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A B S T R A C T   

For measurement techniques, it is usually important to know the accuracy and detection limits. This issue is 
particularly important in thermoluminescence when studying either low doses or small samples, especially single 
grains. Our focus herein is not on instrumental measurement errors but instead on the inherent noise or un-
certainty in the thermoluminescence process. To this end, we study a simple one–center, one–active-trap model 
that produces a first–order glow curve. A master equation is developed for the statistical noise and probability 
distributions for trap population during both irradiation and heating. In addition to quantifying the probability 
distributions, governing equations are developed for both the mean and the standard deviation of trap population 
during irradiation and heating.   

1. Introduction 

While errors and noise associated with measurement equipment 
have been widely investigated, there is also statistical noise inherent in 
thermoluminescence itself, both during the irradiation and heating 
stages. The noise is particularly important when dealing with either low 
doses or small sample sizes. We will consider a simple system with 
simple first–order kinetics and develop, using a master equation 
approach, quantitative models for the inherent noise for both irradiation 
and heating. 

The importance of noise in thermoluminescence measurements has 
inspired development of new experimental techniques. One approach 
for handling noisy thermoluminescence signals at low doses is to in-
crease the signal–to–noise ratio. One way to do this is to increase the 
heating rate such as with laser heating. CO2 lasers can be used to 
generate rapid heating rates in excess of 104K=s[1,2]. The improved 
signal-to-noise ratio at these heating rates may enable non–destructive 
testing of ceramics [3]. Alternatively, even at high doses, the noise level 
is important when measuring thermoluminescence from small samples, 
such as a single–grain. For this purpose, specialized instruments have 
been developed to minimize instrumental noise when measuring lumi-
nescence from single–grains[4–8]. 

The inherent noise in the irradiation and heating processes of ther-
moluminescence can be quantified using the master equation [9]. The 
master equation has been applied in many fields. It was, for example, 

used to predict the existence of the carbon–monoxide vibrational laser 
[10]. It is also used for analysis of energy distributions of free electrons 
in both plasmas and solids [11–14]. In the field of thermoluminescence, 
the master equation has been used to predict autocorrelation of fluctu-
ations in intensity [15,16]. 

To provide a point of comparison, the next section presents the usual 
(macroscopic) phenomenological model for a one–center one–active–-
trap system. After this, we will use the master equation to describe the 
change in time of the probability distribution for trap occupation levels. 
This will be followed by a study of irradiation including both a model of 
irradiation at low dose and, for a special case, a model of irradiation at 
arbitrary dose. Next, a model for the glow curve during heating is 
developed. In all cases, governing equations are developed for not just 
the trap occupation probability distributions but also for the expected 
trap occupation and its standard deviation. This is followed by a sum-
mary of the results for standard deviation and a discussion. 

2. Phenomenological model 

At its simplest, we need one trap and one center to describe ther-
moluminescence. To obtain Randall-Wilkins behavior at low dose with 
finite rate constants, however, we need a second trap which may be 
disconnected. This is illustrated in Fig. 1 where the first electron trap has 
a concentration of N(cm� 3) with an occupation of n(cm� 3), the second 
trap has a concentration of ND(cm� 3) with an occupation of nD(cm� 3), 
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and the recombination center has a concentration of M (cm� 3) with an 
occupation of m (cm� 3). Am (cm3=s) is the rate constant for recombi-
nation of free electrons with the center. An (cm3=s) is the rate constant 
for trapping of free electrons in the trap N. B (cm3=s) is the rate constant 
for trapping of free holes in the center. The corresponding phenome-
nological equations are: 

dn
dt
¼ AnðN � nÞnc � nγ (1)  

dnD

dt
¼ 0 (2)  

dnc

dt
¼ X þ nγ � AnðN � nÞnc � Ammnc (3)  

dm
dt
¼BðM � mÞnv � Ammnc (4)  

dnv

dt
¼X � BðM � mÞnv (5)  

where X (cm� 3=s) is the production rate of electron–hole pairs due to 
irradiation and γ (s� 1) is the thermal excitation rate from a trap N to the 
conduction band:  

γ¼ sexpð� E = kTÞ (6)  

where E is the activation energy (eV), k is Boltzmann’s constant (eV= K), 
T is temperature (K), and s is a pre–exponential constant (s� 1). 

A large number of measurements have been made of rate constants 
for capture for free electrons or holes in traps or centers [17,18]. Typical 
values range from 10� 10 ​ cm3=s to 10� 5 cm3=s. Typical trap or center 
concentrations of interest in TL range from 1012cm� 3 to 1017cm� 3. 
Consequently, the lifetime of free electrons or free holes, which is often 
measured in microseconds, is typically far less than the time scale over 
which irradiation or heating occurs. It follows that: 

dnc

dt
≪AnðN � nÞnc and

dnv

dt
≪BðM � mÞnv (7) 

This leads to the quasi–steady approximation which allows Eq. (3) 
and Eq. (5) to be simplified to: 

nc ¼
X þ nγ

AnðN � nÞ þ Amm
(8)  

nv¼
X

BðM � mÞ
(9) 

Using Eq. (8) and Eq. (9), we can simplify Eq. (1) and Eq. (4) to: 

dn
dt
¼ fnX � fmnγ (10)  

dm
dt
¼ fnX � fmnγ (11)  

where: 

fn ¼
AnðN � nÞ

AnðN � nÞ þ Amm
(12)  

fm ¼
Amm

AnðN � nÞ þ Amm
(13)  

fn has the physical meaning of being the fraction of free electrons which 
are captured by the trap n while fm is the fraction of them which 
recombine with the center. 

We will assume that the initial conditions before irradiation are: 

n ¼ 0 (14)  

m ¼ nD ¼ m0 (15) 

As an example, in Al2O3:C, values of M and m0 can be inferred from 
optical absorption. Typical experimentally measured values of M and m0 

are 1017 and 1016 cm-3 [19]. 
In sum, Eq. (8) through Eq. (13) are the governing equations for the 

quasi–steady one–center one–active–trap model. In sections which 
follow, we will consider both low–dose cases, for which fn and fm are 
approximately constant, and arbitrary–dose cases, for which fn and fm 
are variable. 

3. Master equation for Low–Dose 

For small samples, such as single grains, or for small doses, the sta-
tistical nature of irradiation and recombination may need to be 
considered. In this section, we will develop equations for the probability 
distributions for trap populations. We will also explore how these dis-
tributions connect to the conventional phenomenological equations. 

Unlike the phenomenological model, it will matter here what type of 
irradiation is applied. In this paper, we will assume that one irradiation 
event results in one electron–hole pair. This generally applies, for 
example, to UV irradiation but not to irradiation by high–energy sources 
such as X–rays or beta rays. 

Let’s consider a sample of volume V and, within this volume, it has M 

centers and N traps. M and N are integers and are connected to the 
macroscopic quantities M and N via: 

M¼M=V and N ¼ N=V (16) 

Each of the N traps may or may not contain a trapped electron. Let Pi 

be the probability that a sample, which might be a single grain, has 
exactly i electrons in its N traps at some time t. Because Pi is a proba-
bility, we will require that: 

XN

i¼0
Pi ¼ 1 (17) 

It is often assumed as an initial condition in thermoluminescence 
problems that the traps are empty. We would express that in terms of Pi 

by: 

Pi ¼

�
1 for i ¼ 0 and t ¼ 0
0 for i > 0 and t ¼ 0 (18) 

For simplicity, we will assume for the rest of Sec. 3 that the dose is 

Fig. 1. Energy level diagram of the model with an active trap N, a disconnected 
trap ND, and a hole recombination center M. During irradiation, electron–hole 
pairs are created with rate X. During heating, the electrons in trap N are 
thermally–excited, with a rate controlled by s;E, and recombine with the holes 
in M. 
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sufficiently low that: 

n≪N and n≪m0 (19) 

From Eq. (19), it follows that the factors fn and fm are approximately 
constant: 

fn � fn0 ¼
AnN

AnN þ Amm0

fm � fm0 ¼
Amm0

AnN þ Amm0

(20) 

Using the factors fn0 and fm0, the four ways that Pi may change over 
some small time interval, dt, are:  

1. It could be that the sample has exactly i � 1 electrons in the traps and 
then a radiative ionization event occurs followed by capture of the 
electron in the trap so that an increase in trap population occurs. For 
a sample of volume V that is subjected to irradiation at rate X, this 
causes Pi to increase by fn0VXPi� 1dt.  

2. It could be that the sample has exactly i electrons in the traps and 
then a radiative ionization event occurs followed by a capture by the 
trap. This causes Pi to decrease by fn0VXPidt.  

3. It could be that the sample has exactly i electrons in the traps and a 
thermal excitation event occurs followed by a recombination. For 
any individual occupied trap, this happens with probability fm0γdt. 
Since there are i occupied traps, the total probability of this 
happening in the sample over time interval dt is ifm0γdt and this 
causes Pi to decrease.  

4. It could be that the sample has exactly iþ 1 electrons in the traps and 
a thermal excitation event occurs followed by a recombination event. 
This causes Pi to increase by ðiþ 1Þfm0γPiþ1dt 

Combining these four possible events together, we have the master 
equation: 

dPi

dt
¼

�
fm0γðiþ 1ÞPiþ1 � fn0VXPi for ​ i ¼ 0

fm0γðiþ 1ÞPiþ1 � fn0VXPi � fm0γiPi þ fn0VXPi� 1 for ​ i > 0 (21) 

The equation for i ¼ N is a special case but, consistent with Eq. (19), 
as long as the dose is low, this doesn’t concern us since, as i grows, Pi will 
drop rapidly to zero long before i approaches N. 

In order that both Eq. (17) and Eq. (21) be obeyed at all times, it is 
necessary that: 
X

i¼0

dPi

dt
¼ 0 (22) 

Note that every positive term in Eq. (21) for some i is balanced by an 
equal negative one for some other i. Consequently, Eq. (21) obeys Eq. 
(22) and, therefore, if the initial conditions obey Eq. (17), then Eq. (17) 
will also be obeyed for all subsequent times. 

With Eq. (21), the probability distribution for trap population can be 
calculated during irradiation and/or heating. It is also interesting to 
know the expected value and standard deviations of the population and 
these can be found by taking moments of Eq. (21). At any given time, the 
expected value of the number of electrons in the trap is given by: 

E½i� ¼
X

i¼0
iPi (23) 

It will simplify our calculations to note that iPi ¼ 0 when i ¼ 0. It 
follows that Eq. (23) can be written as: 

E½i� ¼
X

i¼1
iPi (24) 

Combining Eq. (21) with Eq. (24), we have: 

dE½i�
dt
¼
X

i¼1
fm0γiðiþ 1ÞPiþ1 �

X

i¼1
fn0VXiPi �

X

i¼1
fm0γi2Pi þ

X

i¼1
fn0VXiPi� 1

(25) 

After much math (see Appendix A), these summations reduce to: 

dE½i�
dt
¼ fn0VX � fm0γE½i� (26) 

If we identify the macroscopic quantity n with the expected value of 
trap population per unit volume: 

n¼E½i�=V (27) 

Eq. (26) becomes: 

dn
dt
¼ fn0X � fm0γn (28)  

Within the low dose range, Eq. (28) agrees with Eq. (10) which shows 
that the n in the phenomenological equations should be interpreted as 
the statistical expected value of trap concentration. 

Next, let’s consider the standard deviation of the trap population. At 
any given time, the standard deviation, σ, of i is given by: 

σ2¼
X

i¼0
ði � E½i�Þ2Pi (29) 

Using Eq. (23), Eq. (29) simplifies to: 

σ2¼
X

i¼0
i2Pi � E½i�2 (30)  

or, using expected value notation: 

σ2¼E
�
i2� � E½i�2 (31) 

We can determine how the variance changes in time by combining 
Eq. (30) with Eq. (21) and Eq. (26): 

dσ2

dt
¼
X

i¼0
i2dPi

dt
� 2E½i�

dE½i�
dt

(32) 

After the use of Eq. (21), Eq. (26), and Eq. (31) and after much math 
(see Appendix A), the governing equation for variance of the trap pop-
ulation i is: 

dσ2

dt
¼ fn0VX þ fm0γ

�
E½i� � 2σ2� (33) 

Note that irradiation, X, always acts to increase the standard devia-
tion of trap population while recombination, γ, can increase or decrease 
it depending on whether E½i� is larger or smaller than 2σ2. 

In sum, in this section, the dose was assumed low enough that fn0 and 
fm0 could be considered constants as per Eq. (20). The master equation 
governing this process, during either irradiation and/or heating, is given 
by Eq. (21). This equation allows the probability distribution for the 
number of electrons in the trap to be computed. By taking the first and 
second moments of the master equation, the governing equations for the 
expected value of trap population, Eq. (28), and its standard deviation, 
Eq. (33), were found. Eq. (28) corresponds to macroscopic Eq. (10) and 
shows that the macroscopic trap population n corresponds to the sta-
tistical expected value of trap population as in Eq. (27). Eq. (33) provides 
new information: there is no analog for it in the macroscopic phenom-
enological model. Note also that Eq. (28) and Eq. (33) apply regardless 
of the initial conditions for Pi. 

4. Irradiation 

The statistics of irradiation of a sample with a thermally–stable trap 
will be examined for two cases. The first is that of low dose. The second 
case will produce results over the full range of dose but for a special case 
of the rate constants. 
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4.1. Low–dose 

Consider irradiation at low dose of a solid with thermally–stable 
traps of a single kind. As long as the traps are thermally stable, γ � 0, the 
master equation of Eq. (21) simplifies to: 

dPi

dt
¼

�
� fn0VXPi for ​ i ¼ 0
� fn0VXPi þ fn0VXPi� 1 for ​ i > 0 (34)  

where Pi is the probability at time t that the traps contain i electrons and 
fn0 and fm0 are as defined in Eq. (12) and Eq. (13), respectively. For the 
remainder of this subsection, we will assume that the traps are initially 
empty as per Eq. (18). 

Even before we solve Eq. (34), we can obtain useful results from Eq. 
(26) and Eq. (31). With a thermally–stable trap, γ ¼ 0, both equations 
are readily integrated to find: 

E½i� ¼ fn0VD (35)  

and, 

σ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
fn0VD

p
¼

ffiffiffiffiffiffiffi
E½i�

p
(36)  

where D is the dose, measured in ionizations per unit volume (cm� 3), is 
given by: 

D¼
Z t

0
Xðt’Þdt’ (37)  

where t is the time over which the sample of volume V is exposed to the 
irradiation X. X may be constant or it may be a function of time. t’ is a 
variable of integration. As an example, Eq. (36) states that, if the ex-
pected value for the trap population was 1,000, then the standard de-
viation of that population would be �32. 

The complete solution of Eq. (34), subject to initial conditions Eq. 
(18), as can be verified by substitution, is given by: 

Pi ¼
ðfn0VDÞi

i!
expð� fn0VDÞ (38) 

Eq. (34) describes a Poisson process and Eq. (38) is the probability 
distribution of that process. Its mean and standard deviation are given 
by Eq. (35) and Eq. (36). For large enough fn0VD, the Poisson distribu-
tion asymptotically approaches a Gaussian distribution. 

Note that the results Eq. (35) through Eq. (38) do not depend on X 
except through its integral D. This means that, under our assumptions, 
Eq. (7) in particular, the same results are found for any dose rate as long 
as the total dose is held constant. 

If we were to consider high dose, then the rate at which the trap 
population increases, say from i to iþ 1, would be AnðN � iÞVX= ½AnðN �
iÞ þ Amðim þ iÞ�. Since, through i, this rate depends on past history, the 
Poisson distribution ceases to apply. With a properly modified master 
equation, though, the problem could still be solved as will be shown in 
the next subsection. 

Sample results for irradiation at low dose is shown in Fig. 2. Since we 
assume that the trap is initially empty, Eq. (18), the probability distri-
bution starts out narrow and peaks around i ¼ 0. As time progresses, the 
distribution moves to higher populations and broadens. The calculation 

assumed: V ¼ 10� 9cm3, N¼ 1014cm� 3, m0 ¼ 1016cm� 3, Am ¼

10� 9cm3=s, An ¼ 10� 9cm3=s, and X ¼ 1014cm� 3=s. 

4.2. Arbitrary dose 

The statistics of the irradiation process are quite different at high 
doses than they are at low doses. In this subsection, we will, for the 
special case of An ¼ Am, develop equations for the probability distri-
bution Pi for arbitrary radiation dose. 

At low doses, the factors fn0 and fm0 in Eq. (34) were constant and 
independent of i. For higher doses, this is not true. The master equation 
that applies to the one–center one–active–trap model at arbitrary levels 
of dose is:  

where im ¼ m0V. To simplify Eq. (39), we will consider the special case 
of equal rate constants: 

An¼Am (40) 

Applying Eq. (40) to Eq. (39), we have: 

Fig. 2. For a sample of volume V ¼ 10� 9cm3, the probability distribution for 
the number of electrons in the trap during irradiation, given by Eq. (38) is 
shown for various times. Because the trap is assumed initially empty as per Eq. 
(18), the distribution starts with a sharp peak around i ¼ 0. As time progresses, 
the distribution broadens and moves to higher populations. 

dPi

dt
¼

8
>>><

>>>:

�
Anðℕ � iÞ

Anðℕ � iÞ þ Amðim þ iÞ
VXPi for ​ i ¼ 0

�
Anðℕ � iÞ

Anðℕ � iÞ þ Amðim þ iÞ
VXPi þ

Anðℕþ 1 � iÞ
Anðℕþ 1 � iÞ þ Amðim þ i � 1Þ

VXPi� 1 for1 � i � ℕ
(39)   
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dPi

dt
¼

8
>>><

>>>:

�
ℕ � i
ℕþ im

VXPi for ​ i ¼ 0

�
ℕ � i
ℕþ im

VXPi þ
ℕþ 1 � i
ℕþ im

VXPi� 1 for ​ 1 � i � ℕ
(41) 

Combining Eq. (23) with Eq. (41) and using the same techniques as 
before, we can derive the governing equation for the expected value of 
trap population: 

dE½i�
dt
¼

X
N þ m0

ðℕ � E½i� Þ (42) 

Similarly, the governing equation for the expected value of the 
square of the population is found to be: 

dE
�
i2
�

dt
¼

X
N þ m0

�
ℕþ ð2ℕ � 1ÞE½i� � 2E

�
i2� � (43) 

Combining Eq. (42) and Eq. (43) with Eq. (31), we find the equation 
governing the change in variance with time: 

dσ2

dt
¼

X
N þ m0

�
ℕ � E½i� � 2σ2 � (44) 

Eq. (42) through Eq. (44) apply regardless of the initial distribution 
of Pi. If we assume that the traps are initially empty, as in Eq. (18), then 
Eq. (42) can be integrated to find: 

E½i� ¼ ℕ
�

1 � exp
�

�
D

N þ m0

��

(45)  

where D is the dose (Eq. (37)). 
We can substitute Eq. (45) into Eq. (44) and integrate to find: 

σ2 ¼ ℕ
�

exp
�
� D

N þ m0

�

� exp
�
� 2D

N þ m0

��

(46) 

Eq. (46) shows that, consistent with the initial condition Eq. (18), σ, 
the standard deviation of the trap population, starts at zero, it climbs to a 
peak, and then drops back to zero as the trap saturates. Using Eq. (45), 
we can rewrite Eq. (46) as: 

σ ¼
ffiffiffiffiffiffiffi
E½i�

p
exp
�

� D
2ðN þ m0Þ

�

(47) 

At low doses, Eq. (47) shows that σ initially rises as the square root of 
the expected trap population, the same as the low dose (Poisson process) 
result of Eq. (36). This ceases to be true at higher doses when the 
exponential term in Eq. (47) becomes important and, instead of growing, 
σ will decline toward zero. If we apply Eq. (45) again, Eq. (47) can also 
be written as: 

σ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E½i�ðN � E½i�Þ

N

r

(48) 

Eq. (45) and Eq. (48) characterize the overall behavior of the prob-
ability distribution Pi for this case. The distribution in detail is given by: 

Pi ¼

�
N

i

�

exp
�
� ðN � iÞD

N þ m0

��

1 � exp
�
� D

N þ m0

��i

(49) 

The validity of Eq. (49) can be verified by substitution into Eq. (41). 
A plot of Pi vs i is shown in Fig. 3. Just like the low–dose case of 

Figs. 2 and 3 shows, initially at least, a distribution that is narrow and 
broadens as irradiation proceeds. Unlike the low dose case, however, 
Fig. 3 shows that, as irradiation proceeds further, the distribution nar-
rows again. To show this more clearly, the standard deviations of the 
distributions in Figs. 2 and 3 are plotted against E½i� in Fig. 4. The 
standard deviation for the V ¼ 10� 9cm� 3 case are computed from Eq. 
(36) and, for the V ¼ 10� 12cm� 3 case, they are computed from Eq. (48). 

In sum, for irradiation at arbitrary dose but restricted to the case 
An ¼ Am, we developed governing differential equations for expected 
trap population (Eq. (42)) and σ (Eq. (44)). For the case of an initially 

Fig. 3. The behavior of a material irradiated toward saturation, as given by Eq. 
(49), is plotted. The parameters are the same as in Fig. 2 except for a smaller 
volume: V ¼ 10� 12cm� 3. Because the volume is smaller, it takes a longer time 
to reach the same trap population i. Also, at this volume, N ¼ VN¼ 100 so that 
the trap population saturates at i ¼ 100. As saturation is approached, the dis-
tribution narrows instead of broadens. Eq. (49) is the result of solving master 
equation Eq. (41) subject to initial condition Eq. (18) and the assumption An ¼

Am (Eq. (40)). 

Fig. 4. The standard deviations of the probability distributions shown in Fig. 2 
(V ¼ 10� 9 cm� 3) and Fig. 3 (V ¼ 10� 12 cm� 3) are plotted against expected trap 
population using Eq. (36) for the large volume and Eq. (48) for the small. 
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empty trap, the solutions to these are given by Eq. (45) and Eq. (48). 
These agree with the conventional Poisson model only at low doses (n≪ 
N). 

5. Heating stage 

The process of a trap emptying during heating also changes the noise 
level. Depending on conditions, we will see that heating can either in-
crease or decrease the standard deviation of trap population. We will 
consider a simple system with first–order kinetics. The governing 
equations will be developed for the mean of the trap population, its 
standard deviation, and probability distribution for trap occupation. We 
will consider the governing equations in general and then develop 
particular solutions for two initial conditions of interest. 

To obtain a first–order glow curve, we need fm, but not necessarily fn, 
to be approximately constant. This will be true for low dose if the in-
equalities in Eq. (19) hold. It will also be true even at high dose if: 

AnN≪Amm0 and N≪m0 (50) 

In either case, as long as fn remains approximately constant and there 
is no irradiation, X ¼ 0, the results of Sec. 3 can be applied to the heating 
stage. The master equation during heating reduces to: 

dPi

dt
¼

�
fm0γðiþ 1ÞPiþ1 for ​ i ¼ 0

fm0γðiþ 1ÞPiþ1 � fm0γiPi for ​ i > 0 (51) 

Before we solve Eq. (51), we can obtain useful information from Eq. 
(26) and Eq. (33). Without irradiation, X ¼ 0, Eq. (26) is readily inte-
grated to find: 

E½i� ¼ noVexp
�

� fm0

Z t

0
γðt’Þdt’

�

(52)  

where t’ is a variable of integration. Combining Eq. (33) with Eq. (52) 
and integrating, we find: 

σ2¼ noVexp
�

� fm0

Z t

0
γðt’Þdt’

�

þ
�
σ2

0 � noV
�
exp
�

� 2fm0

Z t

0
γðt’Þdt’

�

(53)  

where σ0 is the initial standard deviation of trap population at t ¼ 0 
before the heating begins. Two initial conditions are of particular in-
terest. The first is the value of σ0 that results from irradiation at low 
dose. Substituting Eq. (36) into Eq. (53), we find: 

σ2¼ noVexp
�

� fm0

Z t

0
γðt’Þdt’

Z t

0

�

(54)  

or, using Eq. (52): 

σ¼
ffiffiffiffiffiffiffi
E½i�

p
(55) 

This shows that the standard deviation of the trap population, σ 
declines in time as heating progresses. For this initial condition, an exact 
solution of Eq. (51) is available: 

Pi ¼

�
noexp

�
� fm0

R t
0 γðt’Þdt’

� �i

i!
exp
�

� noexp
�

� fm0

Z t

0
γðt’Þdt’

��

(56) 

This provides the probability distribution for trap population as a 
function of time during heating. Eq. (56) can be verified by substitution 
into Eq. (51). 

Alternatively, after irradiation, we may have some way of measuring 
the trap population. This might, for example, be an optical absorption 
method. Assuming the measurement method is accurate and determines 
that the trap population is, say, i0, then our initial condition is: 

Pijt¼0 ¼

�
1 for ​ i ¼ i0
0 for ​ i 6¼ i0

(57) 

A consequence of Eq. (57) is that the standard deviation of the 
population at t ¼ 0 is σ0 ¼ 0. 

A second way that initial condition Eq. (57) could be realized is if the 
traps were irradiated to saturation. In this case, we know that i0 ¼ N, 
and initial condition Eq. (57) again applies. 

In either case, if i0 is known and σ0 ¼ 0, Eq. (53) simplifies to: 

σ2¼ i0

�

exp
�

� fm0

Z t

0
γðt’Þdt’

�

� exp
�

� 2fm0

Z t

0
γðt’Þdt’

��

(58)  

and, Eq. (52) becomes: 

E½i� ¼ i0exp
�

� fm0

Z t

0
γðt’Þdt’

�

(59) 

Combining Eq. (58) with Eq. (59), we have: 

σ2¼E½i�
�

1 � exp
�

� fm0

Z t

0
γðt’Þdt’

��

(60)  

or, 

σ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

E½i�ði0 � E½i�Þ
i0

s

(61) 

While Eq. (59) and Eq. (61) provide an overview of the heating 
process, the detailed probability distribution during heating, subject to 
initial condition Eq. (57), is given by: 

Pi ¼

�
ℕ
i

�

exp
�

� ifm0

Z t

0
γðt’Þdt’

��

1 � exp
�

� fm0

Z t

0
γðt’Þdt’

��ℕ� i

(62) 

This can be verified by substitution into Eq. (51). 
Several equations above require integrals over the thermal excitation 

coefficient γ. In thermoluminescence, it is most common to use a con-
stant heating rate: 

T ¼ T0 þ βt (63)  

where β is a constant. In this case, the integral over γ reduces to: 
Z t

0
γðt’Þdt’¼

Es
kβ
ðΓð� 1;E = kTÞ � Γð� 1;E = kT0ÞÞ (64)  

where Γð� 1; E =kTÞ is the incomplete gamma function as defined by 
Ref. [20]: 

Γða; xÞ¼
Z ∞

x
e� tta� 1dt (65) 

This incomplete gamma function, or its equivalent exponential in-
tegral, are widely supported by current scientific software packages. 
With this integral, for example, the expected value of the trap population 
when heated at a constant rate becomes: 

E½i� ¼ i0exp
�

fm0
Es
kβ
ðΓð� 1;E = kTÞ � Γð� 1;E = kT0ÞÞ

�

(66) 

Analytical integrals over γ are also available for other heating rate 
profiles [21]. 

For a given heating rate and trap parameters, Eq. (66) allows the 
expected trap population, Eq. (59), to be computed as a function of time. 
Using Eq. (66), the standard deviation of the trap population distribu-
tion can be computed with Eq. (61). 

To illustrate, consider a trap with binding energy E ¼ 1eV and pre-
exponential factor s ¼ 1010 s� 1 with the material heated at a rate of 
β ¼ 1K=s and other parameters as described previously. If the trap is 
irradiated to a low dose and consequently starts from a Poisson distri-
bution, as per Eq. (38), the probability distribution for trap occupation 
varies as shown in Fig. 5. The distribution is initially broad but gets 
narrower as the temperature increases. Alternatively, if the trap was 
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initially at saturation or the trap population was known by measure-
ment, then the probability distribution during heating is shown in Fig. 6. 
In this case, the distribution is initially sharply peaked and, as temper-
ature increases, it broadens and then later narrows again. The behavior 
of the standard deviation for both cases in shown in Fig. 7. For the case 
of initial condition Eq. (57), the standard deviation starts out at zero, 

slowly rises to a peak around 440 K and then rapidly declines again to 
zero. For initial condition Eq. (38) by contrast, the standard deviation 
starts out at its peak and begins to decline at about 400 K as the trap 
starts to empty. 

To summarize, we found that, during heating and subject to either 
Eq. (19) or Eq. (50), the standard deviation of the trap population i 
varied with time according to Eq. (53). Subject to initial condition Eq. 
(36), we find that σ declines monotonically during heating as shown in 
Eq. (55). Alternatively, with initial condition σ0 ¼ 0, the standard de-
viation of trap population, σ, first grows then declines as shown in Eq. 
(61). 

6. Standard deviation at the macroscopic level 

The σ is the standard deviation of the occupation number i. This is 
related to the standard deviation of the trap concentration i=V via: 

σn ¼
σ
V

(67) 

This section will summarize the results of the preceding sections in 
terms of σn. 

The simplest result for σn is for irradiation at low dose (Eq. (36)): 

σn¼
ffiffiffiffiffiffiffiffiffi
n=V

p
(68) 

This is the usual result one expects from a Poisson process. Note that, 
while the standard deviation in i increases with sample volume V, σn, Eq. 
(68), decreases with increasing sample volume. At higher dose, and 
subject to the An ¼ Am assumption, Eq. (47) shows that the irradiation 
process ceases to follow Poisson statistics and instead we have: 

σn¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nðN � nÞ

NV

r

(69) 

If heating follows irradiation at low dose, with σn after irradiation 
given by Eq. (68), then, during heating as per Eq. (55) and Eq. (67), σn 

behaves as: 

Fig. 5. Using Eq. (56) with Eq. (64), the probability distribution for trap 
population is plotted for various temperatures during heating. The calculation 
was performed assuming an initial (T ¼ 300 K) Poisson distribution from Eq. 
(38) centered around i ¼ 100. As the temperature rises, the trap population 
declines and the distribution narrows and moves to the left. 

Fig. 6. The probability distribution, as given by Eq. (62) with Eq. (64), for trap 
population is plotted for various temperatures during heating just as in Fig. 5 
except that initial condition Eq. (57) was used. 

Fig. 7. The standard deviations of the trap occupation probability distribution 
from Figs. 5 and 6 are plotted against temperature during heating. The solid 
curve is for initial condition Eq. (57) and is computed using Eq. (61) and Eq. 
(52). The dashed curve is for initial condition Eq. (38) and is computed using 
Eq. (55) and Eq. (52). 
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σn¼
ffiffiffiffiffiffiffiffiffi
n=V

p
(70) 

During heating, because n declines with time, σn also declines with 
time. By contrast, after a high dose radiation leaving a saturated trap, 
n ¼ N and σn ¼ 0, then, from Eq. (61) and Eq. (67), a very different 
behavior is observed: 

σn¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nðN � nÞ

NV

r

(71)  

σn reaches a peak when n has declined to N=2. 

7. Discussion 

Although not captured by phenomenological equations such as Eq. 
(1) through Eq. (5), thermoluminescence is inherently a statistical pro-
cess. The models herein quantify the statistical behavior for a one–center 
one–active-trap model with a first–order glow curve. For the simple 
cases discussed here, the expected value of trap population behaved the 
same as one would expect from the phenomenological equations. The 
actual trap population would vary from run to run with a probability 
distribution as described by the master equation. 

For a binomial or Poisson process, a measurement that averages k 
independent events is associated with a standard deviation of 

ffiffiffi
k
p

and 
this square–root law is widely used. As we have seen herein, the physics 
of thermoluminescence is sometimes such a process with irradiation at 
low dose being an example. At other times, such as shown in Eq. (47) or 
Eq. (61), it is not. 

The model herein assumed that a single irradiation event produces a 
single electron-hole pair. This may apply to UV irradiation but is un-
likely to apply to other higher–energy forms of irradiation. 

The models herein address the inherent statistical noise in thermo-
luminescence processes for a particular simple model. A real thermo-
luminescence experiment will generally involve more complex physics 
and additional statistical processes associated with the laboratory 
measurement instrumentation. 
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Appendix. A 

The derivations of Eq. (26) and Eq. (33) require careful manipulation of sums. As the techniques used are quite useful, the derivations will be 
presented here. 

To obtain Eq. (26), we start from Eq. (25) and manipulate the sums as follows: 

dE½i�
dt
¼
X

i¼1
fm0γiðiþ 1ÞPiþ1 �

X

i¼1
fn0VXiPi �

X

i¼1
fm0γi2Pi þ

X

i¼1
fn0VXiPi� 1 

¼
X

i¼2
fm0γði � 1ÞiPi �

X

i¼0
fn0VXiPi �

X

i¼0
fm0γi2Piþ

X

i¼0
fn0VXðiþ 1ÞPi 

¼
X

i¼0
fm0γði � 1ÞiPi �

X

i¼0
fn0VXiPi �

X

i¼0
fm0γi2Piþ

X

i¼0
fn0VXðiþ 1ÞPi 

¼ fn0VX
X

i¼0
½ðiþ 1ÞPi � iPi� þ fm0γ

X

i¼0

�
ði � 1ÞiPi � i2Pi

�

¼ fn0VX
X

i¼0
Pi � fm0γ

X

i¼0
iPi (A.1) 

Using Eq. (17) and Eq. (23), Eq. (A.1) reduces to: 

dE½i�
dt
¼ fn0VX � fm0γE½i� (A.2)  

which provides the desired result, Eq. (26). 
To develop the governing equation for variance, Eq. (33), we start by substituting the master equation, Eq. (21), into Eq. (32) and then manipulate 

the sums: 

dσ2

dt
¼
X

i¼1
fm0γi2ðiþ 1ÞPiþ1 �

X

i¼1

�
fn0VXi2Pi � fm0γi3Pi

�
þ
X

i¼1
fn0VXi2Pi� 1 � 2E½i�

dE½i�
dt 

¼
X

i¼2
fm0γði � 1Þ2iPi �

X

i¼1

�
fn0VXi2Pi � fm0γi3Pi

�
þ
X

i¼0
fn0VXðiþ 1Þ2Pi � 2E½i�

dE½i�
dt 

¼
X

i¼0
fm0γði � 1Þ2iPi �

X

i¼0

�
fn0VXi2Pi � fm0γi3Pi

�
þ
X

i¼0
fn0VXðiþ 1Þ2Pi � 2E½i�

dE½i�
dt 

¼ fn0VX
X

i¼0

�
ðiþ 1Þ2 � i2�P

i

þ fm0γ
X

i¼0

�
ði � 1Þ2i � i3�Pi � 2E½i�

dE½i�
dt 

¼ fn0VX
X

i¼0
ð2iþ 1ÞPi þ fm0γ

X

i¼0

�
� 2i2þ i

�
Pi � 2E½i�

dE½i�
dt 

¼ fn0VXð2E½i� þ 1Þþ fm0γ
�
� 2E

�
i2�þ E½i�

�
� 2E½i�

dE½i�
dt

(A.3) 

Substituting Eq. (A.2) into Eq. (A.3), we find: 

dσ2

dt
¼ fn0VXþ fm0γ

�
E½i� þ 2E½i�2 � 2E

�
i2�� (A.4) 
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Applying Eq. (31)to Eq. (A.4), the governing equation for variance of the trap population i is: 

dσ2

dt
¼ fn0VX þ fm0γ

�
E½i� � 2σ2� (A.5) 

This concludes the derivation of Eq. (33). 
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