exists a solution to the vsub-
problem with value better than x, a contradiction. h

Satisfying the two properties ensures that the relaxation algo-
rithm halts and returns the optimal solution.



40 D. Chen, R. Chen / European Journal of Operational Research 225 (2013) 36–43
Here is a list of changes to the relaxation algorithm for the clas-
sic p-center problem, so as to adjust it to the a-neighbor p-center
problem:

(1) In the implementation of FINDFEASIBLESOLUTION, we replace an
algorithm for the set-covering problem with an algorithm
for the Van Slyke’s redundant set-covering problem [23]
(or rather its feasibility sub-problem counterpart).

(2) We change the implementation of ADDDEMANDPOINTS. As we
mentioned in Section 3.1, the relaxation algorithm does
not state how to add demand points to the subset in the
uninformative steps, and the correctness of the algorithm
does not rely on the choice. For the classic p-center problem,
a good heuristic is to add the k farthest demand points from
the current service points. The equivalent for the a-neighbor
p-center problem is to choose the k demand points such that
their ath nearest service points are the farthest.

(3) In function GETVALUE, which returns the value of a feasible
solution, we compute the maximum distance between a
demand point and its ath nearest service facility, rather than
the maximum distance between a demand point and its
nearest service facility.

(4) We replace the algorithm for checking whether a feasible
solution to the sub-problem is also a feasible solution to
the original full problem. For the a-neighbor p-center prob-
lem, we need to take into account the possibility that several
service facilities are located at the exact same position,
which was not possible for the classic p-center problem (this
is true only if co-location of service facilities is allowed).

3.3. Is relaxation suitable for the a-neighbor p-center problem?

Just because the relaxation algorithm yields an optimal solu-
tion, does not guarantee that it does so efficiently. Fortunately,
the a-neighbor p-center, like the classic p-center problem, has a
property that suggests that relaxation may be suitable for it: as
the upper bound improves, the sub-problems become easier to
solve. As the relaxation algorithm runs, the size of the sub-
problems, in terms of number of demand points, increases. At
the same time, as the upper bound improves, one can discard all
of the circles with radius above the upper bound. As we have
mentioned, there is one vector for each circle, which means that
discarding many circles significantly reduces the number of
vectors, and could significantly reduce the amount of time it takes
to solve the set-covering problem or feasibility sub-problem.

It is important to note that the algorithm we presented in
Section 2.2, like Minieka’s algorithm for the classic p-center
problem, also has the property that as the upper bound improves,
the number of vectors significantly decreases. The advantage of
relaxation is that one can typically get a good upper bound quickly,
while the sub-problems solved are still relatively small (in terms of
the number of demand points).

4. Experimental results

4.1. Methodology

We compare the optimal algorithm presented in Section 2 with
the relaxation algorithm presented in Section 3. We also present
experimental results of the relaxation algorithms for a = 1, 2, 3.
We run the continuous version of our algorithms, on problems
taken from TSP-Lib [20].

4.2. Experimental setup

The experiments were conducted on a computer with an Intel
Core i7-2600 4-core 3.4 giga hertz CPU. The computer runs Ubuntu
10.04 LTS. The code is written in C and compiled using gcc 4.4.3.
We used CPLEX version 12.1 [14] for the solution of the set-cover-
ing problems and the feasibility sub-problems. CPLEX implements
optimizers based on the simplex algorithms.

4.3. Relaxation vs. non-relaxation algorithms

Non-relaxation algorithms have an advantage over relaxation
algorithms in that they typically complete in fewer iterations, since
they have no ‘‘uninformative’’ steps (steps which do not improve
the bound on the solution). However, relaxation algorithms have
a significant advantage over non-relaxation algorithms in that they
typically reach a good bound on the solution quickly, while still
solving relatively small sub-problems. Once a tight bound on the
solution is reached, solving both relaxation and non-relaxation
algorithms typically become much easier. This is certainly true
for the classic p-center and the a-neighbor p-center problems, as
explained in Section 3.3.

We compared the performance of our algorithms for the 2-
neighbor p-center problem on problems att48, eil101, and ch150,
taken from TSP-Lib [20].

Each row in Table 1 contains the name of the problem (att48,
eil101, or ch150), the size of the problem (number of demand
points in the full problem), the p-value, and the value of the opti-
mal solution (column obj). Each row also contains the amount of
time the non-relaxation algorithm ran and amount of time the
relaxation algorithm ran. We show the total number of sub-prob-
lems (subroutine FINDBETTERSOLUTION for the non-relaxation case
and subroutine FINDFEASIBLESOLUTION for the relaxation case) that each
algorithm ran until reaching the optimal solution (columns non-
relaxation num steps and relaxation num steps). For the relaxation
algorithm we also present the maximal size of a sub-problem, in
terms of number of demand points, that the relaxation algorithm
had to solve (column relaxation max prob).

As Table 1 shows, the relaxation algorithm performs much bet-
ter than the non-relaxation algorithm, and the advantage of relax-
ation becomes more pronounced as the number of demand points
increases.

The relaxation algorithm accepts a parameter k, which is the
maximal number of demand points that we add to the sub-prob-
lem following an uninformative step. We present the performance
of the relaxation algorithm for k = 2, which for these problems pro-
duced the best results.

For problem d493 from TSP-Lib, the relaxation algorithm
reached the optimal result after 0.37 second for p = 10, while the
non-relaxation algorithm failed to complete even a single iteration
in well over an hour.

4.4. Classic p-center vs. 2-neighbor p-center problems

We compare the performance of the relaxation algorithm for
the classic p-center problem to the performance of the relaxation
algorithm for the 2-neighbor p-center problem. Table 2 shows
the performance of the relaxation algorithms for the classic contin-
uous p-center problem and the continuous a-neighbor p-center
problem on problem pr439 taken from TSP-Lib [20]. We present
the performance of the relaxation algorithms with parameter k
set to 1, which for these problems produced the best results.

For p values 10, 20, 30 and 40, the relaxation algorithm for the 2-
neighbor p-center problem took less time to run than the relaxation
algorithm for the classic p-center. For p values 50, 60, 70, 80, 90 and
100, the algorithm for the classic p-center problem was faster. For
p = 90, the relaxation algorithm for the 2-neighbor p-center problem
took over 18 times more time than the classic p-center equivalent.
The differences in the performance of the relaxation algorithms have
a lot to do with the solution value. For the same input and the same p



Table 1
The performance of the non-relaxation and relaxation algorithms for the 2-neighbor p-center on continuous problems with different values of p. For both algorithms we present
the total number of relaxation sub-problems solved. For the relaxation algorithm we also present the maximal size of a relaxation sub-problem.

Input n p Obj. Non-relaxation (seconds) Non-relaxation num. steps Relaxation (seconds) Relaxation max. prob. Relaxation num. steps

att48 48 10 1377.534392 0.54 31 0.02 22 42
att48 48 20 820.451857 0.37 52 0.08 40 77
att48 48 30 601.592054 0.29 58 0.10 43 98
att48 48 40 474.647237 0.27 65 0.08 45 92
eil101 101 10 19.455076 28.90 34 0.13 38 55
eil101 101 20 12.138497 32.43 64 16.76 84 138
eil101 101 30 9.219544 26.54 87 10.51 97 143
eil101 101 40 7.532275 21.25 98 9.29 99 189
eil101 101 50 6.363961 10.41 130 5.22 101 206
eil101 101 60 5.758756 7.30 109 3.09 101 201
eil101 101 70 5.000000 5.84 108 1.02 99 188
eil101 101 80 4.527693 5.73 125 0.76 101 198
eil101 101 90 4.031129 5.60 118 0.69 101 196
eil101 101 100 3.640055 5.39 107 0.55 101 176
ch150 150 10 184.060380 94.52 38 0.17 46 59
ch150 150 20 122.551815 196.38 70 29.29 107 150
ch150 150 30 93.976758 84.19 96 27.98 128 170
ch150 150 40 76.384585 93.95 116 30.40 139 205
ch150 150 50 65.424245 57.72 136 23.77 146 263
ch150 150 60 55.716472 38.93 170 4.52 144 269
ch150 150 70 50.776950 31.71 153 3.35 146 294
ch150 150 80 47.410802 31.17 175 3.58 150 303
ch150 150 90 41.276098 30.92 187 2.97 148 324
ch150 150 100 38.005058 30.66 204 2.60 149 306
ch150 150 110 33.236117 30.56 215 2.49 148 332
ch150 150 120 31.984077 30.48 217 2.63 147 359
ch150 150 130 29.554260 31.59 207 2.40 148 343
ch150 150 140 27.063553 30.05 203 2.51 147 353

Table 2
The performance of the relaxation algorithm for the classic continuous p-center problem (a), and the relaxation algorithm for the continuous 2-neighbor p-center problem (b) on
the pr439 problem from TSP-Lib, with different values of p. The two rightmost columns present the maximal size of a relaxation sub-problem and the total number of relaxation
sub-problems solved.

Input n p Obj. Relaxation (seconds) Relaxation max. prob. Relaxation num. steps

(a)
pr439 439 10 1716.509904 6.30 120 177
pr439 439 20 1029.714766 28.73 187 305
pr439 439 30 739.192972 101.37 254 393
pr439 439 40 580.005388 133.26 316 510
pr439 439 50 468.541620 294.62 353 583
pr439 439 60 400.195265 192.85 376 664
pr439 439 70 357.945527 116.58 382 658
pr439 439 80 312.500000 120.87 401 696
pr439 439 90 280.902563 95.83 403 724
pr439 439 100 256.680194 101.44 412 778

(b)
pr439 439 10 2752.638635 0.37 52 82
pr439 439 20 1716.509904 3.04 108 162
pr439 439 30 1271.829545 18.32 158 237
pr439 439 40 1008.169753 27.20 196 314
pr439 439 50 874.270557 605.65 250 389
pr439 439 60 739.192972 978.71 260 404
pr439 439 70 621.741506 1888.61 306 493
pr439 439 80 580.005388 1576.88 322 515
pr439 439 90 530.477379 1737.54 341 565
pr439 439 100 463.175183 1443.72 352 587

D. Chen, R. Chen / European Journal of Operational Research 225 (2013) 36–43 41
value, the solution to the 2-neighbor p-center problem must be great-
er or equal to the solution to classic p-center problem (since any fea-
sible solution to the 2-neighbor p-center problem is also a feasible
solution to the classic p-center problem). On the one hand a higher
optimal solution value may result in fewer iterations, which helps re-
duce running time. Fewer steps also suggest fewer uninformative
steps, which means that there are fewer times in which we need to
add demand points to the sub-problem; this leads to smaller sub-
problems, which also helps reduce running time. On the other hand,
a higher optimal solution means that as the algorithm runs, the upper
bounds are typically greater, and there are less circles to discard. This
leads to more vectors in the set-covering or the feasibility sub-prob-
lems, and to poorer performance. For the more difficult problems, the
cost of having a higher solution value far outweighs the benefit.

Note that the solutions to the classic p-center problem with p
values 10, 30, and 40, are the same as the solutions to the 2-neigh-
bor p-center problem with p values 20, 60, and 80 (respectively). In
these cases, the solution to the 2-neighbor p-center problem is the
same as the solution to the respective classic p-center problem,
where each service point is replaced by two service points at the



1 2 3 4 5 6 7 8
0

500

1000

1500

k

tim
e 

(s
ec

on
ds

)

Average Running Time

α=1
α=2
α=3

1 2 3 4 5 6 7 8
200

250

300

350

400

450

500

550

k

av
er

ag
e 

nu
m

be
r o

f i
te

ra
tio

ns

Average Number of Iterations

α=1
α=2
α=3

1 2 3 4 5 6 7 8
180

200

220

240

260

280

300

320

340

360

k

av
er

ag
e 

m
ax

im
al

 s
ub

−p
ro

bl
em

Average Maximal Sub−Problem

α=1
α=2
α=3

(a)

(b)

(c)

Fig. 1. Performance of relaxation algorithms for the a-neighbor p-center problem
for different values of k and for a = 1, 2, 3. We ran the relaxation algorithms on
problem pr439 taken from TSP-Lib with p = 10, 20, . . . , 100. We show (a) the
average running time, (b) the average number of iterations, and (c) the average size
(in terms of demand points) of the maximal sub-problem.

42 D. Chen, R. Chen / European Journal of Operational Research 225 (2013) 36–43
exact same location. This is possible since we ran the version of the
algorithm which allowed co-location of service points.

Note also that solving the classic p-center problem for some va-
lue p = p0, often takes much less time than solving the 2-neighbor
p-center problem for p = 2p0. This suggests a relatively quick way
to obtain a good upper bound on a 2-neighbor p-center problem
for p = 2p0. We simply run the classic p-center problem with
p = p0, and replace each service point with two service points at
the same location. This is clearly a feasible (and as we have shown,
occasionally the optimal) solution to the 2-neighbor p-center prob-
lem. Good upper bounds on the optimal solution are extremely
useful in speeding up iterative algorithms such as the ones we
present in Sections 2.2 and 3.1.

4.5. Different values of k

One of the parameters for the relaxation algorithm is k, the
maximal number of demand points that we add to the sub-
problem following an uninformative step.

Given a feasible solution to the current sub-problem, the heu-
ristic we use for adding demand points to the sub-problem does
the following:

(1) Checks whether all demand points of the full problem are
covered by the feasible solution.

(2) If there are at most k demand points not covered, adds them
all.

(3) If there are more than k demand points, adds the k demand
points such that their ath nearest service points are the
farthest.

In choosing k there is a tradeoff between the number of itera-
tions, and the difficulty of the iterations. If the value chosen for k
is low, then one may have many uninformative steps; this will in-
crease the overall number of iterations. If the value chosen for k is
high, then the smaller sub-problems would quickly (after only a
few uninformative steps) cease to be particularly small. The ‘‘right’’
value for k depends on which is more expensive: solving many
smaller problems, or solving fewer larger problems. This computa-
tional price depends greatly on the problem one is trying to solve.
It is our experience that for the harder problems, choosing a low
value for k is better. Problems with many demand points tend to
be harder than problems with fewer demand points. Continuous
problems are often much harder than discrete problems.

Fig. 1 shows the performance of relaxation algorithms for the
a-neighbor p-center problem for different values of k(k = 1, 2, . . . ,
8) and for a = 1, 2, 3. We ran the relaxation algorithms on problem
pr439 taken from TSP-Lib with p = 10, 20, . . . , 100. For each value
of a and k, we averaged the results of the 10 runs (for
p = 10, 20, . . . , 100). Fig. 1 shows that for the pr439 problem, the
best performance is achieved for k = 1 (for a = 1, 2, 3). It also shows
that as the k value increases, the number of iterations tends to go
down, while the average size (in terms of demand points) of the
maximal sub-problem tends to go up.

5. Conclusions and future work

We present two new algorithms for the a-neighbor p-center
problem, one of which is a relaxation algorithm. We experimen-
tally show that the relaxation algorithm is more efficient, and that
the advantage of relaxation becomes more pronounced as the
number of demand points increases.

The algorithms we present are variations of algorithms for the
classic p-center problem, customized for the a-neighbor p-center
problem. The two algorithms are Minieka’s algorithm [19] and a
relaxation algorithm [3,12]. It would be interesting to test the per-
formance of variations of other algorithms for the p-center problem,
such as Daskin’s algorithm [6,7], which performs a binary search for
the optimal solution, and other relaxation algorithms [2].



D. Chen, R. Chen / European Journal of Operational Research 225 (2013) 36–43 43
Acknowledgements

The authors thank the two anonymous referees for their valu-
able comments.

References

[1] Shiva Chaudhuri, Naveen Garg, R. Ravi, The p-neighbor k-center problem,
Information Processing Letters 65 (February) (1998) 131–134.

[2] Doron Chen, Reuven Chen, New relaxation-based optimal algorithms for the
solution of the continuous and discrete p-center problems, Computers &
Operations Research 36 (2009) 1646–1655.

[3] Reuven Chen, Gabriel Y. Handler, Relaxation method for the solution of the
minimax location–allocation problem in Euclidean space, Naval Research
Logistics 34 (1987) 775–787.

[4] Richard L. Church, Ross A. Gerrard, The multi-level location set covering model,
Geographical Analysis 35 (2003) 277–289.

[5] Mark S. Daskin, A maximum expected covering location model, Transportation
Science 17 (1983) 48–70.

[6] Mark S. Daskin, Network and Discrete Location, Models: Algorithms and
Applications, Wiley Interscience Pub., John Wiley and Sons Inc., New-York,
1995.

[7] Mark S. Daskin, A new approach to solving the vertex p-center problem to
optimality: algorithm and computational results, Communications of the
Operations Research Society of Japan 45 (9) (2000) 428–436.

[8] Mark S. Daskin, Edmund H. Stern, A hierarchical objective set covering model
for emergency medical service vehicle deployment, Transportation Science 15
(1981) 137–152.

[9] H.A. Eiselt, Vladimir Marianov, Mobile phone tower location for survival after
natural disasters, European Journal of Operational Research 216 (2012) 563–
572.

[10] Jeffrey B. Goldberg, Operations research models for the deployment of
emergency services vehicles, EMS Management Journal 1 (1) (2004) 20–39.
[11] Supidto Guha, Adam Meyerson, Kamesh Munagala, A constant factor
approximation algorithm for the fault-tolerant facility location problem,
Journal of Algorithms 48 (2003) 429–440.

[12] Gabriel Y. Handler, Pitu B. Mirchandani, Location on Networks: Theory and
Algorithms, MIT Press, Cambridge, MA, 1979.

[13] Kathleen Hogan, Charles ReVelle, Concepts and applications of backup
coverage, Management Science 32 (1986) 1434–1444.

[14] IBM. IBM ILOG CPLEX V12.1 – User’s Manual for CPLEX, 2009.
[15] T. Ilhan, F.A. Özsoy, M.C. Pinar, An Efficient Exact Algorithm for the Vertex p-

Center Problem and Computational Experiments for Different Set Covering
Subproblems, Technical report, 2002 <http://www.optimization-online.org/
DB_HTML/2002/12/588.html>.

[16] Samir Khuller, Robert Pless, Yoram J. Sussmann, Fault tolerant k-center
problems, Theoretical Computer Science 242 (July) (2000) 237–245.

[17] S.O. Krumke, On a generalization of the p-center problem, Information
Processing Letters 56 (October) (1995) 67–71.

[18] Vladimir Marianov, Charles ReVelle, The queueing maximal availability
location problem: a model for the siting of emergency vehicles, European
Journal of Operational Research 93 (1996) 110–120.

[19] Edward Minieka, The m-center problem, SIAM Review 12 (1970) 139–140.
[20] Gerhard Reinelt, TSP-Lib <http://elib.zib.de/pub/mp-testdata/tsp/tsplib/

tsplib.html>.
[21] Charles ReVelle, Kathleen Hogan, The maximum availability location problem,

Transportation Science 23 (1989) 192–200.
[22] Daniel Serra, Vladimir Marianov, New Trends in Public Facility Location

Modeling, Technical report, May 2004. UPF Economics and Business Working
Paper No. 755 <http://ssrn.com/abstract=563843> or http://dx.doi.org/
10.2139/ssrn.563843.

[23] Robert Van Slyke, Redundant set covering in telecommunications networks,
in: Proceedings IEEE Large Scale Systems Symposium, Virginia Beach, Va,
October 1982, pp. 217–222.

[24] Chaitanya Swamy, David B. Shmoys, Fault-tolerant facility location,
Combinatorical Optimization 21 (2006) 735–736.

[25] Constantine Toregas, Ralph Swain, Charles ReVelle, Lawrence Bergman, The
location of emergency facilities, Operations Research 19 (1971) 1363–1373.

http://www.optimization-online.org/DB_HTML/2002/12/588.html
http://www.optimization-online.org/DB_HTML/2002/12/588.html
http://elib.zib.de/pub/mp-testdata/tsp/tsplib/tsplib.html
http://elib.zib.de/pub/mp-testdata/tsp/tsplib/tsplib.html
http://ssrn.com/abstract=563843
http://dx.doi.org/10.2139/ssrn.563843
http://dx.doi.org/10.2139/ssrn.563843

	Optimal algorithms for the α-neighbor p-center p
	1 Introduction
	2 Optimal algorithm
	2.1 Minieka’s algorithm
	2.2 Adjustment for the α-neighbor p-center probl

	3 Relaxation algorithms
	3.1 Relaxation algorithm for the p-center problem
	3.2 Relaxation algorithm for the α-neighbor p-ce
	3.3 Is relaxation suitable for the α-neighbor p-

	4 Experimental results
	4.1 Methodology
	4.2 Experimental setup
	4.3 Relaxation vs. non-relaxation algorithms
	4.4 Classic p-center vs. 2-neighbor p-center problems
	4.5 Different values of k

	5 Conclusions and future work
	Acknowledgements
	References


