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a b s t r a c t

A thermoluminescence (TL) model of two-stage stimulation of electrons into the conduction band is
discussed. This release of the carriers is assumed to take place via an intermediate localized excited state.
Electrons are thermally stimulated from the trap into an excited state and then thermally released into
the conduction band from which they may either be retrapped or recombine with holes in centers. The
model resembles the previous “semi localized” model, but we concentrate only on recombination of
electrons that go through the conduction band. It also bears similarity to the effect of thermally-assisted
optically stimulated luminescence (OSL) previously discussed in the literature.

The model is studied by solving the set of the relevant four simultaneous differential equations which
govern the process during heating or isothermal decay. Using different sets of parameters, we can get
pseudo-first-order, pseudo-second-order as well as intermediate cases, which are identified by their
symmetry coefficient. Once the effective order is established, different analytical methods are used to
determine the effective activation energy and frequency factor. We used the peak-shape methods, the
various heating rate (VHR) method and the method based on the change of phosphorescence decay with
temperature. The results are compared to the parameters used in the simulation. In many cases, the
effective activation energy is equal to E1 þ E2 where E1 and E2 are, respectively, the activation energies for
the first and second stage of thermal stimulation. The numerical simulation results are accompanied by
an analytical treatment using the usual quasi-steady assumption. Unusual cases, in which the effective
frequency factor and the effective retrapping probability coefficient are temperature dependent, are
identified. Some cases in which the effective activation energy is close to E1 rather than E1 þ E2 are
identified and discussed. The relevance of this possible situation to the evaluation of the stability of TL
signals is also considered, and a possible effect of anomalous stability is predicted.

� 2012 Elsevier Ltd. All rights reserved.

1. Introduction

A number of works have dealt with the semi localized transition
(SLT) model of thermoluminescence (TL) (see: Mandowski, 2005,
2006; Pagonis, 2005; Kumar et al., 2007; Pagonis and Kulp, 2010).
In this model, one electron trapping state, N, and one kind of
recombination center, m, are considered. The trap is assumed to
have an excited state, ne. During the heating stage, electrons can be
raised thermally from n to ne. From the excited state, they can either
recombine with a nearby hole in center, or retrap back to the
ground state, or be thermally released into the conduction band.
Once in the conduction band, the electron can retrap into
the excited electron state or recombine with a hole in the center.
Both the localized transition from the excited state into the

recombination center and the delocalized transition from the
conduction band into the center are assumed to produce measur-
able TL. As pointed out by Pagonis (2005), the SLT model can
explain the failure of the peak-shape methods to yield the correct
activation energies.

In the present work, we concentrate on a somewhat more
limited model. We keep the same energy levels, but assume that
the TL results only from recombination of free electrons in the
conduction band with holes in centers. No direct transition from
the excited state into the recombination center is allowed. With
this, more concise two-stage model, we study the relation between
the parameters inserted into the model and the effective parame-
ters determined by different analytical methods such as the peak-
shape method or the various heating rate method. The relevance
of this situation to the stability of the TL signal is considered.

One should note that this concept of two-stage stimulation of TL
is close to that of the thermally-assisted optically stimulated
luminescence (OSL). This effect of temperature dependent OSL has
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been first described by Hütt et al. (1988) and later discussed by
several authors (e.g. Spooner, 1994; McKeever et al., 1997;
Chru�sci�nska and Przegiętka, 2010). McKeever et al. (1997) discuss
a number of models explaining the temperature dependent OSL
which include the possibility that light excites the electron into an
excited state, from which it may be thermally excited into the
delocalized band with a thermally activated probability which
follows an exp(�E/kT) law. The present model is rather similar,
except that we assume both stages of the stimulation to be thermal.

2. The model

The two-stage energy-band model is shown in Fig. 1. The trap-
ping state with concentration N (cm�3) and instantaneous occu-
pancy n (cm�3) is shown, as well as the excited state ne. The
activation energy for this transition is E1 (eV) and the frequency
factor is s1 (s�1). Once the electron is in the excited state, it can
either retrap with a probability of p (s�1) or be thermally excited
into the conduction band. The activation energy for this transition
is E2 (eV) and the frequency factor is s2 (s�1). The instantaneous
concentration of electrons in the conduction band is denoted by nc
(cm�3). From the conduction band, the electrons can be retrapped
into the excited state with a retrapping probability coefficient of An

(cm3 s�1), or recombine with a hole in the center with a probability
coefficient of Am (cm3 s�1). This recombination is assumed to
produce the TL photons with an instantaneous intensity I. The
emitted light is shown by the thick arrow. At the end of the initial
excitation by irradiation, the number of trapped holes, m0, is equal
to the total number of trapped electrons, namely, n0þ ne0, however,
since the excitation is performed at a relatively low temperature,
ne0 can be considered to be relatively small so that n0 z m0. The
recombination of the electron from the conduction band with the
hole in the center is assumed to produce the TL photon. In accor-
dance with the detailed balance principle and neglecting electronic
degeneracies, the values of the frequency factor for the first tran-
sition, s1, and the retrapping probability, p, must, according to
Halperin and Braner (1960), to be equal: s1 ¼ p. Similarly, using the
detailed balance principle, Mott and Gurney (1948) have shown
that An and s2 are connected by the equation

s2
An

¼
�
2pm*

ekT
�3=2

h3
; (1)

where m*
e is the effective mass of the electrons in the conduction

band, k is Boltzmann’s constant and h is the Planck constant. A
typical value of the right-hand side is 1019 cm�3. Thus, for example,
if s2 ¼ 1013 s�1, then An z 10�6 cm3 s�1.

The simultaneous differential equations governing the process
during the heating stage, shown in Fig. 1 are

dn
dt

¼ �s1nexpð � E1=kTÞ þ pne; (2)

dne
dt

¼AnðN � n� neÞnc þ s1nexpð � E1=kTÞ
� s2neexpð � E2=kTÞ � pne; ð3Þ

I ¼ �dm
dt

¼ Ammnc; (4)

dnc
dt

¼ dm
dt

� dn
dt

� dne
dt

(5)

Note that in writing the first term in Eq. (3) one assumes that no
retrapping into the excited state ne is possible if there is an electron
either in the ground state of the trap or in its excited state.

3. Analytical considerations

Normally, excited states relax quite rapidly compared to the
time scales of TL experiments. If so, using Eq. (3), we can employ the
approximation

1
ne

dne
dt

<< ½pþ s2expð � E2=kTÞ� (6)

With typical values of p in the range of 106e109 s�1 or higher,
this is likely a very accurate assumption. Consequently, we can
model the excited state as quasi-steady. Applying the condition (6)
to Eq. (3), it then follows that

ne ¼ AnðN � n� neÞnc þ ns1expð � E1=kTÞ
pþ s2expð � E2=kTÞ

(7)

Substituting this into the conservation equation for the ground
state of trap n, Eq. (2), yields

dn
dt

¼ p
AnðN�nÞncþns1expð�E1=kTÞ

pþ s2expð�E2=kTÞ
� s1expð�E1=kTÞn; (8)

where, consistently with the quasi-steady assumption, we have
assumed the excited state to have a small population, ne<<(N � n).
Rearranging Eq. (8) puts this formula into the following form,

dn
dt

¼ �nseff exp½ � ðE1 þ E2Þ=kT� þ An;eff ðN � nÞnc; (9)

where

seff ¼ s1s2
pþ s2expð � E2=kTÞ

; (10)

and

An;eff ¼ p
pþ s2expð � E2=kTÞ

An: (11)

Equation (9) looks exactly like the conventional one-stage
kinetics (see e.g. Eq. (5.1) in Halperin and Braner (1960)) except
that the rate constants seff and An,eff are temperature dependent and
the effective activation energy is E1 þ E2. There are two cases to
consider with relation to Eqs. (10) and (11). If

s2expð � E2=kTÞ<< p; (12)

then seff ¼ (s1/p)s2 and An,eff ¼ An. Eq. (9) reduces to

dn
dt

¼ �ns2exp½ � ðE1 þ E2Þ=kT � þ AnðN � nÞnc; (13)

exactly the original equation when thermal excitation is directly
into the conduction band, but with E1 þ E2 and s2.

m

    E2, s2

   E1, s1, p

N, ne

N, n

An

TL
Am

nc

Fig. 1. Energy level diagram of the two-stage model.
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On the other hand, if

s2expð � E2=kTÞ>>p; (14)

then seff ¼ s1exp(E2/kT) and An,eff ¼ (p/s2)exp(E2/kT)An. The gov-
erning equation is now

dn
dt

¼ �s1nexpð�E1=kTÞþðpAn=s2ÞexpðE2=kTÞðN�nÞnc: (15)

The former case obviously corresponds to the usual circum-
stances where seff and An,eff are constants. The latter case in which p
is relatively small may yield strange behavior. The exponential
temperature dependence of seff has the effect of reducing the
effective energy from E1 þ E2 to E1. Also, seff reduces here to s1. The
exponential temperature dependence of An,eff may also influence
the shape of the TL peak. However, as long as Eq. (14) holds, the
second term on the right of Eq. (15) is often small, which may
reduce the equation to regular first-order, with the parameters E1
and s1 as seen in the numerical results above.

In the next section we present some results of numerical
simulations that demonstrate some features of TL under the
present model.

4. Numerical results and analysis

In this section, we present some results of simulations of specific
physical situations within the double-stage excitation model,
reached by solving numerically Eqs. (2)e(5) for appropriately
chosen sets of trapping parameters. The numerical solution was
performed using the MATLAB ode15s program. Fig. 2 depicts the
results of a peak governed by Eqs. (2)e(5) with the parameters
given in the caption. Note that since this is a one-trap one-center
model, we can assume that at low temperature, when ne and nc are
negligibly small, n0 ¼ m0. The heating rate used was b ¼ 1 K s�1 in
curve (a) and 2 K s�1 in curve (b). The peak shown looks like
a simple first-order peak, with a symmetry factor of m ¼ 0.44. We
can use the peak-shape method for evaluating the effective acti-
vation energy. The expression given by Chen (1969) is

Eu1 ¼ kTm

�
2:52

Tm
u

� 2
�
: (16)

Inserting from the simulated results, we get Eu1 ¼ 1.244 eV,
rather close to the given value of E1 þ E2. Inserting this value into
the expression for the maximum of a first-order TL peak,

s ¼ bE
kT2m

expðE=kTmÞ; (17)

we get from curve (a) seff ¼ 2.5 � 1011 s�1, closer to s1 than to s2.
Let us consider the difference between curves (a) and (b). As

expected, the peak shifted to a higher temperature at the higher
heating rate. We used the equation for determining the activation
energy using various heating rates (see e.g., Chen andWiner, 1970),
namely

E ¼ k
T1T2

T1 � T2
ln

"
b1
b2

�
T2
T1

�2
#
: (18)

The resulting activation energy from the simulated glow peaks
here was 1.28 eV, again, very close to the given value of E1 þ E2.
Inserting this value into Eq. (17) yields seff ¼ 5.6 � 1011 s�1, again
rather close to the inserted value of s2.

Fig. 3 shows the simulated decay of phosphorescence on a semi-
log scale. Line (a) shows the decay at 450 K and line (b) at 460 K.
Whereas the 450 K line is straight up to 500 s, the 460 K line
deviates from linearity from w250 s on. The reason is that the
model we are dealing with is not simply of one-trap and one-center
due to the transition through the excited state, and therefore, one
cannot always expect a simple exponential decay. Let us analyze,
however, these decay curves as if they were related to simple first-
order kinetics. Assuming an exponential decay, the exponent a can
be written as

a ¼ seff exp
�
� Eeff =kT

�
: (19)

By writing this equation for two temperatures, T1 and T2, one
gets a1 and a2 respectively. Dividing one by the other, seff is elimi-
nated, and one gets

400 420 440 460 480 500 520 540 560 580 600
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5
x 1010 SIMULATED TWO STEP PEAK

TEMPERATURE (K)

TL
 IN

TE
N

S
IT

Y

b

a

Fig. 2. Simulated results of a TL peak governed by the two-stage model, Eqs. (2)e(5).
The parameters used were E1 ¼ 0.8 eV; E2 ¼ 0.5 eV; p ¼ s1 ¼ 1011 s�1; s2 ¼ 1012 s�1;
An ¼ 10�8 cm3 s�1; Am ¼ 10�6 cm3 s�1; N ¼ 1013 cm�3. The initial occupancies were
n0 ¼ m0 ¼ 1012 cm�3. The heating rate was b1 ¼1 K s�1 in curve (a) and b2 ¼ 2 K s�1 in
curve (b).
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Fig. 3. Simulated decay of phosphorescence at (a) 450 K and (b) 460 K with the same
set of parameters as in Fig. 2. The results are shown on a semi-log scale. The dashed
line is a straight line added to show the slight deviation of line (b) from linearity on the
semi-log scale.
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Eeff ¼ k
T1T2

T1 � T2
ln

a1
a2

: (20)

The two slopes are evaluated from Fig. 3 as a1 ¼5.56� 10�3 and
a2 ¼ 2.6 � 10�3. Inserting into Eq. (20), we get Eeff ¼ 1.36 eV.
Substituting into Eq. (19), we get seff ¼ 4.4 � 1012 s�1. These two
values are rather close to E1 þ E2 and s2, respectively.

With the same parameters, we checked the stability of the traps
at room temperature (RT), 300 K (curve (a)) and at 310 K (curve (b)).
The results of the simulations are shown in Fig. 4. In the simulation,
the sample was “held” at 300 K or 310 K for 108 s, and the occu-
pancy of the traps was monitored. After this period of more than 3
years, the concentrations of electrons and holes reduced by w1.3%
in curve (a) and byw6.5% in curve (b). Using again Eq. (20), we get
Eeff ¼ 1.31 eV, and from Eq. (17) we get seff ¼ 1.32 � 1012 s�1, very
close to E1 þ E2 and s2, respectively.

Fig. 5 depicts the results of TL simulations with significantly
smaller recombination probability coefficient, Am ¼ 10�10 cm3 s�1.
As could be expected, the peak looks like a second-order peak.
Curve (a) is with a heating rate b1 ¼ 1 K s�1 and curve (b) with
b2 ¼ 2 K s�1. The shape factor is mg ¼ 0.528, like a typical second-
order peak. The activation energy is determined by the second-
order equation

Eu2 ¼ kTm

�
3:54

Tm
u

� 2
�
: (21)

The value reached here is Eu2 ¼ 1.26 eV, in very good agreement
with E1 þ E2. Also, the various heating rates method, Eq. (18), yields
here 1.32 eV, again with very good agreement with the sum of
energies.

Let us turn now to the more interesting cases in which
s2exp(�E2/kT)>>p (see Eq. (14)). Like in Fig. 2, we use a high
recombination probability of 10�6 cm3 s�1 and we change here
s1 ¼ p to be 106 s�1. The results are shown in Fig. 6 for heating rates
b1 ¼ 1 K/s in curve (a) and b2 ¼ 2 K/s in curve (b). The symmetry
factor here is mg ¼ 0.41, typical of first-order peaks. By using the
first-order peak-shape method, Eq. (16), we get here Eeff ¼ 0.82 eV,
very close to the inserted value of E1. Using the various heating rate

equation, Eq. (20), we get Eeff ¼ 0.8 eV. Both these values are
associated in this case with E1. Using Eq. (17), we get
seff ¼ 1.43 � 106 s�1, very close to the given value of s1.

With the same set of parameters, we simulated the decay of
phosphorescence. This is shown in Fig. 7, for 490 K (a) and 500 K (b).
From the slopes of the two lines, given on a semi-log scale, and
using Eq. (20) we get Eeff ¼ 0.86 eV, rather close to the inserted
value of E1. Finally, for this set of parameters, we studied the
stability around room temperature. Like in the case depicted in
Fig. 4, we simulated the decay of the trapped carriers with time, up
to 108 s at 300 K and 310 K with the same set of parameters. The
results are practically the same as in Fig. 4, and thus the effective
activation energy is here too w1.3 eV ¼ E1 þ E2, and seffws2.

It should be noted that in some intermediate cases we found
effective activation energies between E1 and E1 þ E2 and effective
frequency factors between s1 and s2.
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Fig. 4. Simulated results of the stability of the signal on a semi-log scale. With the
same set of parameters, the remaining concentration of carriers in traps is shown for
up to 108 s at (a) 300 K and (b) 310 K.
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Fig. 5. Simulated results of a TL peak governed by the same model. The parameters
used are the same as in Fig. 2 except that Am ¼ 10�10 cm3 s�1, 4 orders of magnitude
smaller. The heating rate was b1 ¼ 1 K s�1 in curve (a) and b2 ¼ 2 K s�1 in curve (b).
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Fig. 6. Same as Fig. 5 but with Am ¼ 10�6 cm3 s�1 and p ¼ s1 ¼ 106 s�1.
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5. Discussion

In this work, we have studied the expected behavior of TL peaks
associatedwith the two-stage thermal excitation shown in Fig.1. By
using analytical considerations as well as numerical simulation we
demonstrated that first and second-order peaks can be reached for
appropriate choices of the sets of relevant parameters. The effective
values of the activation energy and the frequency factor as deter-
mined from the simulated results are compared to the inserted
values of the parameters. Whereas in many cases the effective
activation energy is found to be E1 þ E2, cases where the value is
close to E1 are also recognized.

With the choice of s1 ¼ p¼ 1011 s�1, the condition (12) is fulfilled
through the whole relevant range of temperatures. Here we always
got Eeff z E1 þ E2 and seff z s2 as expected from the discussion next
to Eq. (12) when s1 ¼ p as, indeed, is assumed. This includes the
results reached by the peak-shape method and the various heating
rates method (Fig. 2), the phosphorescence decay at two temper-
atures (Fig. 3) and the stability of trapped carriers at two temper-
atures close to room temperature (Fig. 4). With the same choice of
s1 ¼ p¼ 1011 s�1, but with small recombination, Am ¼ 10�10 cm3 s�1,
we also get Eeff z E1 þ E2 (Fig. 5). Here we have a second-order
peak. Note that in the “original” second-order case, the intensity
is given be (see Chen et al., 1983)

I ¼ �dn
dt

¼
�
sAm

NAn

�
exp

�
� E
kT

�
n2: (22)

The analogous equation in the present situation is

I ¼ �dn
dt

¼
 
seff Am

NAn;eff

!
exp

�
� E1 þ E2

kT

�
n2: (23)

From Eqs. (10) and (11) it is obvious that the temperature
dependent term cancels out and therefore, the term in the first
parentheses is constant, s1s2=pAn, and since we always assume that
p ¼ s1, the constant in the parentheses is simply s2/An. The result is
that in the second-order case, the activation energy will always
appear to be E1 þ E2.

In order to simulate TL, phosphorescence and stability in cases
where the condition (14) holds, we have taken the same set of

parameters but with significantly smaller value of p, namely,
p¼ s1¼106 s�1. Here, with the relatively low value of p, it is obvious
that at the peak occurringw550 K the effective activation energy is
very close to E1, in accordance with the discussion concerning
Eq. (13) above. The same value is reached from the slopes of the
logarithm of the phosphorescence decays in Fig. 7. However, the
two slopes of the room temperature stability simulation that, as
stated above, look practically the same as in Fig. 4, yielding effective
activation energy of wE1 þ E2. This point may have implications
concerning the suitability of a TL peak for dating. From the prop-
erties of the TL peak or phosphorescence decay at relatively high
temperature, one may deduce the activation energy which is
relatively low (wE1). However, the room temperature stability is
governed by a significantly higher energy (wE1 þ E2). The expres-
sion for the effective lifetime is

seff ¼
�
1=seff

�
exp

�
Eeff =kT

�
: (24)

From the above mentioned numerical results, the effective
values of the parameters deduced from the TL peak are Eeff ¼ 0.8 eV
and seff ¼ 1.43 � 106 s�1. From this, one gets at room temperature
(300 K) seff ¼ 1.9� 107 s, around 7 months. However, as pointed out
above, the real stability is associated with Eeff ¼ 1.3 eV and
seff ¼ 1012 s�1 which yields at 300 K seff ¼ 6.9 � 109 s, about 220
years. One may thus expect a possible “anomalous stability”, an
effect which is the opposite of the quite well known “anomalous
fading”. With the parameters in hand, one may predict a relatively
fast decay of a signal whereas the real decay may be significantly
slower. Note that a similar effect has been discussed, under entirely
different circumstances, by Wintle (1975). While discussing the
thermal quenching of TL in quartz, Wintle states that it “causes the
initial-rise method of trap depth determination to give spuriously
low results which erroneously implies instability of a peak which is
suitable for dating”. The simple model presented in this work may
also account for this kind of effect.
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Fig. 7. The decay of phosphorescence with the same parameters as in Fig. 6, at
(a) 490 K and (b) 500 K.
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