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A B S T R A C T

This paper presents Monte Carlo simulations of tunneling recombination in random distributions of defects.
Simulations are carried out for four common luminescence phenomena in solids exhibiting tunneling re-
combination, namely continuous wave infrared stimulated luminescence (CW-IRSL), thermoluminescence (TL),
isothermal thermoluminescence (iso-TL) and linearly modulated infrared stimulated luminescence (LM-IRSL).
Previous modeling work has shown that these phenomena can be described by the same partial differential
equation, which must be integrated numerically over two variables, the elapsed time and the donor-acceptor
distance. We here present a simple and fast Monte Carlo approach which can be applied to these four phe-
nomena, and which reproduces the solution of the partial differential equation, without the need for numerical
integrations. We show that the method is also applicable to cases of truncated distributions of nearest neighbor
distances, which characterize samples that underwent multiple optical or thermal pretreatments. The accuracy
and precision of the Monte Carlo method are tested by comparing with experimental data from several feldspar
samples.

1. Introduction

Recent experimental and modeling work has contributed to a better
understanding of the nature and origin of thermally and optically lu-
minescence processes in feldspars (see for example the recent review
paper by Pagonis et al. [1]). The model developed by Jain et al. [2] has
provided a framework for the description of tunneling phenomena in
dosimetric materials, based on a random distribution of donor-acceptor
pairs. Kitis and Pagonis [3] quantified the semi-analytical model of Jain
et al. [2], by deriving analytical expressions for different experimental
stimulation modes. These analytical equations were used to describe
luminescence signals from a variety of feldspars and apatites, namely
continuous wave infrared stimulated luminescence (CW-IRSL), ther-
moluminescence (TL), isothermal luminescence (ITL) and linearly
modulated infrared stimulated luminescence (LM-IRSL) ([4–8]). Jain
et al. [9] extended their localized transition model to include Arrhenius
analysis, and to develop approximate equations based on truncated
nearest neighbor distributions. Their extended model successfully

described the experimentally observed thermal and optical kinetic be-
havior of IRSL signals from preheated feldspar samples [9].

In recent literature, Monte Carlo (MC) simulations were used to
describe luminescence signals in dosimetric materials. In general, MC
approaches can be implemented to run three types of models: (I) models
based on delocalized transition between the two energy bands
([10–14]), (II) models based on localized transitions involving different
energy levels within the traps/centers ([15–18]) and (III) semi-localized
models which basically combine recombination routes including both
delocalized and localized states [19]. The paper by Horowitz et al. [20]
and the book by Chen and Pagonis [21] provide a good overview of
these types of luminescent models.

In addition to the above modeling studies, MC methods have been
used to describe the behavior of luminescence signals from nanodosi-
metric materials, in which variable-sized clusters of traps and re-
combination sites are considered as separate, non-interacting systems
([22,23]). Since there is no analytical solution to describe these phe-
nomena, MC methods must be used to simulate their behavior
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([15,17]).
The specific goals of this paper are:

• To develop a simple and efficient MC method that can be applied to
CW-IRSL, LM-IRSL, isothermal luminescence and TL phenomena,
without the need for numerical integrations.

• To test the accuracy and precision of this MC method, and to com-
pare it with experimental data.

• To apply this method to truncated distributions of nearest neighbor
distances, which characterize samples that underwent optical or
thermal pre-treatments.

2. Experimental and samples

Unless otherwise specified, the luminescence measurements in this
paper were carried out using a Risø TL/OSL reader (model TL/OSL-DA-
15), equipped with a 90Sr/90Y beta particle source, delivering a nominal
dose rate of ca. 0.075 Gy/s. A 9635QB photomultiplier tube (PMT) was
used with a 7.5mm Hoya U-340 filter (~340 nm, FWHM ~80 nm). For
the prompt isothermal measurements reported in this paper, a combi-
nation of Pilkington HA-3 heat absorbing and Corning 7–59
(320–440 nm) blue filter were used in front of the PMT. The IRSL sti-
mulation wavelength is 875 (± 40) nm and the maximum power
density ~135mW/cm2. All measurements were performed in a ni-
trogen atmosphere with a low constant heating rate of 1–2 K/s, in order
to avoid significant temperature lag. The samples were heated up to the
maximum temperature of 500 °C.

Several of the measurements were carried out using a microcline
sample (laboratory code KST4), studied previously in Polymeris et al.
([24,25]) and Pagonis et al. [26]. Prompt isothermal decay measure-
ments were carried out using a Durango apatite sample known for ex-
hibiting strong anomalous fading [5]. The single piece natural apatite
crystal with dimensions of 8×4×3mm was crushed gently with an
agate mortar, to obtain the grain size fraction 80–140 µm which were
annealed at 900 °C in air for 1 h in order to empty all traps, followed by
rapid cooling to room temperature. 5 mg aliquots were attached to
stainless steel disks.

The LM-IRSL feldspar data analyzed in this paper were previously
published by Bulur and Göksu [27]. These authors studied the fine
powders of K and Na feldspar standards (samples NBS-70a and NBS-
99a) by using IR LEDs with a maximum power density setting of
40mW/cm2. The LM-IRSL data was obtained after irradiating the
feldspars with a dose of 2.5 Gy and preheating the samples at 200 °C for
5min.

3. Brief review of the model by Jain et al. [2]

The model of Jain et al. [2] bases on localized electronic re-
combination within a system of random distribution of pairs of trapped
electrons and recombination centers, and the transitions are shown
schematically in Fig. 1. Recombination is assumed to take place via
tunneling from the excited state of the trapped electron and takes place
only to the nearest neighbor centers.

In the exact form of the model presented by Jain et al. [2], the
differential equations are:
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Here one defines the dimensionless distance parameter
′ =r πρ r(4 /3)1/3 , where ρ (m−3) represents the actual density of the
recombination centers in the material. Similarly, one introduces the
dimensionless density of recombination centers parameter by

′ = −ρ πρ α(4 /3) 3, where α(m−1) is the potential barrier penetration
constant (Jain et al. [2]). ′n r t( , )g and ′n r t( , )e (both m−3) are the in-
stantaneous concentrations of electrons in the ground state and in the
excited state correspondingly, and these are functions of time t (s) and
of the distance parameter ′r . In the above equations stun(s−1) is the
frequency factor characterizing the tunneling process taking place from
the excited state of the system, A (s−1) is the excitation rate from the
ground to the excited state (transition i, Fig. 1), and B (s−1) is the rate
of de-excitation from the excited state back to the ground state (tran-
sition ii, Fig. 1). From a physical point of view, there is no relationship
between the three different frequency factors A, B and stun. The tun-
neling lifetime ′τ r( ) (s) depends on the distance ′r and L(t) is the in-
stantaneous photon emission rate resulting from tunneling recombina-
tion via the excited state (transition iii, Fig. 1).

The system of differential Eqs. (1)–(4) can be solved numerically for
known numerical values of the parameters. As mentioned in the In-
troduction section, Kitis and Pagonis [3] derived approximate analy-
tical solutions for this system of equations, and for different experi-
mental stimulation modes. Besides, Pagonis et al. [30] examined the
exact version of the model and developed analytical equations for the
concentration of carriers during measurement of luminescence signals,
as a function of the dimensionless distance parameter ′r and of the
stimulation time t.

Pagonis et al. [28] showed that using the quasi-equilibrium condi-
tion ∂ ′ ∂n r t t( , )/ ~0e , and assuming that < <n ne g, the system of Eqs.
(1)–(4) can be replaced with the following single differential equation
([30], their Eq. (9)):
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with the symbols used here defined as previously.
As discussed in [28], Eq. (5) can be integrated formally for a con-

stant distance ′r , to yield the total concentration of electrons in the
ground state at time t and for a fixed distance parameter ′r :
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where ′n r( , 0) represents the initial concentration of electrons in the
ground state at time t=0 corresponding to a distance ′r . For a freshly
irradiated sample, this initial distribution of electrons in the ground
state at time t=0 is given by the peak-shaped nearest-neighbor

Fig. 1. Simplified energy-band diagram showing the electronic transitions
discussed in the text: transition (i) denotes the thermal or optical excitation
from the ground state of the trapped electron to the excited state, and transition
(ii) is de-excitation back into the ground state. Transition (iii) is direct tun-
neling from the excited state of the trapped electron to the recombination
center.
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distribution function:

′ = ′ − ′n r n r r( , 0) 3 ( ) exp [ ( ) ],g 0
2 3 (7)

where no is the total concentration of electrons in the ground state at
time t= 0. By combining Eqs. (6) and (7):
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Eq. (8) describes the evolution of the distribution of electrons in the
ground state as a function of the time t elapsed since the beginning of
the optical or thermal stimulation. The integral ∫ ′Adtt

0 must be eval-
uated numerically or analytically for the different excitation modes. By
integrating Eq. (8) over the distance variable ′r and by combining with
Eq. (4), one finds the total remaining number of electrons n t( ) in the
ground state at time t:
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In the rest of this paper n t( ) will be used to denote the total number
of remaining trapped electrons in the ground state. The time-dependent
luminescence intensity L(t) is evaluated numerically from the equation:
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Eqs. (9) and (10) allow a numerical calculation of n t( ) and L t( ), by
integrating numerically over the possible range of the dimensionless
variable ′r =0 to ′ = ∞r . The physical meaning of Eq. (10) is that the
TL signal can be represented by the summation (integral) of the terms
∂ ′

∂
n r t

t
( , )g , over all possible values of the dimensionless radius parameter

′r .
The value of the parameter A depends on the stimulation mode used

in the experiments. In the case of CW-IRSL experiments, the parameter
A represents the constant rate of infrared excitation AIR. In an iso-
thermal decay experiment, the temperature TISOTH of the sample is kept
constant and the parameter A is replaced by the constant rate of
thermal excitation = −A s E k Texp( / )ISOTH th B ISOTH , where E (eV) is the
thermal activation energy and sth (s−1) is the pre-exponential factor for
the thermal excitation process, which is proportional to the lattice vi-
bration frequency (McKeever, [29], page 48) and where kB is the
Boltzmann constant (eV K−1). In a TL experiment, the sample is heated
with a linear heating rate β (K s−1), from a starting temperatureTo up to
a high temperature around 500 °C, so that the temperature varies as

= +T t T βt( ) o . In this case the parameter A is replaced by the time-
dependent probability of thermal excitation = −A s E k T texp[ / ( )]TL th B .
During LM-IRSL experiments, the probability of optical excitation A is
varied linearly with time in the form A= (bt)/Ttotal, where Ttotal (s) is
the total excitation period and b is an experimental constant.

Although standard numerical integration methods can be used to
evaluate the integrals in Eqs. (9)–(10), this paper presents an alter-
native method based on MC techniques.

The MC method presented here provides an alternative method of
evaluating both n(t) and L t( ) simultaneously, without carrying out the
numerical integrations in Eqs. (9) and (10). The advantages of using a
MC method are:

(a) The method is fast, efficient and avoids numerical integration,
(b) it produces accurate results even in cases of low stimulation prob-

ability, in which it is known that the analytical equations of Kitis
and Pagonis [3] are less accurate,

(c) it can be used for both freshly irradiated samples and for irradiated
samples which underwent thermal or optical pre-treatments, by
making a very small modification in the limits of integration.

(d) The method can also be used to describe clustering effects in na-
nodosimetric materials, by considering systems of traps and centers
consisting of a small number of particles.

4. The Monte Carlo method

The MC method evaluates the total concentration of remaining
electrons n t( ) and the luminescence intensity L t( ) simultaneously,
based on the differential Eq. (5). In the MC simulations, Eq. (5) becomes
a difference equation for the discrete variable n, in the general form:

′ = −
′ ′

′−Δn r t As
B ρ r

n r t Δt( , )
exp [( ) ]

( , ) ,tun
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where Δt is an appropriate time interval, e.g. =Δt s1 .
From a practical point of view, the integration indicated in Eqs. (9)

and (10) does not need to extend to infinity, since the peak shaped
function ′ − ′r r3( ) exp[ ( ) ]2 3 becomes practically zero for ′r values larger
than 2. Using this approximation, Eqs. (9) and (10) become finite sums:
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where ′Δr is an appropriate distance interval, e.g. ′ =Δr 0.02. The effect
of using different values of Δt and ′Δr was tested by repeating the si-
mulations using shorter intervals, and the simulation results stayed
unaffected by changing the value of Δt and ′Δr . The general Eqs. (11),
(12) and (13) are the basis of the “brute force” MC method found in
standard textbooks of simulations in Statistical Physics [14], and a
simpler form of the method was also discussed in the paper by Pagonis
et al. [13]. Software implementation proceeds as follows: the overall
evolution of the system will be followed for both the time variable t, and
for each value of the dimensionless distance ′r , by using two iterative
loops. The inner loop is executed using a time variable t , and for a
constant value of the distance parameter ′r . The outer loop repeats the
inside loop for all possible discrete values of the parameter
′ = ′ + ′r r Δr . At time t = 0 there are no filled traps, and the distribution
of nearest neighbors is given by the peak shaped function

′ = ′ − ′n r n r r( , 0) 3( ) exp[ ( ) ]o
2 3 . The rate P for an electron to recombine

radiatively within the time interval Δt and for certain distance ′r is
given by the function ′ ′−As B ρ r/{ exp[( ) ]}tun

1/3 in the right hand side of
Eq. (5). By following the same method as in Pagonis et al. ([13]), one
chooses a suitable value of Δt so that < <PΔt 1, and a random number r
is generated, which is uniformly distributed in the unit interval
0≤ r < 1. If r≤ P the electron recombines radiatively, otherwise it
does not; all non-recombined remaining electrons in the system are
tested in this manner during each time interval Δt, and several re-
combination events could take place during each time interval Δt. At
the end of each time interval Δt, the program stores the values of

′n r t( , ), and ′Δn r t Δt( , )/ .
This process is now repeated for the next value of the distance

′ = ′ + ′r r Δr in the outer software loop. Finally, the contributions from
all distances ′r are added according to Eqs. (12) and (13), resulting in
the simultaneous evaluation of the discrete-value functions n t( ) and
L t( ). Both iterative loops are executed until there are no particles left in
the system.

It is noted that the density of recombination centers in this type of
model is considered to be a constant, and does not need to be updated
during the Monte Carlo simulation. This is because one of the funda-
mental assumptions of the model is that the concentration of re-
combination centers far exceeds the concentration of electrons in the
material under consideration.

The MC simulations reach a precision of 1% rather quickly, by re-
peating 10 cycles of 200 electrons each. The accuracy of the MC method
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is ascertained by comparing with the results from the exact model by
Jain et al. [2], and is discussed in the next section.

The simulations in this paper were carried out using the commercial
software package Mathematica. Typical running times for =N 200
electrons in the system are ~1–2min, and the simulations use the
random number generator embedded in Mathematica. No special
packages or libraries are required for the straightforward simulations
presented in this paper.

The above Eqs. (9)–(10) are strictly applicable for freshly irradiated
samples. However, they can also be used for irradiated samples which
were exposed to optical and thermal pre-treatments. Examples of such
combined treatments are an IR bleaching followed by TL measurement,
an IR treatment followed by isothermal decay, a partial heating fol-
lowed by TL measurement etc. For such pre-treated samples, one can
approximate the nearest neighbor distribution with a truncated dis-
tribution function, which extends from a minimum critical radius ′r c up
to infinity ([2,9,25]). This critical radius can be treated as an adjustable
modeling parameter when fitting experimental data. For such truncated
distributions, Eqs. (9) and (10) will become:
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5. Results of the Monte Carlo simulations - comparison with the
numerical solutions of the differential equations

Fig. 2 shows a MC simulation of an isothermal experiment for the
Durango apatite sample, in which the temperature is raised to 220 °C
and kept constant for 1000 s (Sfampa et al. [5]). The parameters in the
MC simulation are ′ =ρ 0.007, = −A 0.20 sISOTH

1. The gray area in
Fig. 2a indicates the overall results from 10 MC simulations of 200
electrons each, and the dashed line indicates the average of these 10
runs. Fig. 2b compares the experimental data (open circles), with the
MC simulation (dashed line) with the exact solution obtained by the
numerical integration of Eq. (3) (solid line). The two simulation results
(solid and dashed lines) in Fig. 2b are indistinguishable from each
other. The fitting residuals shown at the bottom of Fig. 2b indicate good
agreement of the order of 3% or better, between the experimental data,
the numerical solution, and the MC results. The fitting residuals are
defined here as the percent ratio (experimental-MC results)/(MC re-
sults).

Fig. 3a shows typical CW-IRSL data measured with microcline
sample KST4, with a reduced IR-stimulating power of 10% of the
maximum IR-intensity. The CW-IRSL from this sample were previously
analyzed in Pagonis et al. [26], by using the analytical equations by
Kitis and Pagonis [3]. The solid line shows the result of the MC simu-
lation with the following parameters: ρ'= 0.003, = −A s0.12IRSL

1 and is
practically indistinguishable from the numerical integration results of
the full model ([2]). The experiment was also repeated with reduced
powers of 20%, 30%, 40% of the maximum IR-intensity, with two of the
fitted curves measured at powers 10% and 40% shown in Fig. 3b. The
inset of Fig. 3b shows the linear relationship between the fitting para-
meter AIRSL and the percent power used in the experiments.

As discussed above, the MC method can also simulate multiple-level
experiments, in which samples are subjected to a combination of optical
and thermal treatments. In these samples, one can use truncated dis-
tribution functions which extend from a minimum critical radius ′r c up
to infinity. In order to test this method of fitting experimental TL glow
curves, we have carried out a series of measurements shown in Fig. 4
and 5, in which a feldspar sample is irradiated and subsequently pre-
heated for variable preheat times and at variable preheat temperatures.
These experiments were carried out on a single aliquot of the microcline

sample KST4 that was described in the experimental section. The
sample in these measurements was given a test dose of 40 Gy and a
preheat from room temperature up to a temperature of 300 °C, in order
to remove the TL signal due to shallow traps.

In the experiment shown in Fig. 4, the irradiated sample was pre-
heated to TPH=300 °C and subsequently this preheat temperature was
held fixed for a variable preheat time t=0, 5, 10,50 s. In this variable
preheat time experiment, it is assumed that these preheated samples can
be described using a truncated distribution function, which extends from
a minimum critical radius ′r c up to infinity. This critical radius is treated
as an adjustable modeling parameter in fitting the experimental data in
Fig. 4, with the results of the MC simulation shown as dashed lines. The
MC simulation were carried out with the parameters =E 1.45 eV,

= × −A 3.5 10 sTL
12 1 and ′ =ρ 0.015. These numerical values are in close

agreement with the more complex analysis presented recently by
Polymeris et al. [25]. The values of the critical distance for the four MC
simulations in Fig. 4 are: ′ =r 0, 0.7, 0.77, 0.86c .

Fig. 5 shows the TL glow curves for a second set of measurements
using the same sample, with a fixed preheat time =t s10PH and a
variable preheat temperature TPH=300, 325, 350 °C. The experimental
data is compared with the results of the MC simulation shown as dashed

Fig. 2. (a) MC simulation of an isothermal experiment for irradiated Durango
apatite. The temperature is raised to 220 °C and kept constant for 500 s (Sfampa
et al., [5]). The parameters in the MC simulation are ′ =ρ 0.007,

= −A 0.20 sISOTH
1. The gray area in (a) indicates the overall results from 10 MC

simulations of 200 electrons each, and the dashed line indicates the average of
these 10 runs. (b) The experimental data (open circles) are compared with the
MC simulation (dashed line), and with the exact solution obtained by the nu-
merical integration of Eq. (3) (solid line). The fitting residuals shown are of the
order of 3% or better.
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lines. The values of the critical distance for the MC simulations in Fig. 5
are: ′ =r 0.85, 1.13, 1.3c and the rest of the fitting parameters E, ATL,

′ρ are the same as in Fig. 4.
The overall results from Fig. 4 and Fig. 5 show that the TL glow

curves for preheated samples can be described accurately using the
truncated distributions characterized by the critical radius parameter
′r c. The MC method in this paper is then an attractive alternative
method for analyzing this type of experimental data.

Fig. 6a shows a quantitative fitting of the experimental LM-IRSL
data in Bulur and Göksu ([27], their Fig. 6b), in which they studied LM-
IRSL signals in Na and K-feldspar samples. Similar data were previously
analyzed by Kitis and Pagonis [3], by using approximate analytical
expressions. Some of the experimental data of Bulur and Göksu [27] are
shown in Fig. 6a together with the MC results (solid lines). The ex-
perimental data was normalized in order to show clearly the change of
shape of the LM-IRSL curves as the stimulation temperature is in-
creased. The fitting parameters are: =−ALM IRSL

− −0.63 0.90 s 1, ′ =ρ 0.018. Once more, good agreement is seen between
the MC simulation and the experiment. Fig. 6b shows an Arrhenius plot
of the IR-stimulation probability A(T) obtained from the fittings of
Fig. 6a. The straight line fit in Fig. 6b yields a thermal activation energy
of = ±E (0.029 .001) eV. This value of E is of the same magnitude as

previously reported values by Poolton et al. [30].

6. Discussion

The TL glow curves from feldspar samples have a rather unusual
very broad shape, with full widths at half maximum (FWHM) of the
order of ~80 K. It is generally accepted that these broad shapes are
most likely due to either an underlying continuum of activation en-
ergies E, or alternatively to a continuum of frequency factors s. For a
detailed examination of these two possibilities, the reader is referred to
the extensive experimental study by Spencer [31].

The equations developed in this paper offer a new mathematical
interpretation of the broad shape of TL signals in feldspars, as follows. In
the case of TL, = −A s E k Texp[ / ]TL th B and Eq. (5) becomes:

∂ ′
∂

= −
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′ −−
n r t

t
s s

B ρ r
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exp [( ) ]
( , ) exp [ / ].th tun
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By defining an effective frequency factor −seff TL:
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′ ′− −s r s s

B ρ r
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exp [( ) ]
,eff TL

th tun
1/3 (17)

Fig. 3. (a) CW-IRSL data measured with sample KST4, with a reduced IR-sti-
mulating power of 10% of the maximum IR-intensity. The solid line shows the
result of the MC simulation with the parameters given in the text. (b) The ex-
periment was repeated with reduced power densities of 20%, 30%, 40% of the
maximum IR-power density, with two of the fitted curves measured at 10% and
40% shown here. The inset shows the linear relationship between the fitting
parameter AIRSL and the percent power used in the experiments.

Fig. 4. The irradiated microcline KST4 sample was preheated to TPH=300 °C
and this preheat temperature was held fixed for a variable preheat time

=t 0, 5, 10 , 50PH s. It is assumed that these preheated samples can be de-
scribed using a truncated distribution function, and the critical radius is treated
as an adjustable fitting parameter. The MC results are shown as dashed lines,
and the fitting parameters are: =E 1.45 eV , = × −A 3.5 10 sTL

12 1,and
′ =r 0, 0.7, 0.77, 0.86c .

Fig. 5. The TL glow curves for a second set of measurements with a fixed
preheat time =t 10 sPH and a variable preheat temperature TPH=300, 325,
350 °C. The MC simulation are shown as dashed lines, and the critical distances
are: ′ =r 0.85, 1.13, 1.3c . The rest of the fitting parameters are the same as in
Fig. 4.
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we obtain from Eq. (16):

∂ ′
∂

= − ′ ′ −−
n r t

t
s r n r t E k T( , ) ( ) ( , )exp [ / ].eff TL B (18)

For a constant distance ′r , Eq. (18) is identical to the well-known
differential equation for TL glow curves following first order kinetics:

= − −dn
dt

sn E k Texp( / ).B (19)

This analysis combined with the physical interpretation of Eqs. (10)
and (13), suggests that the TL glow curve in feldspars can be considered
as the summation of individual first order TL glow peaks with a dis-
tribution of effective frequency factors ′−s r( )eff TL which depend on the
distances ′r according to Eq. (17). For freshly irradiated feldspars the
amplitudes of these individual TL glow curves also depend on the dis-
tances ′r , and are given by the peak-shaped function ′ − ′r r3( ) exp[ ( ) ]2 3 .
For samples which have undergone previous optical or thermal treat-
ment, the distribution of amplitudes is given by a truncated distribu-
tion.

An example of this type of analysis is shown in the MC run of Fig. 7,
where a TL glow curve is obtained mathematically as the sum of first
order TL peaks.

Experimentally, it was demonstrated in multiple studies that the
bulk TL signal of feldspar is composed of a continuous series of in-
dividual TL glow peaks (e.g. [25,32–34]). Related effects were observed
also for charoite (Correcher et al., [35]) and lime-aluminosilicate glass
(Discher, [36]). However, Pagonis et al. ([37]) used general order

kinetics to describe the 'subpeak' resulting from the subtraction of two
TL glow curves that were obtained following preheating to closely
spaced temperatures. Similarly, general order kinetics were used to fit
such 'subpeaks' in recent investigations exploring feldspar extracted
from bedrock as a thermochronometer, yielding kinetic orders in the
range ~1.5–2 for most samples (Brown and Rhodes, [38]; Brown et al.
[39]; Biswas et al, [40]). One possible explanation for the discrepancy
between modeling predictions and measured data could be that the
temperature difference in the preheating experiments is not small en-
ough to produce a single TL peak of first-order kinetics. In that case, the
resulting subpeak would itself be composed of a small number of in-
dividual peaks that can be best described by general-order kinetics.

This mathematical description of luminescence signals in feldspars
as the sum of first order signals also applies to CW-IRSL signals. In this
case =−A constantCW IRSL and the corresponding effective frequency
factor ′− −s r( )eff CW IRSL is now defined by:

′ =
′ ′− −

−
−s r A s

B ρ r
( )

exp [( ) ]
,eff CW IRSL

CW IRSL tun
1/3 (20)

and Eq. (17) now becomes:

∂ ′
∂

= − ′ ′− −
n r t

t
s r n r t( , ) ( ) ( , ).eff CW IRSL (21)

The solution of this equation for a constant value of ′r is a single
decaying exponential function of the time, which leads to the conclu-
sion that the CW-IRSL signals from feldspars are the sum of exponential
decay functions, with amplitudes given by the peak shaped function

′ − ′r r3( ) exp[ ( ) ]2 3 .

7. Conclusions

The MC method presented in this paper is simple to implement, fast
and accurate and reproduces the same results as the integrated nu-
merical solution of the system of differential equations in Jain et al. [2].
An additional advantage is that the same method can also be used for
truncated distributions of nearest neighbors, which describe lumines-
cence signals from thermally or optically pretreated feldspar samples.

Another important conclusion from the previous section, is that the
equations in this paper provide a new quantitative interpretation of the
broad shape of TL glow curves in feldspars, as sums of first-order TL
peaks. Similarly, the shape of CW-IRSL curves in feldspars can be de-
scribed mathematically as the sums of first-order exponential decay

Fig. 6. (a) Quantitative fitting of the experimental LM-IRSL data in Bulur and
Göksu [27], obtained by increasing the stimulation temperature in the Na-
feldspar. (b) Arrhenius plot of the IR-stimulation probability A(T) obtained
from the MC simulations in (a). The inset shows the Arrhenius straight line fit,
which yields a thermal activation energy of = ±E (0.029 .001) eV.

Fig. 7. Example of the output from the MC procedure for a TL glow curve,
showing how the broad TL glow curves in feldspars can be considered as a sum
of several first-order TL glow peaks with a distribution of amplitudes given by
the symmetric function shown in Eq. (7).
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functions. These are two new mathematical interpretations within the
framework of the model by Jain et al. [2], which have not been pointed
out previously in the literature.

The MC method presented here can also be extended to describe
trap clustering effects in nanodosimetric materials. Future work will
aim at combining these MC techniques in a comprehensive R [41]
package.
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