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a b s t r a c t

In the study of thermoluminescence (TL) and optically stimulated luminescence (OSL), and in particular
in the applications of archaeological and geological dating as well as dosimetry, the issue of stability of
the signal at ambient temperature following excitation is of paramount importance. In many cases, one
determines the activation energy (E) and frequency factor (s) of a TL peak, and tries to evaluate the
lifetime of the excited signal. This is meaningful if the process is of pure first order, and may not be so in
non-first-order situations. In the present work, we study this matter for both first-order and the more
general one-trap-one-recombination-center (OTOR) cases using numerical simulations. The conventional
numerical solution of the relevant set of coupled differential equations may not work when the traps are
deep and the length of time is, say, thousands of years or more, and we therefore resort to a Monte-Carlo
approach. It is obvious that in instances of dominating recombination, the long-time decay is expo-
nential, and the decay constant is as expected from the first-order behavior and the E and s values.
However, in cases of substantial retrapping, the fading is slower, sometimes very significantly, and is not
exponential. Thus, one may deduce from the evaluated E and s shorter decay times than occur in fact.
This may lead to an apparent effect of unexpected stability, namely, that a signal is stable much longer
than expected from the evaluated trapping parameters. Possible implications concerning applications in
archaeological and geological dating are obvious.

© 2015 Elsevier Ltd. All rights reserved.
1. Introduction

Themain applications of thermoluminescence (TL) and optically
stimulated luminescence (OSL) are in dating of archaeological and
geological specimens and in dosimetry. A crucial property to be
considered in this respect is the stability of the signal following
excitation, when the sample is held at ambient temperature.
Obviously, the parameters related to the relevant trapping states of
electrons and holes determine this property of stability. In the
simplest possible case of first-order kinetics, the situation
concerning stability is very easy to follow. As first given by Randall
and Wilkins (1945), the equation governing this process is

IðTÞ ¼ �dn
dt

¼ s$n$exp ð�E=kTÞ; (1)

where n (cm�3) is the concentration of electrons in traps, E (eV) the
activation energy for their release into the conduction band, s (s�1)
the frequency factor, T (K) the temperature, t (s) the time, k (eV K�1)
the Boltzmann constant and I (cm�3 s�1) the TL intensity. Eq. (1)
governs the rate of depletion of electrons from the trap at a con-
stant temperature T. Thus it is associated with the stability of the
signal which is directly related to the remaining concentration of
electrons after a certain period of time following excitation and
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prior to the heating of the sample in TL or its optical read-out in
OSL. When the temperature at which the sample is held is signifi-
cantly lower than that of the expected TL peak, the isothermal
emitted light I(T) may be very weak and usually not measurable,
but after a long period of time, the remaining value of n may be
significantly smaller than right after the irradiation, which is
expressed as thermal fading of the TL or OSL signal. According to Eq.
(1), the time dependence of the concentration of electrons in traps
at a given temperature T is

nðtÞ ¼ n0 exp ½ð � s exp ð�E=kTÞÞt�: (2)

This is an exponentially decreasing function, and its “lifetime”,
namely, the time it takes for the concentration of trapped electrons
to reduce to 1/e of its initial value is

t ¼ s�1 exp ðE=kTÞ: (3)

Obviously, under these circumstances, if the sample is held at a
constant temperature (usually “room temperature”, RT), the ex-
pected TL signal following a time t will be reduced at the same rate
as n(t) and therefore, with the same lifetime.

One should note that the main assumption leading to the first-
order situation is that recombination is significantly stronger than
retrapping, which is a rather limiting assertion. The situation gets
much more complex in the more realistic framework, in which
retrapping of free electrons is considered, as first studied by
Halperin and Braner (1960). Assuming a system with one trapping
state and one recombination center, they presented the following
set of simultaneous differential equations,

dn
dt

¼ AnðN � nÞnc � s$n$exp ð�E=kTÞ; (4)

IðTÞ ¼ �dm
dt

¼ Ammnc; (5)

dnc
dt

¼ s$n$exp ð�E=kTÞ � AnðN � nÞnc � Ammnc; (6)

where N (cm�3) is the total concentration of traps, m (cm�3) is the
instantaneous concentration of holes in centers, nc (cm�3) is the
concentration of free electrons in the conduction band and An, Am

(cm3 s�1) are, respectively, the retrapping and recombination
probability coefficients. Halperin and Braner have made a simpli-
fication of these equations by making the “quasi-equilibrium” as-
sumptions, namely, that nc << n, m and dnc/dt~0. This resulted in
the approximate single equation

IappðTÞ ¼ �dm
dt

¼ s$n$exp ð�E=kTÞ Amm
Ammþ AnðN � nÞ : (7)

In the restricted case of only one trapping state and one kind of
recombination center, one has m ¼ n following the excitation, and
m ¼ n þ nc ~n along the TL process. This situation is termed the one
trap-one recombination center (OTOR) model. Note also that the
occurrence of dominating recombination, Amm >> An(Nen) leads to
the Randall-Wilkins first-order Eq. (1). On the other hand, the in-
verse condition Amm << An(Nen) may lead to a second-order sit-
uation if, again, n ¼m and N >> n. The resulting second-order
equation is

IðTÞ ¼ �dn
dt

¼ sAm

NAn
$n2$exp ð�E=kTÞ: (8)

A similar equation governs the process when the retrapping and
recombination probability coefficients are equal, An ¼ Am (Garlick
and Gibson, 1948).
In the present paper we consider the decay functions of trapped

carriers at relatively low temperatures so that the TL or OSL signals
may survive for very long periods of time. Under these circum-
stances, trying to solve Eqs. (4)e(6) using the MATLAB ode solvers
resulted in exceedingly long computation times, and a Monte-Carlo
method is shown to be a viable option.

2. The Monte-Carlo method

The use of the Monte-Carlo algorithms for the study of TL has
been first proposed in a series of papers byMandowski and �Swiątek
(1992, 1996; 2000), Mandowski (2001a,b; 2006; 2008) and
Mandowski et al. (2010). As pointed out by these authors, usually,
the number of carriers in a sample is large and the kinetic equations
(e.g. Eqs. (4)e(6)) describe the system properly. However, in some
cases, in microcrystalline or two-dimensional solids, where each
grain or plane can be considered as a separate system, one should
consider each carrier individually, and the continuous differential
equationsmay not be used. Mandowski et al. have proposed the use
of the Monte-Carlo simulation for these cases. Another reason for
the use of the Monte-Carlo method for the study of TL has been
given by Kulkarni (1994) who stated that if the lifetime of electrons
in the conduction band is very small, the conventional numerical
calculation will take very long time and the use of the Monte-Carlo
procedure may bypass this problem. Yet another use of the Monte-
Carlo approach has been suggested by Rodríguez-Villafuerte (1999)
who described its use for the track-interaction model which may
explain the supralinearity in the TL response. Bailey (2004) has
used the Monte-Carlo approach to follow the evaluated equivalent
dose in quartz in a complex model including 12 electron- and hole-
trapping levels. Monte-Carlo simulations of optically stimulated
luminescence (OSL) have been discussed by Thompson (2007) who
has simulated the single aliquot regeneration OSL dosimetry
measurements.

In the present work, we demonstrate the use of theMonte-Carlo
method in simulating the very slow thermal fading of TL signals
when the sample is held at a temperature significantly lower than
that of the TL peak. Here, we consider the electrons one at a time.
The interesting cases here are those where retrapping is not
negligibly small. The results reported below have important
bearing on the stability of the TL signal.

Let us consider first the first-order case, described in Eq. (1).
Assume that electrons can be released thermally into the conduc-
tion band. As long as we assume dominating recombination, and
once the electrons are in the conduction band, they recombine
practically immediately with a trapped hole in center (Randall and
Wilkins, 1945). If the sample is held at a temperature T and if the
activation energy is E and the frequency factor s, the probability of
release of an electron per second is s,exp(-E/kT). If we consider an
infinitesimal time interval dt, the probability for the release is the
dimensionless quantity s,exp(-E/kT),dt. Obviously, the Monte-
Carlo procedure cannot work with infinitesimal time intervals
and dt should be approximated by a finite time interval Dt. This
interval should be short enough so that the magnitude s,exp(-E/
kT),Dt be significantly smaller than unity, and thus be a good
enough approximation to the aggregate of the infinitesimal prob-
abilities s,exp(-E/kT),dt. At the same time, it should be long enough
so that coverage of time ranges of, say, thousands of years, will not
take a prohibitively long computer time. The considerations for
choosing a reasonable compromise value of Dt in specific cases will
be discussed below. Once we choose a certain initial number of
trapped electrons (typically 106), we consider each of them sepa-
rately. We draw a Matlab-generated pseudo-random number be-
tween zero and 1 for each electron and if this random number is
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smaller than s,exp(-E/kT),Dt, this electron is determined to have
undergone recombination, and therefore, it is reduced from the
number of electrons in the trap and one hole is reduced from the
center. Once all the electrons have been tested, we register the final
number of remaining electrons in traps, go to the next time interval
Dt and repeat the procedure with the remaining electrons as the
new initial value.

The next step is to consider the more complex situation where
retrapping is allowed. If we look at the last two terms in Eq. (6), it is
quite obvious that once an electron has been raised into the con-
duction band, its probabilities of performing recombination and
retrapping are proportional to Amm and An(Nen), respectively.
Thus, the probability for recombination is Amm/[Amm þ An(Nen)]
and the probability for retrapping is An(Nen)/[Amm þ An(Nen)]. In
the simulation, we start each step as in the previous case of pure
first-order kinetics. Once an electron has been determined to be in
the conduction band, we draw another pseudo-random number
between zero and one; if Amm/[Amm þ An(Nen)] is larger than this
number, we determine that recombination has taken place, and the
electron is subtracted from the trapped electron “box”. Otherwise,
the electron is considered to be back in its box and the procedure
continues to the next electron. Note that in this relatively simple
OTOR situation, m ¼ n all along.
3. Results of the simulations

Fig. 1 depicts three simulated TL peaks, whose stability will be
studied. The set of three simultaneous differential Eq. (4)e(6) has
been solved numerically using the ode15 s Matlab solver. The pa-
rameters chosen were N ¼ 1013 cm�3; n0 ¼m0 ¼ 1012 cm�3;
E ¼ 1.3 eV; s ¼ 1012 s�1; b ¼ 1 K s�1 and Am ¼ 10�8 cm3 s�1. The
values of the retrapping probability coefficient An were (a) 10�10

cm3 s�1 (solid line); (b) 10�8 cm3 s�1 (dashed line) and (c) 10�6

cm3 s�1 (dotted line).
In curve (a), the maximum intensity occurs at Tm ¼ 496.4 K; the

effective activation energy was found by the full width peak-shape
method as Eeff ¼ 1.339 eV and the effective frequency factor
seff ¼ 2.46 � 1012 s�1; the symmetry factor is mg ¼ 0.435, typical of a
first-order peak. (For a detailed discussion of the peak-shape
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Fig. 1. Three TL peaks simulated by solving numerically the set of Eqs. (4)e(6). The
parameters used were: N ¼ 1013 cm�3; n0 ¼m0 ¼ 1012 cm�3; E ¼ 1.3 eV; s ¼ 1012 s�1;
b ¼ 1 K s�1; Am ¼ 10�8cm3 s�1. (a) (solid line): An ¼ 10�10cm3 s�1. (b) (dashed line):
An ¼ 10�8cm3 s�1. (c) (dotted line): An ¼ 10�6cm3 s�1.
methods and symmetry factor see, e.g., Chen, 1969). This is
reasonable since the recombination probability coefficient here is
two orders of magnitude larger than the retrapping probability
coefficient, so dominating recombination may be expected. This
point will be further discussed below. The lifetime here, as calcu-
lated by Eq. (3) is tf ¼ 1.25 � 1010se398 years.

In curve (b), Eeff ¼ 1.296 eV; seff ¼ 9.7 � 1010 s�1; Tm ¼ 532.7 K
and mg ¼ 0.519, typical of second-order peaks. Second-order is
indeed expected when the retrapping and recombination co-
efficients are equal. The lifetime here as calculated using the
effective activation energy and frequency factor is
tf ¼ 6.13 � 1010 se1943 years.

In curve (c), Eeff ¼ 1.29 eV; seff ¼ 1.04 � 109 s�1; Tm ¼ 556.8 K and
mg ¼ 0.526, also typical of second-order peaks. The apparent life-
time here is tf ¼ 5.2 � 1012 se165,000 year. In the case of domi-
nating retrapping, second-order kinetics is expected. The meaning
of seff in the second-order case is discussed below. Note that the
areas under peaks (a), (b) and (c) are the same since in all three, the
area is equal to m0.

Fig. 2 shows the results of simulations of the reduction in the
number of trapped electrons when the sample is held at 300 K
(27 �C), in the pure first-order case. The parameters chosen are the
same as above, namely, E ¼ 1.3 eV; s ¼ 1012 s�1; n0 ¼ 106 and
Dt ¼ 3.15 � 107s ¼ 1 year. One may wonder whether 1 year may be
considered as a nough period of time. Note that with the present
values of E and s, the relevant probability is, as mentioned, s,exp(-E/
kT),Dt ¼ 0.00455, significantly smaller than unity. This means that
in each period Dt, less than half a percent of the remaining elec-
trons are released to the conduction band and subsequently
recombine. The dotted line depicts the results of the simulation
whereas the solid line represents the results of direct substitution
into Eq. (2). The agreement is seen to be very good. So far, this is
merely a demonstration of the performance of the Monte-Carlo
procedure.

Figs. 3e5 show the results of the Monte-Carlo simulation of the
emptying of the traps leading to the three peaks in Fig.1. The E and s
parameters are the same as in Fig. 2, and so are the n0, Dt and
T ¼ 300 K used. The simulated results go to 14,000 years, and are
given on a semi-log scale. In these three figures, we used the
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Fig. 2. Time dependence of the remaining concentration of trapped electrons
following excitation for the pure first-order case, shown on a semi-log scale. The pa-
rameters used are n0 ¼ 106; E ¼ 1.3 eV; s ¼ 1012 s�1; T ¼ 300 K. The dotted line depicts
the results of the Monte-Carlo simulation and the solid line shows the results from Eq.
(2).
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Fig. 3. Time dependence of the remaining concentration of electrons in traps, simu-
lated by the Monte-Carlo method, given on a semi-log scale, in the case of small
retrapping probability coefficient. The parameters are the same as in Fig. 2, and
N ¼ 107, Am ¼ 10�8 cm3 s�1; An ¼ 10�10 cm3 s�1. The straight, dashed line represents
the exponential decay at the rate determined by the initial E and s values.
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Fig. 5. Same as Fig. 3, but with stronger retrapping probability coefficient,
An ¼ 10�6 cm3 s�1.
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recombination probability coefficient Am ¼ 10�8 cm3 s�1. In Fig. 3,
the retrapping probability coefficient is smaller, An ¼ 10�10 cm3 s�1.
The results up to ~500 years form a nearly straight line, meaning
that the decay is nearly exponential, but due to the increasing
relative magnitude of retrapping, from 500 years on, the line curves
very significantly. The decay is by nearly 3 orders of magnitude in
14,000 years. These results will be discussed below.

Fig. 4 shows the decay of the remaining number of trapped
electrons for the case of An ¼ Am ¼ 10�8 cm3 s�1, and all the other
parameters are as before. In this pure second-order case, one does
not expect an exponential decay, and indeed, the line on the semi-
log scale is curved as of the beginning. Obviously, due to the
stronger retrapping, the decay is much slower than in the previous
case, namely, less than one order of magnitude in 14,000 years.

Fig. 5 shows the simulated decay curve for An ¼ 10�6 cm3 s�1

where all the other parameters are kept the same. The TL in
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Fig. 4. Same as Fig. 3, but with equal recombination and retrapping probability co-
efficients, An ¼ 10�8 cm3 s�1.
question has been found to be of second order. As expected, the
fading is very significantly slower than in the previous cases due to
the stronger retrapping. Within 14,000 years, the number of
remaining electrons in traps decreases by only ~6.9%. It is rather
surprising that in this second-order case, the decay in the given
time range appears like a straight line on the semi-log scale,
namely, the time dependence is exponential. However, in Fig. 6 the
continuation of the decay curve up to 1.4 Myr is shown, and it is
seen that at longer times, the decay deviates very significantly from
the exponential. This point will be discussed below.
4. Discussion

In the present work, we have studied the thermal decay of the
number of trapped carriers at a constant temperature (e.g. RT) in
cases where the trapping parameters are such that the fading is
very slow. Under these circumstances, the solution of the relevant
set of simultaneous equations may be problematic since the life-
time of electrons in the conduction band is usually of the order of a
fraction of a second (see e.g. Rose, 1955). Therefore, at the slow rate
at which the electrons are released into the conduction band, at the
relatively low temperature at which the sample is held, the elec-
trons are raised one at a time, and there is no real meaning to the
function nc appearing in Eqs. (4)e(6). As mentioned above, the
probability for releasing an electron within the interval Dt (chosen
as 1 year) is s,exp(-E/kT),Dt and with the parameters chosen this is
0.00455. For a trap with the initial occupancy of 106 electrons, this
means that only 4550 electrons be raised thermally per year, or
about 1 electron every 2 h and fewer when the number of trapped
electrons diminishes at longer times.

Concerning the initial number of 106 electrons, it has taken a
very long computer time to exceed this number, in particular in the
cases with stronger retrapping when on the average, an electron
may be released and retrapped several times before performing
recombination, thus subtracted from the remaining number. These
million carriers can be representative of a larger number existing in
a real sample. In fact, if like in Fig.1 we take a realistic concentration
of traps of 1013 cm�3, out of which, say, 10% are full of electrons to
begin with, we start with a concentration of 1012 cm�3. If we
consider as our sample a grain of quartz which is ~100 mm in size,
its volume is ~10�6 cm3 and the total number of initially trapped
electrons is ~106. Thus, the given simulation applies directly to the
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Fig. 6. Same as Fig. 5, but for a decay time 100 times longer, up to 1.4 Myr.
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case of a fine grain. As for a bulk sample where the number of
trapped electrons is orders of magnitude larger, dealing with 106

electrons, which is feasible with respect to computation time, is
expected to be representative to the behavior of the whole electron
population.

As pointed out above, the first peak with An ¼ 0.01Am ¼ 10�10

cm3 s�1, looks like a first- order peak, at least as far as the symmetry
factor is concerned. From this, the apparent lifetime is ~398 years. It
is worth mentioning that this is longer than the first-order lifetime
evaluated from the inserted E and s values which is ~219 years and
the difference has to do with the effect of retrapping. It should be
noted that when the initial-rise method is used, the original acti-
vation energy of 1.3 eV has been found. However, in order to
evaluate t, we need seff, for which we also need Tmwhich occurs out
of the initial-rise range andwhere the non-first-order behavior is in
effect. From the practical point of view, the initial-rise method may
be problematic when the peak is not very intense and not isolated.
Moreover, curve fitting or deconvolution are often used, and these
utilize the same features of the peak as the peak-shape method
used here. The bigger difference, however, has to do with the de-
parture of the logarithmic curve from linearity in longer periods of
time. Note that the probabilities for recombination and retrapping
are proportional to Amm and An(Nen), respectively. Here, we start
with the first term being ~10 times larger, namely nearly domi-
nating recombination leading to approximately exponential decay.
However, at later times,m gets smaller and so does n, which in turn,
makes Nen larger. Retrapping becomes relatively stronger which
makes the fading significantly slower.Wemay thus have during the
fading a gradual transition from a nearly first-order behavior to a
nearly second-order one. Therefore, drawing a conclusion on the
fading of the TL or OSL signal (which depends on the remaining
number of electrons in traps) from the initial decay or from the TL-
evaluated parameters may be erroneous, and an effect of unex-
pected stability may take place. Note that a similar effect of tran-
sition from first-to second-order behavior occurs within the TL
peak shown in Fig. 1, curve a. Here, toward the end of the peak,
An(Nen) becomes larger than mAm, and the peak attains some
second-order characteristics at this range, which is expressed by
the occurrence of a longer tail.

Regarding the results in Fig. 4, since Am ¼ An, retrapping is
stronger as of the very beginning, and the decay is not exponential
even at the very beginning. As mentioned above, the apparent
lifetime is 1943 years. However, the evaluation of t by Eq. (3) is
limited, in principle, to cases of first order, and obviously, the decay
here is not exponential, which explains the fact that after 14,000
years, the number of remaining electrons in traps is not even one
order of magnitude smaller than the initial value.

As for the results in Fig. 5, since An¼ 100Am, obviously the fading
is significantly slower. The fact that in the first 14,000 years the
graph on the semi-log scale is a straight line, indicating an
approximately exponential decline, is quite surprising. However,
within this range, both Amm and An(Nen) vary very little so that in
this period of time, the probabilities for recombination and
retrapping remain practically constant, which results in a very slow
exponential decay. This can be seen while re-writing Eq. (7) for the
isothermal situation,

�dn
dt

¼ s$n$exp ð�E=kTÞ Amm
Ammþ AnðN � nÞ : (9)

In the present case, the factor Amm/[Amm þ An(Nen)] remains
nearly constant and therefore, the decay here is approximately
exponential. In Fig. 6, the same decay curve is continued up to
1.4 Myr, and since here the same factor varies as m and n decline,
the decay curve is not exponential any more. Note that the decay
curve in Fig. 6 looks very similar to that in Fig. 4, where in the
former, the retapping coefficient is 100 times larger and the time
span is 100 times longer.

As for the meaning of the evaluated frequency factor and the
lifetime deduced thereof in the second-order peaks, as shown by
Pagonis et al. (2006), the expression for s is

s ¼ bE
kT2m

exp ðE=kTmÞ 1
1þ Dm

; (10)

where Dm ¼ 2kTm/E, i.e. rather similar to the first-order expression.
However, in the second-order case, this s is actually s',n0(s�1) (see
e.g. Chen, 1969) where s' is a constant, and thus, s is not constant.
Moreover, in all non-first-order cases, t as in Eq. (3) can be
considered at best as a rough estimate since the decay is not
exponential.

Finally, although the regular solvers of sets of simultaneous
ordinary differential equations did not work well for the present
problem, the use of “stiffness switching” in Mathematica, enabled
the numerical solution of the relevant set of equations and pro-
duced similar results to those of the Monte-Carlo simulation. The
problem here was that with the used trapping parameters and the
very slow fading, the calculated concentration of electrons in the
conduction band turned out to be a small fraction of an electron.
Therefore, the use of theMonte-Carlo method which deals with the
electrons one by one seems to be more appropriate. In fact, both
methods can be considered as approximations of the real situation,
but the fact that both yield practically the same results is very
encouraging.

In conclusion, using the Monte-Carlo method, we could follow
the decay of the number of trapped carriers for very long periods of
time in cases where the conventional numerical solutions of sets of
differential equations are problematic. The work has been limited
to the relatively simple case of one-trap-one-recombination-center
(OTOR) with different degrees of retrapping. Under certain cir-
cumstances, it appears that the fading, which may represent the
measured intensities of TL or OSL in the read-out stage, is signifi-
cantly slower than warranted by the evaluated parameters of TL
peaks. In a sense, this is a piece of good news since, when one may
expect certain fading from the effective parameters, actually, the
fading is significantly slower. Such a behavior may be considered as
unexpected stability of the signal (for a different possible
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explanation of anomalous stability, see Chen et al., 2012). In future
research, one may wish to consider the fading characteristics of TL
and OSL in cases beyond the given OTORmodel, e.g., when different
degree of closeness to saturation of the initial occupation of traps is
assumed or when additional disconnected traps are involved.
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