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A B S T R A C T   

The well-known various-heating-rates (VHR) method for evaluating the activation energy of thermolumines-
cence (TL) peaks is revisited. The method hinges on the shift of the TL peak with changing heating rate, and is 
based on the properties of first-order curves. Several works have shown that the same method yields a good 
approximation of the activation energy when general-order peaks are involved. A recent work by Maghrabi has 
presented a heuristic explicit expression for the magnitude of the shift between two heating rates within the first- 
order kinetics framework. In the present work, we address two related points. We show how the expression 
suggested by Maghrabi can be reached by making a very reasonable approximation of the original equation 
yielding the maximum condition. We also present an alternative expression which yields the amount of shift of 
the TL maximum with changing heating rate and with less approximation. The other point dealt with involves 
the results of a numerical study of the evaluation of the activation energy by the use of various heating rates in 
the more general one-trap-one-recombination-center (OTOR) situation. The results show that even in this general 
case, the various heating rates method yields very good results. The same is true for the "mixed-order" kinetics. 
The numerical results are accompanied by an analytical account which shows that the method yields very ac-
curate activation energies in the rather general OTOR situation.   

1. Introduction 

The method of various heating rates for evaluating the activation 
energy of a thermoluminescence (TL) glow peak is based on the well- 
known expression of first-order kinetics introduced by Randall and 
Wilkins (1945). Very briefly, the first-order equation governing the 
process is 

I(T)= − dn/dt = sn exp( − E / kT), (1)  

where n (cm− 3) is the instantaneous occupancy of the relevant trap, E 
(eV) the activation energy, s (s− 1) the frequency factor, k (eV/K) 
Boltzmann’s constant, T (K) the temperature, t (s) time and I(T) the TL 
intensity. When a linear heating function T = T0 + βt is used and where 
T0 (K) is the initial temperature and β (K/s) the constant heating rate, the 
TL expression I(T) can be written explicitly as 

I(T)= sn0 exp( − E / kT)exp

⎡

⎣ − (s / β)
∫T

T0

exp( − E / kT ′

)dT
′

⎤

⎦, (2)  

where n0 (cm− 3) is the initial concentration of trapped carriers and T′ is 
an integration variable. This curve is a peak-shaped asymmetric curve 
with the fall-off side significantly narrower than the low-temperature 
side. By equating the derivative to zero, one gets the maximum 
condition 

βE
/ (

kT2
m

)
= s exp( − E / kTm), (3)  

where Tm (K) is the temperature at the maximum. For a certain TL peak, 
when the heating rate increases, the maximum temperature also in-
creases. This can be easily shown by re-writing Eq. (3) as 

β=(sk /E)T2
m exp( − E / kTm). (4) 

Increasing the heating rate β must increase the right-hand side by the 
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same amount, but since Tm
2exp(-E/kTm) is an increasing function of Tm, 

increasing β must result in an increase in Tm. It should be noted that 
Osada (1960) has shown that the same equations, (3, 4) take place when 
the heating rate is exponential provided that β is replaced by βm, the 
instantaneous heating rate at the maximum. Chen and Winer (1970) 
have later proven that the same equations are valid for any mono-
tonically increasing heating function when, again, the instantaneous 
heating rate at the maximum, βm is used in Eqs. (3) and (4). Of course, 
this is exactly true for first-order kinetics. Three works published inde-
pendently in the same year by Bohun (1954), Booth (1954) and Par-
fianovitch (1954) suggested a method for evaluating the activation 
energy from a first-order peak by repeating the measurement of a TL 
peak at two heating rates, β1 and β2. By writing Eq. (4) twice, for the two 
heating rates, dividing one by the other and rearranging, one gets 

E = [kTm1Tm2 / (Tm1 − Tm2)]ln
[
(β1 / β2)(Tm2/Tm1)

2
]
, (5)  

where Tm1 and Tm2 are the temperatures at the maximum with heating 
rates β1 and β2, respectively. An extension to this method has been given 
by Hoogenstraaten (1958) who suggested the use of several heating 
rates. A plot of ln(Tm

2/β) vs. 1/Tm would, according to Eq. (3), yield a 
straight line from whose slope E/k, the activation energy E is readily 
found. The intercept of the straight line with the y-axis gives the value of 
ln(sk/E) from which the frequency factor s can be determined. 

Garlick and Gibson (1948) showed that under circumstances of 
relatively strong retrapping of thermally released carriers second-order 
kinetics may result, yielding the kinetic equation 

I(T)= − dn
/

dt = s′ n2 exp( − E / kT), (6)  

where s’ is the pre-exponential factor (cm3s− 1). The solution of this 
equation yields a nearly symmetric curve. May and Partridge (1964), in 
an attempt to deal with cases with symmetries intermediate between 
that of first order and second order, used the "general order" equation 

I(T)= − dn
/

dt = s′ nb exp( − E / kT), (7)  

where 1≤b ≤ 2 and s’, the pre-exponential factor, has dimensions of cm3 

(b− 1)s− 1. It should be mentioned that excluding the case of b = 1 and b =
2, Eq. (7) is a heuristic approximation to a more complicated situation. It 
enables the presentation of intermediate-symmetry TL peaks, but it 
cannot be derived from the more realistic set of three simultaneous 
differential equations governing the one-trap-one-recombination-center 
(OTOR) case (see below). As for the method of various heating rates, 
Chen and Winer (1970) showed that although the VHR method was 
developed for the first-order case, it yields very good values for the 
general-order cases, including the second order where b = 2. 

In the present work, we consider the following points. One has to do 
with an explicit expression for the shift of the maximum intensity when 
the heating rate is varied in the first-order case, which is also expected to 
be a very good approximation in the general-order situation as 
mentioned above. Another point checks the usability of the VHR method 
for peaks subject to the more physical OTOR model both by a numerical 
example and an analytical treatment. Two specific cases are also dis-
cussed, namely, the case of mixed-order kinetics and the model 
considering the TL in feldspars and their behavior under VHR 
measurements. 

2. Explicit expressions for the shift of the TL maximum with 
heating rate 

Following many publications dealing with the evaluation of the 
activation energy using two measurements at two heating rates, 
Maghrabi (2018) raised the point of evaluating the temperature of the 
maximum, Tm2, reached by a first-order peak with a heating rate of β2, 
while the maximum of the same peak occurs at Tm1 when a heating rate 

of β1 is used. The empirical equation he gave was 

Tm2 = Tm1(β2/β1)
kTm1/E

. (8) 

Let us show how this approximation can be reached from Eq. (4). We 
would like to calculate dTm/dβ, but to begin with, it is easier to find the 
inverse, dβ/dTm. The derivative of Eq. (4) yields 

dβ
dTm

=
sk
E

exp( − E / kTm)(2Tm +E / k)= s exp( − E / kTm)

(
2kTm

E
+ 1

)

. (9) 

Substituting s⋅exp(E/kTm) from Eq. (3) and since always 2kTm/E≪1, 
we get 

dβ
dTm

=
βE

kTm
2

(
2kTm

E
+ 1

)

≅
βE

kTm
2. (10) 

Inverting this expression, using again the smallness of 2kTm/E and 
considering again Eq. (3), we get 

dTm

dβ
≅

k
E

⋅
T2

m

β
= s− 1 exp(E / kTm). (11) 

Equation (11) shows again that Tm(β) is an increasing function. 
However, since Tm varies very slowly with the heating rate, we can write 
the approximate equation 

dTm

Tm
=

(
kTm

E

)
dβ
β
, (12)  

where Tm is the maximum temperature with the heating rate β. Inte-
grating from Tm1 to Tm2, i.e. from β1 to β2 and assuming that Tm is a very 
weak function of β (see also Maghrabi (2018)), one gets 

ln(Tm2 /Tm1)=

(
kTm1

E

)

ln(β2 / β1). (13) 

Taking the exponential of both sides one gets 

Tm2

Tm1
=

(
β2

β1

)kTm1/E

, (14)  

or, by multiplying both sides by Tm1 we get Eq. (8) previously reached 
empirically by Maghrabi (2018). 

We can also present another explicit expression for the amount of 
shift, based on Eq. (11) which can be developed without further ap-
proximations. From Eq. (11), we can write 

dTm

Tm
2 =

k
E

dβ
β
. (15) 

By integration we get immediately 

1
Tm1

−
1

Tm2
=

k
E

ln
(

β2

β1

)

, (16)  

and by rearranging we get the explicit expression 

Tm2 =
Tm1

1 − kTm1
E ln(β2/β1)

=
Tm1

1 − ln(β2/β1)
kTm1/E . (17) 

Equation (17) is more complicated than Eq. (8), but somewhat more 
accurate. The connection between these two equations can be realized 
by noting that since kTm1/E≪1, we have ln(β2/β1)

kTm1/E
≃ 1 and 

therefore 

Tm2 ≈ Tm1

[
1+ ln(β2/β1)

kTm1/E
]
≈ Tm1(β2/β1)

kTm1/E
, (18)  

which is back to Eq. (8). 

3. Numerical solution of the OTOR equations at various heating 
rates 

As pointed out above, the first-order and second-order equations are 
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extreme cases of weak and strong retrapping respectively. The method 
of various heating rates was developed accurately for the former and 
was shown to yield very good approximate results for the latter as well 
as for the empirical "general-order" kinetics mentioned above. In the 
present section, we would like to check the shift of the maximum TL 
temperature and the evaluated E values reached by the VHR method in 
the more physical OTOR framework of three simultaneous differential 
equations governing the transitions between an electron trap, a hole 
center and the conduction band. The relevant equations are (see e.g. 
Halperin and Braner, 1960), 

I(T)= − dm/dt = Ammnc, (19)  

dn / dt = An(N − n)nc − sn exp( − E / kT), (20)  

dnc / dt = dm/dt − dn/dt. (21)  

Here, n (cm− 3) and m (cm− 3) are, respectively the instantaneous con-
centrations of electrons in traps and holes in centers. nc (cm− 3) is the 
instantaneous concentration of electrons in the conduction band. N 
(cm− 3) is the concentration of traps. Am (cm3s− 1) and An (cm3s− 1) are 
the recombination and retrapping probability coefficients, respectively. 
s (s− 1) is the frequency factor, E (eV) the activation energy, k (eV⋅K− 1)- 
Boltzmann’s constant and T (K) the absolute temperature. I(T) is the 
intensity of emitted TL, given in units of cm− 3s− 1. 

Following Randall-Wilkins and Garlick-Gibson, Halperin and Braner 
(1960) made the "usual" quasi-equilibrium assumption, namely 

nc < < n; |dnc / dt|< < |dn / dt|, (22) 

and reached the single equation in the two variables, n and m, 

I(T)= −
dn
dt

= sn exp( − E / kT)
Amm

Amm + An(N − n)
. (23) 

Kannunikov (1978) suggested that as long as only one trapping state 
and one kind of recombination center are involved, n = m and therefore, 

I(T)= −
dn
dt

= s exp( − E / kT)
Amn2

Amn + An(N − n)
, (24) 

which is a differential equation in one variable. We have solved 
numerically the set, Eqs. 19–21, for samples of sets of chosen parame-
ters. We preferred to solve the equations without the additional quasi- 
equilibrium assumption since the solver is very efficient in performing 
this kind of solutions and the results are expected to be practically the 
same. If there is a difference, we note that Eqs. 19–21 are physically 
more valid than Eq. (24). We have used the Matlab solver ode15s and in 
each simulation, we assumed that n0 = m0 since the model includes a 
single trapping state and a single kind of recombination center. We used 
a linear heating function, 

T =T0 + βt, (25)  

where T0 (K) is the initial temperature and β (K/s) is the constant heating 
rate. For each set of chosen parameters, the simulation was run twice, for 
two heating rates, 1K/s and 2K/s. The two maximum temperatures were 
recorded and the evaluated activation energy was determined by Eq. (5). 
The parameters chosen were E = 1 eV; s = 1012 s− 1; Am = 10− 8 cm3s− 1; 

N = 1014 cm− 3; n0 = m0 = 1012 cm− 3 and An was variable as shown in 
Table 1. 

The table shows the values of the maximum temperature for different 
values of the retrapping probability coefficient An and the corresponding 
Tm values for β = 1 and 2 K/s, the values of the symmetry factors μg and 
the activation energies evaluated by the VHR method, Eq. (5). When An 
varies gradually from 10− 12 to 10− 8 cm3s− 1, the symmetry factor in-
dicates transition from effective first-to effective second-order kinetics, 
but the activation energy evaluated differs from the inserted value only 
by <0.25% all along. 

4. Analytical approach 

4.1. General one-trap one-center model 

Following the numerical example, let us develop a broader analytical 
treatment of the various heating rates method in the OTOR model. Let us 
start with equation (24) along with the linear heating rate, Eq. (25). The 
usual variable plot shows β/Tm

2 on a log scale against 1/kTm. For first- 
order kinetics, the slope of this plot is -E, 

d ln
(
β
/

Tm
2)

d(1/kTm)
= − E. (26) 

For second-order kinetics or the more general one-trap-one-center 
(OTOR) kinetics, Eq. (26) is no longer true. Let us generalize Eq. (26) to 

d ln
(
β
/

T2
m

)

d(1/kTm)
= − Cf E, (27)  

where Cf is a correction factor to account for non-first-order kinetics. 
To prepare for finding the maximum, we need the derivative of I (Eq. 

(24)), 

dI
dt

=

[
Eβ
kT2 +

(
2
n
−

Am − An

Amn + An(N − n)

)
dn
dt

]
Ann2

Amn + An(N − n)
s exp 

(

− E
/

kT
)

(28)   

The peak occurs when the quantity in square brackets is zero, 

Eβ
kT2 +

(
2
n
−

Am − An

Amn + An(N − n)

)
dn
dt

= 0, (29)  

Eβ
kTm

2 +

(
2

nm
−

Am − An

Amnm + An(N − nm)

)
Amn2

m

Amnm + An(N − nm)
s exp 

(

− E
/

kTm

)

= 0, (30)  

where nm is the trap concentration at the maximum and Tm is the tem-
perature at the maximum. Equation (30) is the result of substituting Eq. 
(24) into Eq. (29). Equation (30) is the maximum condition and provides 
a relation between β, Tm and nm. In order to make a variable heating rate 
plot, we need a second relation between these three variables. This can 
be found from integrating Eq. (24) over time to find 

(1 − An/Am)ln(n0/n)+
An

Am

N
n0

(n0

n
− 1

)
=

Es
kβ

Γ( − 1,E/kT) −
Es
kβ

Γ( − 1,E/kT0),

(31)  

where Γ is the incomplete gamma function, Γ(a, x) =
∫∞

x e− xza− 1dz. 
Equation (31) is valid at all times but we will apply it specifically to the 
maximum. We will assume that the trap is thermally stable at the initial 
temperature, T0. Consequently, the second term on the right of Eq. (31) 
can be neglected. It will be convenient to rewrite Eqs. (30) and (31) as 

Table 1 
Evaluated maximum temperatures and symmetry factors in simulated TL peaks 
with different values of the retrapping coefficient and the activation energies 
determined thereof. The other parameters are given in the text.  

An (cm3s− 1) Tm1/Tm2 (K) μg1/μg2 Eβ (eV) 

10− 12 384.577/393.038 0.4193/0.4194 1.00000 
10− 11 384.992/393.470 0.4363/0.4366 1.00010 
10− 10 391.650/400.411 0.4911/0.4914 1.00089 
10− 9 414.320/424.091 0.5163/0.5167 1.00184 
10− 8 447.365/458.710 0.5209/0.5213 1.00231  
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f1(nm)=
Es
kβ

(
kTm

E

)2

exp( − E / kTm), (32)  

f2(nm)=

(
Es
kβ

)

Γ( − 1,E / kTm), (33)  

where the functions f1 and f2 are defined by 

f1(n) ≡
[AnN + (Am − An)n]2

[2AnN + (Am − An)n]Amn
, (34)  

f2(n)≡ (1 − An /Am)ln(n0 / n) +
An

Am

N
n0

(n0

n
− 1

)
(35) 

For any given heating rate β, the corresponding temperature Tm and 
trap concentration nm can be obtained by simultaneous solution of Eqs. 
(32) and (33). 

The usual variable heating plot shows β/Tm
2 on a log scale plotted 

against 1/kTm. We can obtain the slope of this curve by taking the log of 
both sides of Eq. (32) and differentiating with respect to 1/kTm. After 
rearranging, we have 

d ln
(
β
/

T2
m

)

d(1/kTm)
= − E −

d ln(f1)

dn

⃒
⃒
⃒
⃒

n=nm

dnm

d(1/kTm)
. (36) 

We see that under the general OTOR model, the slope of a variable 
heating rate plot as given by Eq. (36) will differ from the slope of a 
simple first-order peak, as given by Eq. (26) by the amount of the second 
term on the right in Eq. (36). To evaluate the right-hand side of Eq. (36) 
at a given maximum temperature Tm, we need to know (a) the value of 
nm at the peak, (b) the derivative of f1 and (c) the rate of change of nm as 
Tm changes. Since f1 is an algebraic function of n, Eq. (34), finding the 
derivative needed for (b) is a simple matter of calculus, 

d ln(f1)

dn
=

2(Am − An)

AnN + (Am − An)n
− 2

AnN + (Am − An)n
[2AnN + (Am − An)n]n

. (37) 

To find the information needed for (a) and (c), we start by dividing 
Eq. (33) by Eq. (32) to obtain 

f2(nm)

f1(nm)
=G(E / kTm), (38)  

where G(x) is defined by 

G(x) ≡
Γ( − 1, x)

x− 2 exp( − x)
. (39) 

Over the range of interest for thermoluminescence, the function G(E/ 
kT) is, as shown in Fig. 1, a slowly-variable quantity, slightly less than 
one. Differentiating both sides of Eq. (38) with respect to 1/kTm, we have 

d(f2/f1)

dnm

dnm

d(1/kTm)
=EG′

(E / kTm), (40)  

where 

G′

(x)=
dG(x)

dx
. (41) 

Solving Eq. (40) for dn/d(1/kTm) and substituting into Eq. (36), we 
obtain 

d ln
(
β
/

T2
m

)

d(1/kTm)
= − E

(

1+
d ln(f1)/dn
d(f2/f1)/dn

G
′

(E / kT)
)

(42) 

Equation (42) details how the slope of a variable-heating-rate plot 
varies for general one-trap-one-center (OTOR) case. Comparing Eq. (42) 
with Eq. (27), we see that the correction factor, Cf, for the general OTOR 
case is 

Cf = 1 +
d ln(f1)/dn
d(f2/f1)/dn

G
′

(E / kT). (43) 

Before exploring the general case of OTOR, we will consider the 
special cases of first- and second-order kinetics, and a third limiting case 
that is neither of first nor of second order. 

4.2. Limiting case: first-order kinetics 

Reaction kinetics are described as first order when dn/dt ∝ n. The 
one-trap one-center system reduces to first-order kinetics when the 
recombination coefficient, Am, is large enough relative to the retrapping 
coefficient, An, and the dose as measured by the trap population, n, is 
high enough that 

An

Am

N
n
<< 1. (44) 

In this case, f1 (Eq. (34)) and f2 (Eq. (35)) reduce to 

f1(n)= 1, (45)  

f2(n)= ln(n0 / n). (46) 

Combining Eq. (45) and Eq. (46) with Eq. (38), the trap concentra-
tion at the maximum can be found, 

nm = n0 exp[ − G(E / kTm)]. (47) 

Since, from Fig. 1, G is slightly less than one over the range of in-
terest, Eq. (47) tells us that the trap concentration at the maximum, nm, 
is slightly larger than n0/e = n0/2.718. 

Because in first-order kinetics, as per Eq. (45), f1 is a constant, it 
follows that dln(f1)/dn = 0, and thus the correction factor Cf of Eq. (43) is  

Cf = 1 for first-order kinetics                                                           (48) 

and the slope of the VHR plot is 

d ln
(
β
/

T2
m

)

d(1/kTm)
= − E for first order kinetics (49) 

This is in agreement with prior work (see e.g., Hoogenstraaten, 
1958). 

Fig. 1. G(x) as defined by Eq. (39) is plotted against x over the range of interest for thermoluminescence: 10<x < 40.  
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4.3. Limiting case: second-order kinetics 

Second-order kinetics is defined by dn/dt ∝ n2. From Eq. (24), it is 
apparent that the OTOR model reduces to second-order kinetics when 
either Am = An or the dose is low enough that 

|Am − An|

An

n
N

<< 1. (50) 

In this case, f1 (Eq. (34)) and f2 (Eq. (35)) reduce to 

f1(nm)=
An

Am

N
2nm

, (51)  

f2(nm)=
An

Am

[
N
nm

−
N
n0

]

. (52) 

Using Eqs. (51) and (52), Eq. (43) simplifies to 

Cf = 1 +
n0

2nm
G

′

(E / kTm). for sec ond order kinetics (53) 

Combining Eq. (51) and Eq. (52) with Eq. (38), the trap concentra-
tion at the maximum can be found, 

nm = n0

(

1 −
G(E/kTm)

2

)

. (54) 

Since, from Fig. 1, G is slightly less than one, Eq. (54) tells us that the 
trap concentration at the maximum is slightly larger than nm/2 and, 
from the slope of the plot in Fig. 1, that nm increases as Tm increases. 

Using Eq. (54), Eq. (53) further reduces to 

Cf = 1 +
G′

(E/kTm)

2 − G(E/kTm)
, for sec ond order kinetics (55)  

and the slope on the VHR plot is 

d ln
(
β
/

T2
m

)

d(1/kTm)
= − E

[

1+
G′

(E/kTm)

2 − G(E/kTm)

]

for sec ond order kinetics (56) 

For second-order kinetics, the correction factor is a function only of 
E/kTm and independent of all other trap and center parameters. This 
quantity, as shown in Fig. 2 is within 1% of one for E/kTm > 11. 

The plot in Fig. 1 shows that G is a slowly varying function. Conse-
quently, its derivative G′ is small and this is why, from Eq. (55), the 
correction factor, Cf for second order is close to one. 

For second order, it is also possible to obtain the heating rate β 
explicitly as a function of the peak temperature. To do this, we combine 
Eq. (30) and Eq. (51) with Eq. (32). After rearranging, we find 

β=
Es
k

Am

An

n0

N
[2 − G(E / kTm)]exp( − E / kTm). (57) 

Sample calculations are shown in Fig. 3 comparing the general OTOR 
model with the second-order limit as given by Eq. (56). The second- 

order approximation is shown to be accurate when the conditions in 
Eq. (50) are obeyed. 

4.4. Limiting case: high-dose and strong retrapping 

With weak retrapping, Eq. (44) and at any dose level, the governing 
equation for OTOR, Eq. (24) reduces to first-order kinetics, with dn/dt ∝ 
n. With strong retrapping and low dose, as in Eq. (50), then Eq. (28) 
reduces to second-order kinetics with dn/dt ∝ n2. There is a third case 
characterized by strong retrapping and high dose, 

An /Am >> 1 and n ∼ N. (58) 

In this case, Eq. (24) reduces to 

I = −
dn
dt

=
n2

N − n
Am

An
s exp( − E / kT). (59) 

Neither first- nor second-order applies. While we can still obtain the 
exact solutions for this case using the methods of Sec 4.1, it is useful to 
develop approximate solutions that show the magnitudes and scaling 
factors in this case. For the case of strong retrapping and possibly high 
dose, Eq. (59), the formulas for f1 and f2, Eqs. (34) and (35), respectively, 
reduce to 

f1(n)=
An

Am

(N − n)2

(2N − n)n
, (60)  

f2(n)=
An

Am

[
N
n
−

N
n0

− ln(n0 / n)
]

. (61) 

Using Eq. (60) and Eq. (61) Eq. (38) reduces to 

(2N − nm)N
(N − nm)

2

[

1 −
nm

n0
−

nm

N
ln(n0 / nm)

]

=G(E / kTm). (62) 

The key point to notice about Eq. (62) is that the rate constants An 
and Am do not appear in it. This means that for a given value of E/kTm 
and a given relative dose n0/N, Eq. (62) determines the relative trap 
concentration at the maximum, nm/n0. With this information, Eqs. (60) 
and (61) can be combined with Eq. (43) where An and Am again cancel 
out, to determine the correction factor Cf for the variable heating plot. 
This allows the creation of the plot shown in Fig. 4. It can be seen that 
the correction factor Cf is largest when the trap is initially saturated, n0 
= N, and the E/kTm is lowest. As the dose declines, the correction factor 
Cf approaches that of the second-order theory, Eq. (55). This can be 
verified by noting that Eq. (62) reduces to Eq. (54) in the low-dose limit, 
n0/N→0. 

In Fig. 5, results for high dose, n0/N = 1, from the strong trapping 
high-dose model (dashed lines) are compared with the exact OTOR so-
lution (solid lines) for β = 1, E = 1eV, and two different values of s as 
shown. 

Fig. 2. The correction factor Cf for the slope of a variable heating rate plot for second-order kinetics (Eq. (55)) is plotted against E/kTm.  
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4.5. Summary of the general analytical approach 

To interpret the slope of a variable heating-rate plot, we have iden-
tified three special cases:  

• Case 1: For first-order kinetics, Eq. (44), the correction factor is Cf =

1 and the slope on the VHR plot is the same as the trap energy, E.  

• Case 2: For second-order kinetics, Eq. (50), the correction factor is 
typically close to one: 1≤Cf ≤ 1.01. To correct for this factor, one can 
start by dividing the slope on the plot by kTm to obtain a first estimate 
for E/kTm and, using this value, compute the correction factor from 
Eq. (55) or read it off from the plot in Fig. 2. The slope of the VHR 
plot is divided by Cf to obtain the better estimate of trap energy E. 

Fig. 3. The variable-heating-rate correction factor, Cf, is shown for the OTOR model. The calculation assumes β = 1 K/s, E = 1 eV and n0/N = 0.01. The values of s 
and An/Am are as shown. The solid lines are the exact result for OTOR. The dashed lines assume second-order kinetics. 

Fig. 4. The correction factor Cf for variable heating rate plot is shown as a function of E/kTm for the strong-retrapping limit at four levels of the dose n0/N. Also 
shown for comparison is the case of second-order kinetics. The highest correction factors occur for strong retrapping at high dose, and low values of E/kTm. 

Fig. 5. The variable-heating-rate correction factor, 
Cf, is shown for the OTOR model for high dose, n0/ 
N = 1. The other conditions are the same as in 
Fig. 3. The solid lines are the exact result for OTOR. 
The dashed lines assume strong-retrapping and high 
dose. For strong retrapping, these results produce a 
larger correction factor than the low-dose results of 
Fig. 3. For weak retrapping, An/Am<<1, the 
correction factor at high dose is seen to be much 
closer to one than the corresponding results at low 
dose in Fig. 3.   
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• Case 3: For the case of strong retrapping and high dose, Eq. (58), 
larger correction factors are possible. If this case applies, the slope on 
the VHR plot will be observed to depend on dose as dose approaches 
saturation. This effect will be significant if the peak occurs at lower 
values of E/kTm as shown in Fig. 4. One approach for estimating the 
trap energy in this case is to use a dose high enough to reach satu-
ration, n0 = N, and then read the correction factor Cf from the top 
curve in Fig. 4. Alternatively, one can use the low dose in which case 
the correction factor can be estimated from the second-order curve in 
Fig. 4 or Fig. 2. 

5. Applying the VHR method and the Maghrabi equations for 
mixed-order kinetics (MOK) 

The mixed-order kinetics has been considered as a possible process 
governing thermoluminescence. As presented by Chen et al. (1981), the 
governing equation is 

I(T)= − dn
/

dt = s′ n2 exp( − E / kT) + s′Cn exp( − E / kT), (63)  

where s’ is a constant with units of cm3s− 1, and C has units of concen-
tration, cm− 3. Equation (6) in Kitis and Gómez-Ros (1999) showed that 
in the MOK model, the condition for the maximum temperature Tm in a 
TL glow curve becomes 

βE
kT2

mRm
=Cs′exp( − E / kTm) (64)  

where Rm is a dimensionless constant. 
Kitis and Gómez-Ros (1999) evaluated the parameter Rm in a very 

broad range of the trapping parameters E = 0.6–2.2 eV, s’ = 107-1022s− 1 

and the mixed-order kinetic parameter α = 0.1–0.95 where α = n0/(n0 +

C) and n0 is the initial value of n. These authors found that within this 
broad range of values, the parameter Rm depends only on the 
mixed-order-kinetics parameter α, according to the following approxi-
mate empirical equation (their Eq. (17)), 

Rm(α)=
2.6 − 0.9203α + 0.324α3.338

2.6 − 2.9203 + 0.324α3.338 . (65) 

By combining the previous two equations we obtain 

βE
kT2

m
=Cs′ Rm(α)exp( − E / kTm), (66)  

βE
kT2

m
= s′′exp( − E / kTm), (67)  

where s’’ is a constant with dimensions of frequency (s− 1), which does 
not depend on the heating rate used during the experiment. 

This equation has the exact same form as Eq. (3), with the only dif-
ference being the effective constant frequency factor s’’ = Cs’Rm(α) 
replacing the frequency factor s. Therefore, both the VHR method and 
the Maghrabi equation are applicable to the MOK model. 

6. Applying the VHR method and the Maghrabi equation to 
feldspars 

Jain et al. (2012) developed a localized transitions model for feld-
spars, which has been used extensively to quantify luminescence signals 
in these materials. This model is based on quantum tunneling processes 
taking place in random distribution of defects in a crystal. 

Kitis and Pagonis (2014) carried out a detailed simulation study of 
the properties of TL glow curves in this model, by varying randomly the 
parameters in the model within a wide range of physically possible 
values. They obtained the following general expression in their Eq. (21) 

βE
kT2

m
= fm(ρ

′

)sz exp( − E / kTm) (68)  

where fm is a dimensionless quantity, ρ′ is the dimensionless acceptor 
density parameter characterizing the material and z = 1.8 is a constant 
in the model. Kitis and Pagonis (2014) further showed that the dimen-
sionless quantity fm depends only on the acceptor density parameter ρ′, 
according to the following empirical equation which is derived from the 
simulation data in their Fig. 5b, 

fm(ρ
′

) = 4.90537(ρ′

)
1.21038

. (69) 

By combining the two previous equations, one gets 

βE
kT2

m
= seff exp( − E / kTm) (70)  

where seff = fm(ρ′)sz is a constant with dimensions of frequency (s− 1), 
which once more does not depend on the heating rate used in the 
experiment. This equation has again the exact same form as Eq. (3) and 
therefore, both the VHR method and the Maghrabi equation are appli-
cable for this feldspar model. 

7. Discussion 

In the present work, we have considered some points related to the 
method of various heating rates for the evaluation of the activation 
energy of traps from TL curves by monitoring the shift of the maximum 
due to a change in the heating rate. For the behavior of first-order peaks, 
we have shown that an explicit expression, Eq. (8), previously presented 
by Maghrabi (2018) as a heuristic expression, can be developed 
analytically with very reasonable approximations. Also, a more precise 
expression, Eq. (18), is presented which is slightly better though some-
what more complicated. 

The other point has to do with the generality of the various heating 
rates method. We have solved numerically the set of three simultaneous 
differential equations governing the process in the OTOR system of one 
trapping state and one kind of recombination center with two heating 
rates. Keeping all the parameters fixed and varying only the retrapping 
probability coefficient, we see the gradual transition from first to second 
order kinetics, including intermediate cases in the sense that the sym-
metry factor is between 0.42 and 0.52, values associated with first and 
second order kinetics, respectively. Although the method shown in Eq. 
(5) (and its extension to several heating rates; see comment following 
Eq. (5)) was directly developed for first-order peaks, it seems that the 
method is useable for more complex situations as shown here. The re-
sults in Table 1 are, of course, only an example with accuracy of 
determining E better than 0.25%. An analytical analysis over the full 
range of parameters for the OTOR model similarly shows that Eq. (5) 
typically remains quite accurate. If one wants to improve the accuracy, 
the analytical method for determining a correction factor was devel-
oped. For the case of second-order kinetics, the correction factor de-
pends only on E/kTm and is given by Eq. (55) (Fig. 2). The largest 
difference between Eq. (5) and the OTOR model, as much as 7%, occurs 
for the special case of strong retrapping combined with very high dose. 
To refrain from this situation, one should use smaller doses, farther from 
saturation dose. The correction factors for this case, as shown in Fig. 4, 
depend on the dose. The general applicability of Eq. (5) appears to 
extend to the more complex situation where the glow curve includes a 
number of peaks. This is so in particular since it has been shown that in 
the case of a number of peaks in a series, the individual peaks tend to 
behave like first-order curves, excluding the last peak in the series which 
tends to be of second order; see e.g. Chen and Pagonis (2013). We have 
also dealt with the various heating rates behavior of TL peaks governed 
by the "mixed order" kinetics and showed that the variable-heating-rate 
method applies here as well. 

Finally, this work has dealt only with the theoretical aspects of the 
different heating rates method. In practice, one should remember that 
there is usually some delay between the temperature of the heating plate 
and the TL sample, and the size of the delay increases with the heating 
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rate. A possible correction for the temperature lag has been offered by 
Kitis and Tuyn (1998) so as to get more reliable results by the VHR 
method. 
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