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A B S T R A C T   

In some instances reported in the literature, a thermoluminescence peak that was expected to be excited by 
certain irradiation was not excitable at a certain temperature range below that of the peak although it was 
excitable at different temperature ranges. Two specific cases of this kind are calcium tungstate and semi-
conducting diamonds excited by UV light. The resemblance between these two different materials is quite sur-
prising. In both cases, when the sample is UV irradiated at ~80 K and heated up, a glow curve consisting of two 
peaks is measured, one at ~150 K and the other at ~260 K. However, if the sample is held at temperatures 
between 150 and 260 K, the efficiency of excitation of the 260 K peak decreases very significantly with tem-
perature so that it can hardly be excited above 200 K. In this work we present a possible energy-level model, 
previously used to explain the anomalous heating-rate effect, which can account for this rather anomalous effect. 
The model includes an electron trap, a hole trap and a hole recombination center. The transitions taking place 
during excitation, relaxation and heating are followed by using the appropriate sets of simultaneous differential 
equations. Simulation of the process by using a certain set of parameters is reported. Also, a theoretical account 
with approximations is utilized and both yield practically the same results. The effect of inability of excitation of 
the second peak at the temperature range between the two peaks is demonstrated.   

1. Introduction 

Thermoluminescence (TL) peaks are usually excitable at any tem-
perature below that of the peak in question. Of course, the stability of a 
given peak depends quite strongly on the temperature at which the 
sample is held following excitation prior to heating, however, if heating 
starts rather shortly after excitation, the temperature of excitation is 
nearly irrelevant if it is below that of the peak. There are, however, some 
reports in the literature where a TL peak is not excitable at a certain 
temperature range well below that of the relevant peak. In two cases, 
namely, UV excited semiconducting diamonds and calcium tungstate, 
the glow curve consists of two peaks. The unusual behavior here is that 
in the temperature range between that of the two peaks, the higher 
temperature peak is not excitable. Halperin and Chen (1966) and Winer 
et al. (1973) (see also Chen and Pagonis (2011)) studied the UV excited 
TL in semiconducting diamonds. They report on two peaks following 
excitation at 80 K, at ~150 K and ~260 K. When the excitation was with 
225 nm (5.5 eV photons), which enables the excitation of electrons 

across the forbidden gap, the higher-temperature peak was excitable at 
temperatures up to ~260 K, similar to the behavior in other materials. 
However, when the excitation was in the range of 300–400 nm, the peak 
at 260 K could not be excited at temperatures significantly above 150 K 
which is the temperature of the first peak. It has therefore been obvious 
that there is some coupling between the two peaks. Surprisingly similar 
results were reported by Sayer and Souder (1967, 1969) and Sayer and 
Lynch (1970) who had studied the UV excited TL in calcium tungstate. 
With UV radiation of 253.7 nm, namely 4.89 eV photons, the full glow 
curve is excited at 80 K. This photon energy is just sufficient to raise 
electrons from the valence band into the conduction band (see e.g. 
Mikhailik et al. (2004)). The results of the glow curve are surprisingly 
similar to those of semiconducting diamonds. Two peaks are observed, 
at ~160 K and 260 K with comparable intensity following the 
low-temperature excitation. However, the intensity of the 260K peak 
became smaller with excitation at higher temperatures, and it was not 
excitable at all above ~210K. As stated by Sayer and Lynch (1970), the 
260 K peak could only be obtained by exciting the crystal below 
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temperatures at which the 160 K peak was also excited. 
The present work offers a model which can explain a behavior very 

similar to that seen in calcium tungstate and semiconducting diamonds. 
In addition, we would like to mention some other experimental effects in 
other materials in which TL is not excitable in certain temperature 
ranges below that of the glow peak. Durrani et al. (1977) reported on the 
strong dependence of TL intensity in quartz on the temperature of 
excitation. For TL in the range of 513–693 K, the sensitivity reduced by 
~103 as the temperature of excitation Tirr is reduced from room tem-
perature to 178 K for a γ dose of 6 kGy. Kitis and Charalambous (1988, 
1990) reported on the irradiation temperature dependence of some 
kinds of quartz and in meteorites material. For example, in material 
from Norton County meteorite, a peak at 380 ◦C could not be excited 
above ~500 K (227 ◦C). Halperin (2000) studied TL in Sawyer synthetic 
electron grade quartz and reported that the high temperature thermo-
luminescence (HTTL) in the temperature range 450–700 K could not be 
excited by X-irradiation below ~200 K. His explanation of this effect has 
to do with recombination of Li ions with Al centers. Molnár et al. (2001) 
reported on the influence of the irradiation temperature on TL sensi-
tivity of Al2O3:C. TL sensitivity was found to decrease by ~40% with 
decreasing irradiation temperature between +30 and − 100 ◦C. High 
temperature TL peaks were shown to appear only if the irradiation 
temperature was higher than 200 ◦C. The authors proposed a mecha-
nism of recombination of holes with electrons in the dosimetric traps to 
explain these phenomena. Nikiforov et al. (2001) and Kortov et al. 
(2002) communicated on TL in α-Al2O3 excited by UV light. A peak at 
450 K was found to increase significantly with the temperature of 
excitation with the UV exposure but was temperature independent with 
β irradiation. 

In the present work we demonstrate that a model previously utilized 
to explain the possibility of getting a duplicitous TL curve and anoma-
lous heating-rate effect, can explain the occurrence of a glow curve 
consisting of two peaks in which the excitation of the second peak is 
significantly diminished while excited in the temperature range between 
the two peaks. It therefore seems that there is a strong coupling between 
the two peaks. Thus, the results in semiconducting diamonds and cal-
cium tungstate may be explained qualitatively. The set of parameters we 
chose yields in the simulation consisting of excitation, relaxation and 
heating a glow curve which resembles those mentioned above found in 

semiconducting diamonds and calcium tungstate. 

2. The model 

The energy-band model we use to describe this unusual effect is 
borrowed from a previous work (Chen et al. (2008)) which explained the 
possibility of a duplicitous TL curve resulting from simultaneous thermal 
release of electrons and holes from electron- and hole-traps. The model 
resembles the Schön-Klasens model (see Schön (1942); Klasens (1946)), 
and even more so to the model of McKeever et al. (1985), which includes 
an additional energy level. Note that practically the same model has 
been used by Chen and Pagonis (2017) for explaining the anomalous 
heating-rate effect in thermoluminescence as an inverse thermal 
quenching. The model is shown in Fig. 1. It includes an electron trapping 
state, N, a hole trapping state, M2 and a hole recombination center, M1. 
During excitation, the applied radiation raises electrons from the 
valence band to the conduction band. The free holes may get trapped at 
the hole trap M2 or at the hole center M1. At the same time, the free 
electron can be trapped in the electron trap, N or recombine with a hole 
in the center, provided that the center has trapped a hole at an earlier 
stage of the excitation. The addition to the previous duplicitous model, is 
that we allow here a recombination of free electrons with holes in the 
hole trap M2, a transition denoted by the probability coefficient Am2. 

The set of simultaneous differential equations governing the process 
during excitation is 

dn
dt

=A(N − n)nc − nγ, (1)  

dm1

dt
=B1(M1 − m1)nv − Am1m1nc, (2)  

dm2

dt
=B2(M2 − m2)nv − Am2m2nc − m2γm2, (3)  

dnc

dt
=X − A(N − n)nc − Am2m2nc − Am1m1nc + nγ, (4)  

dnv

dt
=X − B1(M1 − m1)nv − B2(M2 − m2)nv + m2γm2. (5) 

Fig. 1. Energy level diagram of the model with the relevant transitions. N is the electron trap, M1 is the hole center and M2 is the hole trap. The other parameters are 
defined in the text. Transitions taking place during excitation at low temperatures are shown in solid lines and transitions occurring at higher temperatures are given 
in dashed lines. 
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Here, N (cm− 3) and n (cm− 3) denote, respectively, the concentration 
and occupancy of electron traps, M2 (cm− 3) and m2 (cm− 3) the con-
centration and occupancy of hole traps and M1 (cm− 3), m1 (cm− 3) the 
concentration and occupancy of hole centers, respectively. nc (cm− 3) is 
the instantaneous concentration of free electrons and nv (cm− 3) the 
concentration of free holes. X (cm− 3s− 1) is the rate of production of 
electron-hole pairs by the applied radiation, proportional to the dose- 
rate being used. A (cm3s− 1) is the trapping probability coefficient of 
free electrons from the conduction band into N and B2 (cm3s− 1), the 
trapping probability coefficient of free holes from the valence band into 
M2. B1 (cm3s− 1) is the probability coefficient for free holes from the 
valence band to be trapped in the luminescence center, Am2 (cm3s− 1) is 
the probability coefficient of electrons to fall into the hole trap M2 and 
Am1 (cm3s− 1) the probability coefficient of free electrons recombining 
with holes in the center. The relevant parameters for the thermal release 
of electrons is the activation energy E (eV) and the frequency factor s 
(s− 1), and for the release of holes, the activation energy Em2 (eV) and the 
frequency factor sm2 (s− 1); T (K) is the temperature and k (eV/K) is the 
Boltzmann constant. Also, we define 

γ = s exp( − E / kT), (6)  

γm2 = sm2 exp( − Em2 / kT). (7)  

3. Intuitive explanation 

Let us consider the model which may explain the “disappearing” 
peak. We have one trap, N, one radiative center, M1 and one non- 
radiative center, M2 which also acts as a hole trap. During irradiation 
at T = 100 K, N is populated with electrons and M1 and M2 are populated 
with holes. Because the recombination coefficient of m1 is very large in 
the chosen set of parameters (see below), the population of m1 remains 
small compared to m2: m1<<m2. By conservation of charge, it follows 
that m2≈n. 

During heating, n is the first to become thermally unstable. While 
many of the electrons recombine with m2, some recombine radiatively 
with m1. This yields the first peak. Because m1 is small and its recom-
bination coefficient large, its population is quickly depleted and light 
emission stops. 

The trap population n continues to drop as electrons are released and 
recombine with m2, but before it is completely depleted, m2 becomes 
thermally unstable. When this happens, the holes from m2 are thermally 
released to the valence band. Those free holes which are not retrapped 
by m2 eventually become trapped in m1. With m1 replenished, radiative 
recombination starts again and we see the second peak. 

The case with irradiation plus relaxation at 200 K is much simpler. 
Because n is thermally unstable at this temperature, the population n 
never grows large. If the relaxation time is long enough, it will decay 

Fig. 2. The glow curve simulated by solving the equations numerically (solid line) and by the theory (dashed line).  
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back to zero. With a negligible population of trapped electrons, then 
recombination during heating is also negligible and both peaks 
disappear. 

The model shows why there is a connection between the behavior of 
the two peaks as seen in semiconducting diamonds and calcium 
tungstate. 

4. Numerical simulations and results 

The solid line in Fig. 2 shows an example of a simulated glow curve 
based on the model. The parameters used were N = 3 × 109 cm− 3; M2 =

1013 cm− 3; M1 = 1014 cm− 3; A=10− 9 cm3s− 1: B2 = 3 × 10− 8 cm3s− 1; B1 
= 2 × 10− 8 cm3s− 1; Am2 = 10− 9 cm3s− 1; Am1 = 5 × 10− 6cm3s− 1; s = 5 ×
1012 s− 1; sm2 = 3 × 1012 s− 1; E=0.49 eV; Em2 = 0.66 eV; X = 5 × 107 

cm− 3s− 1. The parameters were chosen in such a way that the two TL 
peaks occur at ~159 K and ~260 K, similar to the peaks in semi-
conducting diamonds and calcium tungstate. 

For this set of parameters, the simulation process was repeated for 
excitation temperatures between 100 K and 220 K and the maximum TL 
intensity of the 260 K peak found is shown in Fig. 3. As can be seen in the 
figure, the intensity of this peak gets smaller as the temperature of 
excitation increases between 150 and 220 K. The maximum intensity 
reduces very significantly for excitations as of ~160 K, much lower than 
the temperature of the peak at ~260 K. 

5. Approximate analytical theory 

For the conditions of our simulations, the following low-dose as-
sumptions are well justified: 

m1 << M1; m2 << M2. (8) 

If the lifetimes of the free electrons and free holes are sufficiently 
short, then nc and nv will be small and quasi-steady approximation 
applies, 

nc =
X + nγ

A(N − n) + Am2m2 + Am1m1
, (9)  

nv =
X + m2γm2

B1 + B2M2
. (10) 

In this case, the governing equations (1)–(3) reduce to 

dn
dt

=
A(N − n)

A(N − n) + Am2m2 + Am1m1
X −

Am2m2 + Am1m1

A(N − n) + Am2m2 + Am1
nγ, (11)  

dm1

dt
=

B1M1

B1M1 + B2M2
(X +m2γm2) −

Am1m1

A(N − n) + Am2m2 + Am1m1
(X +Nγ),

(12)  

dm2

dt
=

B2M2

B1M1 + B2M2
X −

Am2m2

A(N − n) + Am2m2 + Am1m1
(X + nγ)

−
B1M1

B1M1 + B2M2
m2γm2. (13) 

Each of the terms in Eqs. 11–13 has clear physical meaning. For 
example, from Eq. (12) which conserves m1, (X + m2γm2) is the total rate 
at which free holes are created and B1M1/(B1M1+B2M2) is the fraction of 
those holes that are captured by m1. 

With initial conditions n=m1=m2=0, charge conservation for the 
quasi-steady equations requires 

n=m1 + m2. (14) 

For the parameters chosen, the quasi-steady approximation is valid 
during irradiation, relaxation and the first peak. It is not used for the 
second peak. 

5.1. Irradiation at low temperature 

For irradiation at low temperature, both n and m2 are thermally 
stable and terms involving γ and γm2 can be neglected. In this case Eqs. 
11–13 simplify to 

dn
dt

=
A(N − n)

A(N − n) + Am2m2 + Am1m1
X, (15)  

dm1

dt
=

B1M1

B1M1 + B2M2
X −

Am1m1

A(N − n) + Am2m2 + Am1m1
X, (16)  

dm2

dt
=

B2M2

B1M1 + B2M2
X −

Am2m2

A(N − n) + Am2m2 + Am1m1
X. (17) 

For our chosen parameters, Am1 is large and consequently, from Eq. 
(16), m1 rapidly reaches a quasi-steady condition, in which the capture 
of free holes by m1 is balanced by recombination with free electrons, 

B1M1

B1M1 + B2M2
X ≈

Am1m1

A(N − n) + Am2m2 + Am1m1
X. (18) 

Equation (18) can be solved for m1, 

m1 =
B1M1

B2M2

A(N − n) + Am2m2

Am1
. (19)  

With m1 small for large Am1, conservation of charge requires 

n ≈ m2. (20) 

Combined with Eqs. 19 and 20, Eq. (15) simplifies to 

dn
dt

=
B2M2

B1M1 + B2M2
⋅

A(N − n)X
A(N − n) + Am2n

. (21) 

This can immediately be integrated to find 

D=N
B1M1

B2M2

[
n
N
−

Am2

A

(
ln
(

1 −
n
N

)
+

n
N

)]

, (22)  

where D is the dose 

D=

∫ tD

0
X(t)dt, (23)  

and where tD is the exposure time. If X is constant, as in our simulations, 
then D=X⋅tD. Eq. (22) can be inverted to explicitly provide n as a func-
tion of dose. For the special case of A=Am2, as used in the simulation, the 
result simplifies to Fig. 3. The maximum intensity of the 250 K peak as a function of the excitation 

temperature between 100 and 220 K, as determined by the simulations. 
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nD =N
[

1 − exp
(

−
B2M2

B1M1 + B2M2

D
N

)]

, (24)  

where the subscript D has been added to n to emphasize that this is the 
value of n at the end of irradiation at dose D. Equation (24) indicates that 
n initially grows linearly with dose D at a rate controlled by the ability of 
m2 to balance the charge with captured free holes. At higher doses, 
saturation is approached: n→N. 

In summary, at the end of irradiation, n is given by Eq. (24), m1 is 
given by Eq. (19), m2 is given by Eq. (20), and nc and nv are given 
respectively by Eqs. (9) and (10). 

5.2. Relaxation at low temperature 

After the irradiation stops, X = 0 and free electron and free hole 
populations decay back to zero in the process of relaxation. For relax-
ation at low temperature such as T = 100 K in our simulation, γ and γm2 
are both very small. We are interested in how the relaxation process 
changes the values of n, m1 and m2. At the end of irradiation, for the 
parameters of interest here, we have nv << nc, m2<<n, m1 and also 
nc<<(N-n). Consequently, nv is too small to affect n, m1 or m2 and can 
be ignored. nc is too small to affect n or m2, but we have to consider its 
effect on m1. Under these conditions, the governing equations (1)–(5) 
reduce to 

n ≈ nD, (25)  

dm1

dt
= − Am1m1nc, (26)  

m2 ≈m2D ≈ nD, (27)  

dnc

dt
= − A(N − nD)nc − Am1m1nc − Am2m2Dnc. (28) 

Taking the ratio of Eq. (26) to Eq. (28), we have 

dm1

dnc
=

Am1m1

A(N − nD) + Am1m1 + Am2m2D
. (29) 

Equation (29) can be immediately integrated to find 

nc = ncD + m1 − m1D +
A(N − nD) + Am2m2D

Am1
ln
(

m1

m1D

)

. (30) 

Equation (30) provides nc as a function of m1. Our interest, however, 
is in finding m1 after relaxation when nc ≈ 0. To do this, we invert Eq. 
(30), set nc = 0 and find 

m1,0 =
m1D

rD
Ω
(

ln(rD)+ rD

[

1 −
ncD

m1D

])

, (31)  

where Ω is the Wright Omega function (see Lawrence et al. (2012)), m1, 

0 is the value of m1 at the end of relaxation and rD is the ratio, at the start 
of relaxation, of the recombination rate of free electrons into m1 to the 
sum of the rates of recapture by n and recombination into m2, 

rD =
Am1m1D

A(N − nD) + Am2m2
. (32) 

Larger values of rD and ncD lead to a larger drop in m1 during 
relaxation. 

In sum, the drop in m1 during relaxation has been computed. m2 and 
n remain approximately unchanged from their values at the end of 
irradiation. 

5.3. Heating, first peak 

During heating, n becomes thermally unstable before m2. So, when 
considering the first peak, we neglect γm2. Also during heating, X = 0. 
The governing equations 11–13 then reduce to 

dn
dt

=
Am2m2 + Am1m1

A(N − n) + Am2m2 + Am1m1
nγ, (33)  

dm1

dt
= −

Am1m1

A(N − n) + Am2m2 + Am1m1
nγ, (34)  

dm2

dt
=

Am2m2

A(N − n) + Am2m2 + Am1m1
nγ. (35) 

Taking the ratio of Eq. (34) to Eq. (35), we find 

d ln(m1)

d ln(m2)
=

Am1

Am2
. (36) 

For the simulation parameters, Am1/Am2 = 5000. Thus, from Eq. 
(36), m1 will empty quickly, long before any significant change happens 
to m2. Since at the end of relaxation, m1<<n, no significant change in n 
will happen during this time either. Under these conditions, Eq. (34) 
simplifies to 

dm1

dt
=

Am1n0

A(N − n0) + Am2n0 + Am1m1
m1γ, (37)  

where a subscript 0 is used to indicate the initial value at the beginning 
of heating and t’ is a time integration variable. It follows 

m1,0 − m1 +
A(N − n0) + Am2n0

Am1
ln
(

m1,0

m1

)

= n0

∫ t

0
γ(t

′

)dt
′

. (38) 

For a linear temperature profile, T=T0+βt, the integral on the right- 
hand side can be performed analytically to find 

m1,0 − m1+
A(N − n0)+Am2n0

Am1
ln
(

m1,0

m1

)

=m0
Es
kβ

[Γ(− 1,E/kT)− Γ(− 1,E/kT0)],

(39)  

where Γ is the incomplete gamma function (see Abramowitz and Stegun 
(1970)). Equation (39) can be solved for m1 to find 

m1 =
m1,0

r
Ω(ln(r)+ ru), (40)  

where Ω is the Wright Omega function and r and u are abbreviations for 

r=
Am1m1,0

A(N − n) + Am2n0
, (41)  

u= 1 −
n0

m1,0

Es
kβ

[Γ( − 1,E / kT) − Γ( − 1,E / kT0)]. (42) 

Under these conditions, Eq. (9) reduces to 

nc =
n0γ

A(N − n0) + Am1m1 + Am2n0
. (43) 

The intensity during the first peak is thus 

I =Am1m1nc, (44)  

where m1 is given by Eq. (40) and nc is given by Eq. (43). 
In sum, we have an analytical solution valid for the first peak where 

m1 is given by Eq. (40), nc is given by Eq. (43), and the intensity is given 
by Eq. (44). The approximate analytical solution is compared with the 
numerical solution in Fig. 2 (dashed line). The initial conditions for the 
analytical solution were provided by the relaxation theory in subsection 
5.2. For the chosen parameters, the approximation that n and m2 are 
nearly constant during the first peak is fairly good and causes only a 
small overestimate of intensity. The theory remains valid until around T 
≈ 160 K when m1 drops to a small enough level that the capture of holes 
freed by thermal excitation, γm2, from m2 can no longer be neglected. 
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5.4. Heating, second peak 

While the first peak is occurring, we have nc << n and the popu-
lation nc is quasi-steady as per Eq. (9). As heating continues, the situa-
tion reverses. Due to the rapid increase in γ, the trap n empties. We have 
n << nc and it is the population n which becomes quasi-steady with the 
thermal excitation out of n balanced by the capture of free electrons back 
into n, 

nγ ≈ A(N − n)nc. (45) 

Or, solving for n, 

n=
ANnc

γ + Anc
. (46) 

Using Eqs. (10) and (45), Eqs. (2)–(4) reduce to 

dm1

dt
=

B1M1

B1M1 + B2M2
m2γm2 − Am1m1nc, (47)  

dm2

dt
= −

B1M1

B1M1 + B2M2
m2γm2 − Am2m2nc, (48)  

dnc

dt
= − Am2m2nv − Am1m1nc. (49) 

At the end of the first peak, the population m2 was depleted. As γm2 
increases and m2 becomes thermally unstable, some of the holes released 
from m2 are captured by m1. Holes trapped by m1 quickly recombine 
with free electrons and the population of m1 remains small and the holes 
gained by m1 due to capture approximately balance the loss of holes due 
to recombination, 

B1M1

B1M1 + B2M2
m2γm2 ≈ Am1m1nc. (50) 

Solving Eq. (50) for m1 yields 

m1 =
B1M1

B1M1 + B2M2

m2γm2

Am1nc
. (51) 

Under these circumstances, we have n, m1<<m2, nc. Consequently, 
by conservation of charge, we must have 

nc ≈ m2. (52) 

Combining Eq. (52), the conservation equation (48) reduces to 

dm2

dt
= −

B1M1

B1M1 + B2M2
m2γm2(t) − Am2m2

2, (53)  

where the thermal excitation rate is written as γm2(t) to emphasize that, 
as per Eq. (7), it is a function of temperature and therefore of time. As a 
first-order ordinary differential equation, solution of Eq. (53) requires 
one initial condition. We choose this initial condition to be m2(t1) = m2,1 
for some time t1 and value m2,1. The time t1 can be any time during 
which the approximations used to develop Eq. (53) are valid. Equation 
(53) then has the solution 

m2 =

m2,1 exp
(

− B1M1
B1M1+B2M2

∫ t
t1

γm2(t
′

)dt′
)

1 + Am2m2,1
∫ t

t1
exp

(

− B1M1
B1M1+B2M2

∫ t′

t1
γm2(t′′)dt′′

)

dt′
, (54)  

where t’ and t’’ are variables of integration. If we again assume the usual 
linear temperature profile, T=T0+βt, then the integrals over γm2 can be 
performed analytically, 

m2 =
m2,1{ − α[Γ( − 1,Em2/kT) − Γ( − 1,Em2/kT1)]}

1 + Am2m2,1
∫ T

T1
exp{ − α[Γ( − 1,Em2/kT ′

) − Γ( − 1,Em2/kT1]}dT ′
,

(55)  

where Γ is again the incomplete gamma function and α is an abbrevia-

tion for 

α=
B1M1

B1M1 + B2M2

Em2sm2

kβ
. (56) 

The intensity is, as before 

I =Am1m1nc, (57)  

where m1 is given by Eq. (51) and nc is given by the combination of Eqs. 
(52) and (55). 

In sum, we now have a complete solution for the second peak with m2 
given by Eq. (55), nc given by Eq. (52), n given by Eq. (46), m1 given by 
Eq. (51) and the intensity I given by Eq. (57). For the initial condition 
required by Eq. (55), the value of m2,1 was chosen to match the simu-
lation at 220 K. The analytical solution remains accurate over the course 
of the second peak up until m1 is no longer small relative to m2 at which 
point the quasi-steady approximation Eq. (50) ceases to be valid. The full 
glow curve reached by using the analytical solutions for the first and 
second peak and with the mentioned set of parameters is shown in the 
dashed line of Fig. 2. The close agreement with the simulated results 
found numerically without approximations as given by the solid line is 
evident. 

5.5. Irradiation at low to mid temperatures 

Let us start with the quasi-steady equations 11–13. Since tempera-
tures will be well below 250 K, we can neglect γm2, yielding 

dn
dt

=
A(N − n)

A(N − n) + Am2m2 + Am1m1
X −

Am2m2 + Am1m1

A(N − n) + Am2m2 + Am1m1
nγ, (58)  

dm1

dt
=

B1M1

B1M1 + B2M2
X −

Am1m1

A(N − n) + Am2m2 + Am1m1
(X + nγ), (59)  

dm2

dt
=

B2M2

B1M1 + B2M2
X −

Am2m2

A(N − n) + Am2m2 + Am1m1
(X + nγ). (60) 

We will look at the concentrations achieved after irradiation for a 
long enough time that the concentrations reach a steady-state. To find 
these concentrations, we set dn/dt=dm1/dt=dm2/dt = 0 in Eqs. (1)–(3). 
After some algebra (see appendix), we find n as a function of tempera-
ture T, 

n=Nγ

(
T
)( ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1 + 2N/Nγ(T)
√

− 1
)
, (61)  

where Nγ(T) has units of concentration, cm− 3, and is an abbreviation for 

Nγ(T)=
B1M1/Am1 + B2M2/Am2

B1M1 + B2M2

AX
2γ(T)

, (62)  

where the thermal excitation rate γ is written as γ(T) to emphasize that it 
depends on temperature. Similarly, the values of m1 and m2 can be found 
and are proportional to n, 

m1 =
B1M1/Am1

B1M1/Am1 + B2M2/Am2
n, (63)  

m2 =
B2M2/Am2

B1M1/Am1 + B2M2/Am2
n. (64) 

The rate at which m1 gains population by trapping holes is propor-
tional to B1M1. Note that more precisely, it is B1(M1-m1), but we assumed 
that m1<<M1 so, in our case, B1(M1-m1)≈B1M1. The rate at which m1 
loses population through recombination with electrons is proportional 
to Am1. It is consequently not surprising that the final population of m1 in 
Eq. (63) is proportional to the ratio B1M1/Am1 and that a similar result 
holds for m2. 

As temperature increases, γ increases rapidly. Consequently, from 
Eq. (62), when temperature increases, Nγ(T) decreases rapidly and from 
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Eq. (61), n also decreases rapidly. Without electrons in the trap, ther-
moluminescence must also decrease. A plot of n from Eq. (61) against 
irradiation temperature is shown in the solid line of Fig. 4. For the 
limiting cases of high and low temperature, the limiting values of Eq. 
(61) are given by. 

n→N for low temperature: Nγ(T)>>N, 

n →
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

2NNγ(T)
√

for  high  temperature:Nγ(T) << N⋅ (65) 

For irradiation temperatures below 130 K, the steady-state trap 
population is seen to be close to N = 3 × 109 cm− 3. The trap population n 
as simulated at 100 K is 2.7 × 109 cm− 3, indicating that the simulated 
results approach within 90% of the steady-state value. 

5.6. Relaxation at low to mid temperatures 

The equations governing relaxation are the same as Eqs. 58–60 but 
with X = 0, 

dn
dt

= −
Am2m2 + Am1m1

A(N − n) + Am2m2 + Am1m1
nγ, (66)  

dm1

dt
= −

Am1m1

A(N − n) + Am2m2 + Am1m1
nγ, (67)  

dm2

dt
= −

Am2m2

A(N − n) + Am2m2 + Am1m1
nγ. (68) 

Since m1<<n and as per Eq. (67), m1 is not being replenished, the 
recombination of electrons with m1 can only have a minimal effect on n 
and we can neglect it in Eq. (66). Also, since nv, nc, m1≪n, m2, conser-
vation of charge requires n ≈ m2. Thus, Eqs. (66) and (68) both reduce to 

dn
dt

=
Am2n2γ

AN + (Am2 − A)n
. (69) 

Equation (69) can be immediately integrated to find 

t=
1
γ

A
Am2

[
N
n
−

N
ND

+

(
Am2

A
− 1

)

ln
(nD

n

)]

, (70)  

where nD is the value of the trap concentration at the end of irradiation 
or the beginning of relaxation. For the special case of A=Am2, Eq. (70) 
can be inverted to find n as a function of time t, 

n=
nD

1 + nD
N γt

. (71) 

The trap concentration after a relaxation period of 60 s is shown in 
the dashed line in Fig. 4. As can be seen in Figs. 3 and 4, the temperature 
dependence of the simulated TL in Fig. 3 and the trapped electrons 

Fig. 4. The concentration of trapped electrons (n) as a function of the temperature of excitation as determined by the theory. The solid line shows the concentration 
at the end of excitation and the dashed line at the end of 60 s of relaxation. 
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concentration from Eqs. (61) and (71) have similar appearance for the 
chosen set of parameters. 

6. Discussion 

In this work, we use a previously presented energy-level model 
which can explain the occurrence of temperature ranges below a certain 
TL peak, in which the sample is not excitable by irradiation that can 
excite the peak if applied at lower temperature. The motivation is the 
experimental results in calcium tungstate and semiconducting diamonds 
published ~50 years ago. In both cases, a glow curve with two peaks at 
about 150 K and 260 K are excitable when the sample is UV irradiated at 
LNT or other temperatures below that of the lower peak. However, at 
temperatures above that of the first peak, the excitation reduced very 
quickly with increasing temperature so that well below the temperature 
of the second peak it was not excitable at all. We have considered a 
model previously used to explain the anomalous heating rate effect. The 
model includes an electron trap, a hole trap and a hole recombination 
center. We have written the relevant set of coupled differential equa-
tions and for a certain set of trapping parameters, solved the three stages 
of excitation, relaxation and heating. This was done by simulation 
consisting of numerical solution of the equations and by a theoretical 
approximate approach. The results of the two approaches are practically 
the same, and are rather similar to the mentioned experimental results. 

A comment should be made on the parameter ranges for which 
similar effects may occur. Due to the complex nature of the described 
process, this can be done only in very general terms. The effect requires 
two centers and one trap. The first center is thermally stable and has a 
relatively strong recombination coefficient and the second is thermally 
unstable and has a weak recombination coefficient. The trap must 
become thermally unstable at a lower temperature than the second 
center. 

We have also considered the effective trapping parameters of the two 

simulated peaks. Taking into consideration the complicated process 
involved, one cannot expect the evaluated parameters to be exactly the 
same as those inserted into the simulating program. We used for the 
analysis a peak-shape method based on the evaluation of the peak 
maximum Tm and the full half-intensity width ω (see e.g., Chen, 1969). 
The evaluated effective activation energies of the two peaks have been 
found to be 0.44 eV and 0.54 eV as compared to 0.49 eV and 0.66 eV 
respectively used in the simulation. The frequency factors have been 
found to be 7 × 1013 s− 1 and 9 × 109 s− 1 as compared to the inserted 
values of 5 × 1012 s− 1 and 3 × 1012 s− 1 respectively. It is worth noting 
that the higher-temperature peak looks nearly like a regular first-order 
peak with the symmetry factor μg~0.40. The lower-temperature peak 
is much more skewed, with μg~0.32. This latter value is rather unusual 
although there are some reports on such experimentally found symmetry 
factors (see e.g., Tiwari et al., 2014; Tamrakar et al., 2015; Guntu et al., 
2020). 

It should be noted that in some other experimental cases mentioned 
in the introduction, in ranges of temperature below that of a certain 
peak, the TL peak was not excitable. We do not suggest that the present 
model covers all these cases, but when one encounters such a situation, 
the possibility of a model like this should be considered. We do not even 
claim that the parameters we used in the model are directly relevant to 
calcium tungstate or semiconducting diamonds. It is only suggested that 
this rather anomalous effect of inability to excite a TL peak at a certain 
temperature range below that of the peak can sometimes be explained 
by such a model. 
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Appendix 

We will derive Eqs. (61), (63) and (64). Setting the derivatives in Eqs. 58–60 to zero, we have 

A(N − n)
A(N − n) + Am2m2 + Am1m1

X =
Am2m2 + Am1m1

A(N − n) + Am2m2 + Am1m1
nγ, (A1)  

B1M1

B1m1 + B2M2
X =

Am1m1

A(N − n) + Am2m2 + Am1m1
(X − nγ), (A2)  

B2M2

B1m1 + B2M2
X =

Am2m2

A(N − n) + Am2m2 + Am1m1
(X − nγ). (A3) 

Taking the ratio of Eq. (A2) to (A3), we have 

B1M1

B2M2
=

Am1m1

Am2m2
. (A4) 

Thus, 

m1 =
B1M1

B2M2

Am2

Am1
m2. (A5) 

From conservation of charge, we know that n=m1 +m2 and thus, 

n=m1 +m2 =

(

1+
B1M1

B2M2

Am2

Am1

)

m2. (A6) 

Rearranging (A6), we have 

m2 =
B2M2/Am2

B1M1/Am1 + B2M2/Am2
n. (A7) 

Because n=m1+m2, it immediately follows that 

m2 =
B1M1/Am1

B1M1/Am1 + B2M2/Am2
n. (A8) 
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Eliminating the common denominator from Eq. (A1), we have 

A(N − n)X =(Am2m2 +Am1m1). (A9) 

Substituting Eqs. (A7) and (A8) into Eq. (A9), we have 

A(N − n)X =

(
B1M1 + B2M2

B1M1/Am1 + B2M2/Am2

)

n2γ. (A10) 

Equation (A10) is quadratic in n and has the solution as given by Eq. (61). 
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