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a b s t r a c t

Time-resolved infrared-stimulated luminescence (TR-IRSL) signals from feldspar samples have been the

subject of several recent experimental studies. These signals are of importance in the field of

luminescence dating, since they exhibit smaller fading effects than the commonly employed contin-

uous-wave infrared signals (CW-IRSL). This paper presents a semi-empirical analysis of TR-IRSL data

from feldspar samples, by using a linear combination of exponential and stretched exponential (SE)

functions. The best possible estimates of the five parameters in this semi-empirical approach are

obtained using five popular commercially available software packages, and by employing a variety of

global optimization techniques. The results from all types of software and from the different fitting

algorithms were found to be in close agreement with each other, indicating that a global optimum

solution has likely been reached during the fitting process. Four complete sets of TR-IRSL data on well-

characterized natural feldspars were fitted by using such a linear combination of exponential and SE

functions. The dependence of the extracted fitting parameters on the stimulation temperature is

discussed within the context of a recently proposed model of luminescence processes in feldspar. Three

of the four feldspar samples studied in this paper are K-rich, and these exhibited different behavior at

higher stimulation temperatures, than the fourth sample which was a Na-rich feldspar. The new

method of analysis proposed in this paper can help isolate mathematically the more thermally stable

components, and hence could lead to better dating applications in these materials.

& 2012 Elsevier B.V. All rights reserved.

1. Introduction

Time-resolved optically stimulated and infrared stimulated
luminescence (TR-OSL and TR-IRSL) time-signals from feldspar
samples have been the subject of several recent experimental
studies ([1,2] and references therein). These signals are of impor-
tance in the field of luminescence dating, since they are believed
to exhibit smaller fading effects than the more commonly
employed continuous wave infrared stimulated luminescence
(CW-IRSL) signals from these materials. Time-resolved experi-
ments provide a simple yet powerful method of separating the
various recombination routes in a variety of materials.

One of the common assumptions made during analysis of time
resolved luminescence signals from feldspar and quartz is that the

observed luminescence decay can be expressed as the sum of
several exponential decay functions. Several experimental studies
have identified five ranges of lifetimes in these decaying
exponentials, namely 30–50 ns, 300–500 ns, 1–2 ms, �5 ms, and
410 ms ([3–8]). Some of these lifetimes were interpreted as due
to internal transitions within the recombination centers [5]. The
assumption that the TR-OSL signal is composed of several decay-
ing exponentials was discussed critically by Ankjærgaard et al.
[9], who proposed that it may not be true.

The mathematical expression describing the shape of the
TR-OSL and TR-IRSL signals from feldspars is an open research
question. In a recent study Jain and Ankjærgaard [1] compared
time resolved signals from feldspars under resonant excitation
using IR LEDs, as well as under non-resonant excitation using
green LED stimulation. Their experiments showed that the use of
stimulating light of different wavelengths allows the separation of
resonant IR excitation and non-resonant green excitation pro-
cesses in feldspars. These authors examined the changes occur-
ring in the decay shape of such signals as a function of photon
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energy, storage time after irradiation, and thermal or optical pre-
treatments of the samples. These experimental results were
interpreted within the framework of a model containing several
possible recombination routes. Specifically the model includes
three possible pathways for charge movement, namely via the
ground and excited states of the trap, via the band tail states and
through the conduction band. As discussed in detail in Jain and
Ankjærgaard [1], the decay form of time resolved signals is most
likely not a simple linear sum of exponential decays. In order to
analyze their data these authors defined two integral regions
termed as the ‘Fast signal’ and the ‘Slow signal’, which were
defined by integration over different time intervals of the lumi-
nescence signals.

This paper presents a new semi-empirical attempt to mathe-
matically characterize the shape of TR-IRSL signals, and to compare
the extracted fitting parameters for several different feldspar
samples and at a range of stimulation temperatures. A method of
analyzing time-resolved experimental data from feldspar is sug-
gested, using a linear combination of an exponential and a
stretched exponential (SE) function. These two mathematical
components used in the new fitting function are discussed in
connection with the above mentioned ‘Fast signal’ and ‘Slow signal’
studied by Jain and Ankjærgaard [1].

The advantage of using the well-known stretched exponential
functions is that their mathematical properties have been studied
extensively, in connection with a variety of relaxation lumines-
cence phenomena (see for example the recent book [10], and
references therein). Even though extensive previous theoretical
work has shown that relaxation phenomena arising from charge
hopping or from tunneling processes can be described mathema-
tically by SE functions, whether SE functions apply to IRSL from
feldspar remains to be seen. The OSL decay curve from quartz
could presumably also be fitted adequately by an exponential
plus a stretched exponential function, but overwhelming experi-
mental evidence has shown that the OSL signal from quartz is, in
fact, a linear combination of exponentials.

Although the proposed method of analysis is semi-empirical,
the information extracted from the experimental time-resolved
curves can provide us with valuable insight in the various relaxa-
tion processes taking place in feldspar samples. In this paper we
explore the possibility of analyzing these signals on a semi-
empirical basis, and also examine the physical implications of
analyzing time resolved signals obtained under different stimula-
tion temperatures.

Typical TR-IRSL experimental data for four feldspar samples
were fitted accurately, and for a range of stimulation temperatures
between 50 and 250 1C. The best possible estimates of the fitting
parameters were obtained using five popular commercially avail-
able software packages, and by a variety of global optimization
techniques. The results from the different software packages and
fitting algorithms were in close agreement with each other. The
dependence of the extracted fitting parameters on the stimulation
temperature is discussed within the context of a recently proposed
model of luminescence processes in feldspar [1].

1.1. The stretched exponential (SE) function

Time-resolved luminescence spectroscopy is widely used in
the physical, chemical and biological sciences to get information
on the structure and dynamics of a variety of luminescent
systems. For an extensive list of references pertaining to the SE
function and its use to describe luminescence relaxation phenom-
ena, the reader has referred for example to the recent book by
Berberan-Santos [10], and the review paper by Chen [11]. In this
section we summarize some of the mathematical properties of
the SE function, and describe how one can obtain the underlying

distribution of decay times, when the luminescence decay law I(t)
is known.

Throughout this paper we use the same mathematical notation
as in the comprehensive paper by Berberan-Santos et al. [12],
unless otherwise indicated. These authors considered the follow-
ing very general first order phenomenological equation, to
describe the luminescence decay law I(t)

dI

dt
¼�kðtÞI, ð1Þ

where I(t) is the luminescence intensity and k(t) represents a
time-dependent distribution of decay constants.

In the simplest possible situation, the decay constant k(t) is
independent of time, and the solution of Eq. (1) is a simple
exponential decay of the form

IðtÞ ¼ Ið0Þe�kt ð2Þ

In cases where an underlying distribution of rate constants k(t)
is present, the luminescence decay will no longer be a simple
exponential decay as in Eq. (2), but can be represented instead as
a general linear combination of single exponentials e�kt, in the
following form:

IðtÞ ¼

Z 1
0

HðkÞe�ktdk ð3Þ

This relation defines mathematically the function H(k) as the
inverse Laplace transform of I(t). From a physical point of view,
the function H(k) in Eq. (3) can be understood as a distribution of

amplitudes for the simple exponential decay terms e�kt.
By rearranging Eq. (1) we obtain

kðtÞdt¼�
dI

I
ð4Þ

Eq. (4) can be integrated formally to yield:

IðtÞ ¼ Ið0Þexp �

Z t

0
kðuÞdu

� �
¼ exp �

Z t

0
kðuÞdu

� �
, ð5Þ

where the decay law I(t) was normalized by setting I(0)¼1. The
parameter u represents a dummy integration variable with the
dimensions of time.

The amplitude distribution function H(k) is also normalized,
since Eq. (3) with I(0)¼1, also implies that
Z 1

0
HðkÞdk¼ 1 ð6Þ

Berberan-Santos et al. [12] discussed the important topic of
extracting the underlying distribution of rate constants H(k) from
the experimental luminescence intensity data I(t). They pointed
out that this is an ill-conditioned problem, since small changes in
the experimental decay I(t) can cause arbitrarily large changes in
the amplitude distribution function H(k). These authors also point
out that it is even possible to fit I(t) accurately with the sum of a
few exponential decay terms, even though the physical system
possesses an underlying distribution of rate constants. In practice
researchers commonly use a mathematical function that can best
describe empirically the experimental data. In many cases a
Lorentzian or Gaussian continuous distribution function is cho-
sen, to describe the distribution k(t) of the decay rate constants
for the physical system under consideration. Berberan-Santos
et al. [12] also points out that one can use the SE functions in a
complete empirical basis; in such cases the SE fittings provide an
indication of the amount of deviation of the luminescence decay
law from an exponential behavior.

Berberan-Santos et al. [12] applied the above mathematical
formalism to the Kohlrausch decay law, or stretched exponential
(SE) function. The Kohlrausch luminescence decay law has the
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following mathematical form:

IðtÞ ¼ exp �ðt=t0Þ
b

h i
, ð7Þ

where the dimensionless parameter 0obo1 and t0 is the
characteristic decay time of the SE, with the dimensions of time.
The SE function in Eq. (7) is characterized by two distinct regions;
in the initial time region the SE function decays faster than an
exponential of lifetime t0, while in the second region it decays
slower than this exponential. For small values of the parameter
b these two time regions have very different behaviors, but as
b approaches 1, the two behaviors become very similar. These
behaviors are shown in Fig. 1a, while in Fig. 1b the SE functions
are compared for different values of the parameter b, with the
same decay constant t0¼4 ms.

A time-dependent rate coefficient k(t) can be calculated by
substituting I(t) from Eq. (7) into the general Eq. (4), to obtain

kðtÞ ¼
b
t0

t

t0

� �b�1

ð8Þ

The inverse of the decay rate k(t) is referred to as the decay time

t¼1/k(t).
In addition to the distribution of decay rate constants H(k)

defined above, the same authors also defined a distribution
f(t) of the decay time constants t¼1/k(t). Such a distribution
of time constants f(t) can be defined by using an equation similar

to Eq. (3), namely

IðtÞ ¼

Z 1
0

f ðtÞe�t
tdt ð9Þ

The two distribution functions H(k) and f(t) are complemen-
tary, in the sense that they describe the distribution of the decay
rate constants k(t), and of the decay time constants t¼1/k(t)
correspondingly. The relationship between the two distribution
functions H(k) and f(t) is (Berberan-Santos et al., [12], in their
Eq. (11))

f ðtÞ ¼ 1

t2
H

1

t

� �
ð10Þ

As pointed out above, the distribution of rate constants H(k)
can be obtained by taking the inverse Laplace transform of the
luminescence intensity I(t) as in Eq. (3). In the case of the
stretched exponential, it is not possible to obtain H(k) in close
analytical form. However, Berberan-Santos et al. [12] presented
the following two general equations for obtaining H(k) by numer-
ical integration:

HbðkÞ ¼
t0

p

Z 1
0

expð�kt0uÞ

� exp �ub cosðbpÞ
h i

sin ub sinðbpÞ
h i

du ð11Þ

and

HbðkÞ ¼
t0

p

Z 1
0

exp �ub cos
bp
2

� �� �
cos ub sin

bp
2

� �
�kt0u

� �
du

ð12Þ

Eq. (11) can be used to evaluate numerically the integral for
large values of k, while Eq. (12) is easier to integrate numerically
and can be used for small values of k. The same authors also
presented approximate analytical expressions for H(k). In this
paper we use Eqs. (11) and (12) to obtain numerically the distri-
butions functions H(k), for specific values of the parameter b.
Examples of the two distributions obtained for H(k) and f(t) by
using Eqs. (10)–(12) are shown in Fig. 2a and b.

1.2. Sample characteristics and experimental details

Four museum specimens of feldspar samples (FL1, FL2_1, FL2_2
and FL3) were used in this study. X-ray diffraction analysis
indicated that the major fractions in FL3 were andesine, and that
samples FL1, FL2_1 and FL2_2 were microclines. Diopside was
present in all the samples. FL1 additionally contained albite, while
FL2_1 contained quartz and oligoclase in smaller proportions
(Table 1). Elemental concentrations were estimated using ICP-MS
measurements. Assuming that the feldspars contained only K, Na
and Ca, the ratios of K:Na:Ca were calculated and these values
place FL1, FL2_1 and FL2_2 in the alkali feldspar series. However,
sampled FL3 were placed in the plagioclase feldspar series
(Table 1). More details about the samples are given in Morthekai
et al. [13].

The samples were crushed gently using agate mortar and
sieved to obtain the 90–150 mm size fraction, which was used
without any further chemical treatment. A few milligrams of
samples were mounted on a stainless steel disk using Silkospray
silicone oil.

A Risoe TL/OSL Reader DA-20 equipped with pulsing unit and
Photon Timer was used for all measurements in this study (Lapp
et al., [14] and Bøtter-Jensen et al., [15]). The stimulation was
achieved by pulsed IR LEDs (870740 nm) using ON–OFF time of
50–1000 ms. Total stimulation time was 100 s and hence 95
thousand pulses with a pulse period of 1050 ms were used.
The stimulated luminescence emission was detected using a

τo=4 μs
β=0.417

Time t, μs
0 100 200 300

A
m

pl
itu

de
 (a

.u
.)

0.00

0.25

0.50

0.75

1.00
Stretched exponential
Exponential

Time t, μs
0 10 20 30 40

In
te

ns
ity

 (a
.u

.)

0.0

0.4

0.8

1.2

β=0.5
β=0.7
β=0.9
τ=1 μs

Fig. 1. (a) Comparison of SE and exponential functions for the same time constant

t0¼4 ms. (b) Examples of stretched exponential functions calculated for different

values of the parameter b, and for a fixed value of the decay time t0¼1 ms.

V. Pagonis et al. / Journal of Luminescence 132 (2012) 2330–23402332



Author's personal copy

photomultiplier tube (EMI 9235QB; 30% QE at �395 nm) and a
combination of optical filters BG-39 (2 mm ) and Corning 79–59
(4 mm) were used. These filter combinations transmitted photons
in the wavelength region of 395750 nm. The heating rate was
2 1C/s, and heating was done in nitrogen gas atmosphere.

Complete sets of data were obtained at stimulation tempera-
tures varying from 50 1C to 250 1C, at an interval of 25 1C. All the
samples were given an initial dose of 61.8 Gy, except FL2_2
sample which was given a dose of 12.4 Gy. The samples were
preheated to 280 1C for 60 s, before measuring the TR-IRSL signals
at the variable stimulation temperature (the preheat temperature
was 240 1C for sample FL3). After every TR-IRSL measurement and
before measuring the signal at a higher stimulation temperature,

the remnant luminescence signals were removed by illuminating
the sample with IR, while the samples were held for 200 s at
250 1C. Furthermore, after every TR-IRSL and this combined
thermal and optical treatment, a TL measurement upto 450 1C
was made to monitor for changes in the TL glow curve shape. No
changes in shape were observed. The data were normalized by the
intensity at the end of ON time (50 ms) and, only the OFF time
data were used for further analyses.

1.3. Analysis of TR-IRSL experimental data

In this paper we propose a new method of fitting TR-IRSL data
on a semi-empirical basis, by using a linear combination of an
exponential decay and a stretched exponential function. The
alternative possibility of fitting this experimental data with the
sum of three exponential decay functions is discussed later in
this paper.

Fig. 3 shows typical TR-IRSL experimental data from Jain and
Ankjaergaard ([1], in their Fig. 7a). An aliquot of orthoclase feldspar
was given a dose of 25 Gy followed by a preheat temperature of
260 1C for 60 s, and the TR-IRSL signal was measured at 50 1C. The
solid line represents the least squares fit with an equation of the

Table 1
Sample characteristics.

Sample Mineral assemblagea,b K:Na:Cac (%)

FL1 Microcline maximum:Albite low:Diopside 67:30:3

FL2_1 Microcline intermediate:Quartz:Oligoclase:Diopside 68:26:6

FL2_2 Microcline intermediate:Diopside 79:15:6

FL3 Andesine:Diopside 3:54:43

a Minerals are listed in order of abundance in each sample.
b Obtained from XRD analyses.
c Obtained from ICP-MS analyses.
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Fig. 3. (a)Time-resolved experimental data from Jain and Ankjærgaard [1], their

Fig. 7a, for an aliquot of orthoclase feldspar. The aliquot was given a dose of 25 Gy

followed by a preheat temperature of 300 1C for 60 s, and measured at 50 1C. The

curve has been normalized to the first experimental point of the TR-IRSL off-time

curves, and is fitted with a linear combination of exponential and stretched

exponential functions as shown in Eq. (13). The inset shows the first 60 ms of the

same data. (b) Residuals (difference between experimental and fitted values) as

function of time. (c) Distribution of the residuals for the fitted data in (a).
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form:

IðtÞ ¼ A1 exp½�t=t1�þA0 exp½ð�t=t0Þ
b
�þbgd ð13Þ

where the first term is characterized by a single exponential decay
time t1 and an amplitude A1, while the second term is character-
ized by the two parameters t0 and b of the stretched exponential
function with a corresponding amplitude A0. The goal of this paper
is to obtain the best possible estimates of the six parameters
appearing in Eq. (13), and to interpret the fitting values and trends
in terms of the most recent and most comprehensive feldspar
model. Furthermore, we compare the results from the best fitting
procedures used in five popular commercially available software
packages.

The data shown in Fig. 3 has been normalized to the first
experimental point, and contains a total of 2000 experimental
data points. The normalization of the experimental data
imposes an additional restriction on the three amplitude para-
meter amplitudes A1, A0 and bgd; these parameters cannot be
considered independent of each other, but rather they have to
satisfy the relationship:

Ið0Þ ¼ A1þA0þbgd¼ 1 ð14Þ

By substituting the value of A1 from Eq. (14) into Eq. (13), we
arrive at the following equation:

IðtÞ ¼ A1 exp½�t=t1�þð1�A1�bgdÞexp½�ðt=t0Þ
b
�þbgd ð15Þ

This is the equation used to fit the experimental data in Fig. 3,
and it contains five independent fitting parameters t1, t0, A1, b and
bgd. Since the two amplitudes A1 and bgd are assumed to be positive,
their values in Eq. (15) are restricted between 0 and 1. During the
fitting procedures, the values of the two decay constants t0 and t1

are allowed to vary within the very broad limits of 1 ms and 40 ms.
The value of the stretched exponential parameter b is allowed to
vary between 0 and 1. These are the only numerical restrictions
placed on the parameters during the fitting procedures, unless
otherwise indicated in the results section of this paper. Next we
provide an overview of the software packages and optimization
algorithms used to fit the experimental data.

1.4. Global optimization algorithms in Mathematica, MATLAB,

MINUIT, Sigmaplot and ORIGIN

We have carried out numerical and statistical analysis of the
data by using several different software packages and a variety of
optimization methods. Global optimization algorithms attempt to
find the global optimum, typically by allowing decrease as well as
increase of an objective or merit function. This function is
typically a combination of the objective and constraints. Such
algorithms are usually computationally more demanding than
local optimization methods. It is noted that in general, finding a
global optimum can be arbitrarily difficult, even without con-
straints, and so any of the commonly used best fit methods may
fail. The software manuals for the packages used here indicate
that it may frequently be useful to optimize the function several
times, with different starting conditions, and to take the best of
the results produced in this manner.

Firstly, we use the composite fitting routines in the program
MINUIT [16]. Specifically this software uses a sequence of two
fitting routines, termed SIMPLEX and MIGRAD. The SIMPLEX
method is a multidimensional minimization routine which does
not use first derivatives and is usually much slower than MIGRAD.
MIGRAD is the best minimizer available within MINUIT. It is a
variable metric method with inexact line search. Its main weak-
ness is that it depends heavily on knowledge of the first deriva-
tives of the data, and fails miserably if they are very inaccurate.

Secondly, we use several numerical global optimization fitting
routines within the commercially available software Mathematica

as follows. Mathematica uses the numeric global optimization
routine NMinimize, which includes the following nonlinear opti-
mization methods: Nelder–Mead, differential evolution, simulated

annealing and random search. These techniques are examples of
direct search methods, which tend to converge more slowly, but
can be more tolerant to the presence of noise in the function and
constraints. The global optimization routines in Mathematica are
supposed to be flexible enough to avoid being trapped by local
optima. In order for NMinimize to work, it needs a rectangular
initial region to start. This is similar to other numerical methods,
in which the users provide a starting point for the fitting
procedures. The initial region is specified by giving each variable
a finite upper and lower bound. We now describe briefly the four
algorithms used within the Nminimize command in Mathematica.

The Nelder–Mead method is a direct search method. For a
function of n variables, the algorithm constucts a ‘‘polytope’’ in
n-dimensional space. The fitting process is assumed to have
converged if the difference between the best function values in
successive polytopes and successive best points, are less than the
tolerances provided by the parameters AccuracyGoal and Preci-
sionGoal. The values of these goal parameters can be set by the
user. The Nelder–Mead method tends to work reasonably well for
problems that do not have many local minima.

Differential evolution or genetic algorithm is a stochastic optimiza-
tion method, which is based on the principle of biological evolution.
This technique starts with a population of parameter sets randomly
generated in a defined search space, and the optimum is searched by
applying a numerical evolution mechanism. The advantage of this
type of algorithm is that it works on a whole population of possible
solutions, thus improving the probability of finding the global
optimum. As the evolution progresses during these algorithms, it
leads to a gradually improved population of individuals, while the
mechanisms of selection, crossover and mutation are involved in the
creation of new generations. The genetic process is assumed to have
converged if the difference between the best function values in the
new and old populations, as well as the distance between the new
best point and the old best point, are less than the tolerances
provided by the user. The differential evolution method is computa-
tionally expensive, but is relatively robust and tends to work well for
problems that have more local minima. Such techniques have been
used in quartz luminescence modeling by Adamiec et al. [17,18].
Bluszcz and Adamiec [19] also used this type of differential evolution

algorithm in carrying out a deconvolution of OSL decay curves into
first-order components.

The random search algorithm works by generating a population
of random starting points and uses a local optimization method
from each of the starting points, in order to converge to a local
minimum. The best local minimum is chosen to be the solution.
Convergence for random search is determined by the convergence
of the local method for each starting point.

Simulated annealing is also a simple stochastic function mini-
mizer. It is motivated from the physical process of annealing,
where a solid is heated to a high temperature and allowed to cool
slowly. The physical process allows the atomic structure of the
metal to settle to a lower energy state, thus becoming a tougher
metal. Using optimization terminology, annealing allows the
structure to escape from a local minimum, and to explore and
settle on a better, and hopefully a global minimum. Like the
random search method, simulated annealing uses multiple starting
points, and finds an optimum starting from each of them. For each
starting point, this process is repeated until the maximum
number of iterations are reached, the method converges to a
point, or the method stays at the same point consecutively for the
number of iterations specified by the user.

V. Pagonis et al. / Journal of Luminescence 132 (2012) 2330–23402334



Author's personal copy

Thirdly, we use the commercially available software Sigmaplot.
This software employs a Levenberg–Marquardt type of least
squares procedure, to find the best fit parameters.

Next, we used the Levenberg–Marquardt least squares algo-
rithm in the popular software MATLAB to fit the experimental
data. We also implement and use a two-step optimization algo-
rithm in MATLAB, which consists of a first step using simulated
annealing algorithm, followed by a least squares minimization
technique.

Finally, the commercially available software package ORIGIN is
used with the option of the Levenberg–Marquardt algorithm to
minimize the chi-squared value. Several combinations of starting
values for the fitting parameters were tested in this algorithm,
and all combinations gave the same results, with one notable
exception which is discussed in the Results section of this paper.

2. Results

A comparison of the results from the best fitting procedures
used in the five software packages is given in Table 2. The results
from several algorithms used in the software package Mathematica

were identical, upto the fourth significant figure. Specifically the
Levenberg–Marquardt, Nelder–Mead, random search and simulated

annealing gave identical results. As mentioned previously, the
values of the two amplitudes A1 and bgd in Eq. (15) are restricted
between 0 and 1, while the values of the two decay constants t0

and t1 are allowed to vary within the very broad limits of 1 ms and
40 ms. The value of the stretched exponential parameter b is
allowed to vary between 0 and 1. In a few cases the differential

evolution and the Nelder–Mead algorithms would converge to a
local instead of a global optimum solution; in such situations,
restricting the range of the allowed parameter values was suffi-
cient to produce a new solution, consistent with the rest of the
algorithms in Mathematica.

Fig. 4 shows an example of the results of the intermediate
steps taken by the NMinimize command in Mathematica. Specifi-
cally this figure shows the effect of using different starting points
(t1,t0) in the best fitting routines. Three different pathways are
shown for the optimization procedure, with the starting values
(t1,t0)¼(1,1), (10,30) and (10,10) ms, in all the three cases, the
global optimum solution is reached at (t1,t0) ¼(3.00, 11.36) ms,
even though it is reached via very different pathways. The starting
values for the amplitudes A1 and bgd are taken as 0.3 and 0.01
correspondingly, and the starting value of b was taken in the
middle of the interval, b¼0.5.

The goodness of fit was tested by the Figure of Merit (FOM) by
Balian and Eddy [20] which can be expressed as

FOM¼
X 9YExpt�YFit9

A
, ð16Þ

where YExp is the experimental set of data, YFit is the fitted curve,
and A is the area of the fitted curve. The Figure of Merit (FOM) for

the fitted data in Fig. 3 was FOM¼012¼1.2%, from all software
packages and algorithms used in this paper. In general, a FOM
value around 1% is considered an excellent fit for experimental
data. Also Fig. 3b shows the residuals, representing the difference
between the experimental data YExp and the corresponding best
fit values YFit. The values of the residuals are less than 1.5% of the
corresponding experimental values YExp, for all data points. In
Fig. 3c the distribution of the residuals is shown, fitted to a
Gaussian function; the good fit indicates that the residuals can be
considered a reasonable approximation to white noise.

Fig. 5 shows an alternative fit to the same experimental data,
using the linear combination of three exponential functions. The
result of the fits is excellent, with the residuals being smaller than
0.4% of the experimental values, at all data points. The FOM value
of this fit is 1.4%.

The results from the MINUIT optimization procedures were
very close to all the algorithms used in Mathematica. The differ-
ence between the two packages were of the order of 1% in all
parameters, except in the case of parameter t1 which varies by
�4% between these two software packages.

The Levenberg–Marquardt algorithms in Sigmaplot, ORIGIN and
in MATLAB produced identical results with the optimization
techniques in Mathematica. It is worth mentioning here a specific
case involving ORIGIN software. When the initial values of t1,
t0 and b were chosen as 39 ms, 39 ms, and 0.9 then another
minimum was found with a mathematically satisfactory fit.
Furthermore, if the starting value of b was chosen as b¼0.1 in
the same example, then the ‘‘correct’’ value of the fitting para-
meters were recovered. This example serves as a warning that
initial values far from the ‘‘correct’’ values may give a false result.

Table 2
A comparison of the results from the best fitting procedures used in the four software packages, as discussed in the text. In the case of Mathematica four different

algorithms are used: genetic algorithm, simulated annealing, Levenberg–Marqardt, Nelder–Mead and random search.

Parameter MINUIT Sigmaplot Mathematica MATLAB MATLAB ORIGIN

(2-stage algorithm) (Levenberg–Marqardt) (4 algorithms) (2-stage algorithm) (Levenberg–Marqardt) (Levenberg–Marqardt)

A1 0.299 0.289 0.289 0.280 0.289 0.289

t1 3.127 3.002 3.002 2.960 3.002 3.002

t0 11.52 11.35 11.35 10.93 11.35 11.35

b 0.603 0.602 0.602 0.594 0.602 0.602

bgd 0.00439 0.00440 0.00448 0.00436 0.0048 0.00448
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Fig. 4. Example of the results from intermediate steps taken by the NMinimize

command in Mathematica, using different starting points (t0,t1) in the best fitting

routines. Three different pathways are shown for the optimization procedure, with

the starting values (t1,t0)¼(1,1), (10,30) and (10,10) ms; in all the three cases, the

global optimum solution is reached at (t1,t0)¼(3.00, 11.36) ms, even though it is

reached via very different pathways. The initial values of the other parameters

were kept constant with A1¼0.3. bgd¼0.01 and b¼0.5.
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However, if one uses several different algorithms based on
completely different search methods, one can have increased
confidence that a true global minimum may have been reached.

In some cases, the software packages and algorithms tend to
converge to local instead of global optimum solutions; this is a
well known problem, inherent in all fitting procedures of this
type. However, the fact that several different types of software
packages as well as several diverse numerical algorithms in
Table 2 converge towards the same best set of fitting parameters,
provides us with confidence that a global optimum solution very
likely has been reached during the fitting procedure.

3. New experimental data for feldspar samples

Fig. 6a shows typical TR-IRSL experimental data for stimula-
tion temperatures of 50, 225 and 250 1C. Fig. 6b shows the same
data on a log–log scale. The data shown was normalized to the
first experimental point, and each curve contained a total of 2441
experimental data points, measured every 0.4096 ms. For clarity,
only every tenth experimental point is shown in Fig. 6a and b for
times t420 ms. Furthermore, the three experimental curves were
multiplied by the scaling factors shown, in order to show more
clearly the differences between them. The solid lines in Fig. 6a
and b represent the least squares fits to the data using Eq. (15). In
all fitted data presented in this paper, the FOM values ranged
from 0.3% to 4%, indicating that the semi-empirical function (15)
can successfully represent time resolved signals in feldspars.

Fig. 7 shows the parameters extracted from the experimental
data in Fig. 6, at different stimulation temperatures in the range of
50–250 1C, and for all 4 feldspar samples studied. Specifically,
Fig. 7a shows the time constant t1 characterizing the single
exponential function in Eq. (15), as a function of the stimulation
temperature. Similarly, Fig. 7b and c shows the corresponding
fitting parameters t0, b for the stretched exponential function.

Fig. 7a shows that as the stimulation temperature is increased,
the decay time t1 characterizing the single exponential function
for samples FL1, FL2_1 and FL2_2 gradually decreases from a
value of �2 ms at 50 1C, to a smaller value of �1.5 ms at the
highest stimulation temperature of 250 1C. Sample FL3 shows a
similar overall behavior, with a smaller decay time t1 gradually
decreasing from a value of �0.8 ms at 50 1C, to a value of �0.6 ms
at a stimulation temperature of 250 1C. This different behavior of
sample FL3 can possibly be attributed to the fact that it is a Na-
rich sample, while the other three samples are K-rich feldspars.

Fig. 7b shows that as the stimulation temperature is increased,
the decay time t0 characterizing the stretched exponential func-
tion for samples FL2_1 and FL2_2 gradually decreases from a
value of �10 ms at 50 1C, to a smaller value of �8 ms at a
stimulation temperature of 250 1C. Samples FL1 and FL3 show
a different behavior, namely an initial increase of the decay time
t0 for temperatures upto �150 1C, followed by a gradual decrease
at the higher stimulation temperatures.
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Fig. 7c shows the corresponding stretched exponential para-
meter b, at the various stimulation temperatures. It is seen that
for samples FL2_1 and FL2_2 this parameter remains practically
constant at a value of b �0.8070.01. Sample FL1 shows a
different behavior, namely a constant value of b �0.66 upto a
stimulation temperature of 100 1C, followed by a gradual decrease
of this parameter to b �0.55 at the higher stimulation tempera-
tures. The Na-rich sample FL3 once more shows a different
behavior than the K-rich samples, namely a small gradual
increase from a value of b �0.40 to a value of b �0.47 at the
higher stimulation temperatures.

Fig. 8a shows the amplitude A1 characterizing the exponential
function, at the various stimulation temperatures. It is seen that

the Na-rich sample FL3 once more shows a different behavior
than the three K-rich feldspars, with its value remaining practi-
cally constant at A1 �0.90 for all stimulation temperatures. This
means that �90% of the initial TR-IRSL signal at time t¼0, is due
to the exponential component for all stimulation temperatures.
Samples FL2_1 and FL2_2 show a similar behavior to each other,
with A1 increasing slowly from �0.60 at 50 1C to �0.80 at 250 1C,
while A1 for sample FL1 increases from �0.40 to �0.70 between
50 1C and 150 1C, and subsequently stays constant. Fig. 8b shows
the corresponding background parameter bgd at the various
stimulation temperatures. It is seen that for three of the samples
this amplitude increases from a value of �0.001 at 50 1C to a
value of �0.010 at 250 1C. The fourth sample FL1 shows a gradual
decrease from �0.010 to �0.007, followed by an increase to
�0.015 at the highest stimulation temperature. It is hypothesized
that this background signal contains contributions from three
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sources: dark counts, isothermal signal, and possibly very slow
relaxation processes. This contribution of this background to the
overall TR-IRSL signal is discussed in detail in [13].

4. Discussion

4.1. ‘‘Fast’’ and ‘‘Slow’’ TR-IRSL signals—luminescence pathways in

feldspars

In this section we discuss a possible interpretation of the
results shown in Fig. 7, in terms of the experimental results and
proposed model of Jain and Ankjærgaard [1]. Recent extensive
experimental work by these authors has elucidated the complex-
ity of the luminescence processes in feldspars. Their time-
resolved experiments were carried out using both resonant
excitation using IR LEDs, as well as non-resonant excitation with
green and blue LED stimulation. These experiments showed that
the use of stimulation light of different wavelengths allows the
separation of resonant IR excitation and non-resonant blue/green
excitation processes in feldspars. These authors examined the
changes occurring in the TR-OSL decay shape as a function of
photon energy, storage time after irradiation, and thermal or
optical pre-treatments of the samples. Their results were inter-
preted within the framework of a model containing several
possible recombination routes, namely (a) via the ground state
and the excited state of the trap, (b) via the band tail states and
(c) through the conduction band. Ground state tunneling is the
most localized recombination process, while conduction band
recombination processes are highly delocalized, and therefore are
likely to access the entire crystal.

The IRSL trap in feldspar is believed to be located at �2–2.5 eV
below the conduction band, and therefore optical stimulation
with blue light at a photon energy of 2.63 eV causes a direct
transition into the conduction band. However, stimulation with IR
light of a wavelength of �1.4 eV causes resonant electronic
transitions from the ground state into the excited state of the
trap. Excitation with green LEDs causes electronic transitions of
an intermediate nature, between blue and IR excitation energies.
It is also believed that a continuum of thermal excitations can
take place from the bottom edge of the band tail states, into the
excited state of the trap, and eventually into the conduction band.
Jain and Ankjærgaard [1] concluded that electrons from the
excited state can either recombine with holes directly by tunnel-
ing, or they may be involved in band tail transport through the
crystal.

The results of these and other recent experimental studies
(Poolton et al. [21]; Thomsen et al. [24]) suggested that the
luminescence production mechanism in feldspars depends criti-
cally on the distance between the electron and the hole traps in
these materials. This distance seems to be one of the more
important elements in determining the shape of luminescence
signals from these materials. Recent modeling work by Pagonis
et al. [25] also supports the important role played by this
parameter in the production of continuous-wave IRSL (CW-IRSL)
signals. These authors presented a model which explained the
dependence of the shape of CW-IRSL signals on the power of the
stimulating light, based on the experimental work of Thomsen
et al. [24].

Jain and Ankjærgaard [1] interpreted changes taking place in
the shape of their signals, on the basis of changes taking place on
the average distance between donors and acceptors. These authors
emphasized that the TR-OSL decay form cannot be interpreted
simply as a linear sum of exponential decays. In order to analyze
their data these authors defined two integral regions termed as the
‘Fast signal’ and the ‘Slow signal’. The Fast signal was estimated by

proxy, using the total integrated signal during the stimulation time
(0–50 ms). The Slow signal was defined as the slowly decaying
component obtained by integrating from 100 to 550 ms when the
IR stimulation has been turned off. The form of the IR and green
stimulated TR-OSL decay signals was strongly dependent on the
stimulation photon energy, suggesting that these signals most
likely arise from different electronic pathways. The difference
between the initial decay rates of the IR and green stimulated Fast
signals led the authors to suggest that the IR Fast signal originates

mostly from nearest-neighbor recombinations, which take place from
the excited state of the trap and the proximal band tail states.
Furthermore, the authors also suggested that the IR and green Slow

signals originate from distant recombinations taking place via a
slower transport within the band tail states. This latter slower
process is likely to be a combination of two competing processes, a
phonon assisted diffusion and a tunneling process.

In the next section the results of Fig. 7 are discussed within
this proposed model of luminescence processes in feldspar [1].

4.2. The effect of stimulation temperature on the initial decay rate of

TR-IRSL signals

In this paper, TR-IRSL data is fitted with a linear combination of
an exponential decay and a stretched exponential function. These
two fitting functions are characterized by a rather short decay time
t1, and a much larger decay time parameter t0 correspondingly.
Furthermore, the SE function is associated with a continuous
distribution of lifetimes and decay rates, examples of which were
shown in Fig. 2. As with any semi-empirical approach, it is not
possible to ‘‘prove’’ that the fitting function in Eq. (15) is the
‘‘correct one’’. However, in the following discussion it will be
shown that the general conclusions from Ref. [1] are consistent
with the results of Fig. 7 in this paper.

Jain and Ankjærgaard [1] concluded from their data analysis
that IR stimulation causes an increase in the initial decay rate of
the Fast signal with stimulation temperature, due to an increase
in the recombination probability. Their TR-IRSL data showed a
large increase in the decay rate with stimulation temperatures
from 50 to 100 1C, and that thereafter the decay rate remained
generally constant (Ref. [1], inset, Fig.4). The change in the decay
rate of the IR Fast signal from 50 1C to 100 1C was interpreted as
follows: at higher stimulating temperatures an increased propor-
tion of electrons escapes from the excited state of the trap, and
are raised into higher energy band tail states; these energy states
are likely to allow relatively efficient sub conduction band edge
transport. Band tails in feldspars are characterized by a variety of
well depths, widths and separations (see for example the discus-
sion in Poolton et al., [22]). In terms of the corresponding electron
wave-function in these materials, one would expect this wave-
function to be more extended in space at higher stimulation
temperatures (Poolton et al., [21–23]), which would lead in turn
to an increased probability of hopping. As a consequence, higher
charge mobility would cause a quicker recombination process,
which would be seen as an increase in the decay rates.

The exponential component data in Fig. 7a show that as the
stimulation temperature increases, the characteristic decay time
t1 decreases, consistent with the proposed model in [1]. In
addition, the discussion in [1] pointed out that the model predicts
a relatively small dependence of the Fast signal on the stimulation
temperature. This is also consistent with the data in Fig. 7a, which
shows that the decay time t1 for three of the studied samples
varies by less than 10% over the range of stimulation tempera-
tures. The behavior of sample FL1 was notably different, with
time t1 decreasing by almost 50% over the range of stimulation
temperatures.
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By inspection of the data in Fig. 7a, one might expect that the
exponential decay component in Eq. (15) will make a significant
contribution to the TR-IRSL signal only within �5 characteristic
decay times, i.e. for the initial time period of �5t1 �10 ms. This is
also consistent with the description and interpretation of the
‘‘Fast signal’’ in Ref. [1].

It is noted that Jain and Ankjærgaard ([1], inset of their Fig. 4),
observed a large change in the decay rate of their Fast signal
between stimulation temperatures of 50 and 100 1C. Our data
does not show the same large change in the decay rate, and this
result should be investigated in future work in other types of
feldspars.

4.3. The effect of stimulation temperature on the slower component

of TR-IRSL signals

Within our interpretation scheme of the empirical Eq. (15), the
main difference between the Fast and Slow TR-IRSL signals is that
the former signal arises from a more localized recombination than
the latter.

Jain and Ankjærgaard [1] pointed out that, since the IR energy
matches the excited state energy of the trap, and the energy of the
green light is close to the ionization energy, the Fast signal arising
from these processes should show a rather small thermal depen-
dence. As mentioned previously, this prediction is in agreement
with the fitting results of Fig. 7a. However, these authors also
point out that one might expect a greater thermal dependence for
the Slow signal, which is hypothesized to arise from charge
transport through the band tail states, due to the Phonon Assisted
Diffusion (PAD) mechanism. This behavior was observed and
quantified for the Slow signals in Ref. [1], with these signals
indeed exhibiting a much larger activation energy of 0.14 eV for
both the IR and green stimulations.

The SE data in Fig. 7b show that the characteristic time t0 of
the SE component varies with the stimulation temperature T,
with the four samples studied showing different behaviors. Fig. 7b
shows that as T is increased, the decay time t0 characterizing the
SE function for samples FL2_1 and FL2_2 gradually decreases from
a value of �10 ms at 50 1C, to a smaller value of �8 ms at 250 1C.
Samples FL1 and FL3 show a non-monotonic behavior, with the
decay time t0 increasing for temperatures upto �150 1C, followed
by a gradual decrease at the higher stimulation temperatures.

The SE data in Fig. 7c show also a different behavior for
parameter b in the four samples studied. The SE parameter b for
samples FL2_1 and FL2_2 remains practically constant at b
�0.80þ0.01 at the various stimulation temperatures. Sample FL1
shows a different behavior, namely a constant value of b �0.66
upto a stimulation temperature of 100 1C, followed by a gradual
decrease of this parameter to b �0.55 at the higher stimulation
temperatures. Sample FL3 also shows a different behavior, namely
a small gradual increase from a value of b �0.40 to a value of b
�0.47 at the higher stimulation temperatures.

These different behaviors of the four samples are most likely
indicative of the presence of multiple slower competing pro-
cesses, taking place at higher stimulation temperatures. It is
hypothesized that these competing processes may involve both
band tail states and/or the conduction band. According to the
proposed band structure in Ref. [1] (their Fig. 3), there exists a
continuum of thermal excitations from the bottom edge of the
band tail states to the excited state of the trap and eventually to
the conduction band. Electrons which are thermally evicted into
the band tail states undergo localized recombination, the extent
of which depends upon electron mobility. The higher the stimula-
tion temperature, the higher the occupied energy level, and the
more delocalized the recombination process.

Jain and Ankjærgaard [1] pointed out that in contrast to the
Fast TR-IRSL signal, the rate of depletion of the Slow signal for
their sample seemed to decrease at higher stimulation tempera-
tures. They attributed this apparent decreased rate of depletion of
the Slow signal to the presence of retrapping effects into the e–h
trap. Such retrapping effects are likely to occur due to the spatial
association of the evicted electrons to the parent trap. These
authors also pointed out that these retrapping effects compete
with an increased probability of hopping and a higher electron
mobility, both of which are more prevalent at higher stimulation
temperatures. The increased hopping and mobility of the charge
carriers can be attributed to a more extended wave-function,
combined with an exponential increase in the density of states at
higher stimulation temperatures. These two effects (retrapping
and increased hopping/mobility) would affect the decay rates in
opposite directions at increasing stimulation temperatures. It is
then possible that competition between these opposing processes
leads to the complex behaviors shown in Fig. 7b and c.

Clearly, further experimental and modeling work is necessary
to ascertain whether the behavior exhibited in Fig. 7 constitute a
universal behavior of feldspar samples.

5. Conclusions

In this paper, a new method is suggested for analyzing TR-IRSL
signals from feldspars. The new method was used successfully to
fit complete sets of experimental data for four feldspar samples,
and for stimulation temperatures between 50 1C and 250 1C.

The fitting in Eq. (15) is certainly empirical, and it is possible to
fit this experimental data with other combinations of functions,
and to achieve equally good, or even better fits to the data. As
mentioned above, Fig. 5 shows an alternative excellent fit to
the experimental data, using the linear combination of three
exponential functions. However, recent experimental work on
feldspars ([1,2]) supports the presence of several possible lumi-
nescence pathways in these materials, and has led to serious
doubts concerning the validity of analyzing these signals using a
linear combination of exponential functions.

We believe that the combination of functions used in this
paper has the following advantages. Firstly, it has the advantage
of requiring fewer fitting parameters than the 3-exponential
fitting procedure; while Eq. (15) has five fitting parameters, the
normalized linear combination of three exponentials requires six
fitting parameters.

Secondly, the use of a stretched exponential to describe the
TR-IRSL signals from feldspars has a possible physical basis, since
it can be tentatively associated with physical processes underly-
ing the mathematical expressions. Specifically, the use of the
stretched exponential function is consistent with extensive the-
oretical work on hopping mechanisms in solids, as well as on
tunneling processes [10,11]. Whether these functions also apply
to feldspars is an open question in research. In addition, experi-
mental work has provided direct experimental evidence for the
existence of band tail states in feldspars, at least at low tempera-
tures (Poolton et al. [21]).

Thirdly, the distributions H(k) and f(t) of time decay constants
k(t) and time constants t(t) correspondingly, can be extracted
from the stretched exponentials as shown in Fig. 2, since their
mathematical properties have been studied previously rather
extensively.

Finally, it has been previously suggested that one could use the
SE functions on a complete empirical basis; in this case the
stretched exponential fits to the experimental TR-IRSL data
provide an indication of the amount of deviation of the lumines-
cence decay law from an exponential behavior [12].
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From the point of view of luminescence dating, a key component
of the model in [1] is that the Slow TR-IRSL signal preferentially
selects electrons that lack proximal donor–acceptors, and one would
then expect it to be more stable thermally. This prediction was
confirmed from the fading experiments in all the samples examined
in [1]. The new method of analysis proposed in this paper can help
isolate mathematically the more thermally stable components, and
hence could lead to better dating applications in these materials.
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