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a b s t r a c t

Advances in modeling during the past 20 years have contributed to better understanding of the lumi-
nescence properties of dosimetric materials. Three types of models have been used extensively in the
literature: delocalized models based on transitions involving the conduction and valence bands, localized
models usually involving different energy levels of the same trap, and semilocalized models which are
based on a combination of localized and delocalized energy levels. The purpose of this paper is to provide
an overview of recent developments in luminescence models, with an emphasis on the importance of
delocalized transitions. Two recent theoretical developments are discussed, namely analytical equations
based on the Lambert W-function which are applicable for delocalized models, and analytical equations
based on tunneling in a random distribution of defects which are applicable for localized models. A new
model for luminescence in quartz is proposed, which is applicable for time scales ranging from micro-
seconds to seconds. Recent Monte Carlo simulations of ground state tunneling in a random distribution
of traps and centers are discussed, which are based on a modified version of a previously published
model. Some of the current challenges associated with luminescence signals measured at elevated
temperatures are pointed out, and suggestions are made for future work in this research area.

© 2017 Elsevier Ltd. All rights reserved.
1. Introduction

Advances in modeling during the past 20 years have contributed
to better understanding of the luminescence properties of dosi-
metric materials. In general terms, luminescence signals from
dosimetric materials are characterized by the presence of several
components, originating from different traps or centers. These
signals vary according to preconditioning of the samples (irradia-
tion dose, prior optical and thermal stimulation, radiation quality).
is).
The main goals of modeling studies are: to provide a quantitative
description of these dosimetric signals, to develop methods for the
accurate evaluation of parameters characterizing traps and centers,
to search for general models which explain the behavior of pre-
conditioned samples, and to help researchers understand the un-
derlying luminescence production mechanisms. Three types of
models have been used extensively in the literature: delocalized
models based on transitions involving the conduction and valence
bands, localized models usually involving different energy levels of
the traps/centers, and semilocalized models which are based on a
combination of localized and delocalized energy levels. For a
comprehensive historical summary of these three types of lumi-
nescence models, the reader is referred for example to the recent
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review paper by Horowitz et al. (2015) and the book by Chen and
Pagonis (2011).

In terms of the time scales involved in luminescence processes,
one can distinguish two broad types of experiments. In the first
category one studies phenomena like thermoluminescence (TL) or
optically stimulated luminescence (OSL) which take place in time
scales of seconds. In the second category of time-resolved (TR)
experiments, one uses short light pulses to separate the stimulation
and emission of luminescence in time. TR experiments usually
involve much shorter time scales than TL/OSL, typically of the order
of milliseconds or microseconds.

The purpose of this paper is to provide an overview of recent
developments in luminescence models, with an emphasis on the
importance of delocalized transitions. The paper is organized as
follows. Section 2 summarizes two recent theoretical de-
velopments, namely analytical equations based on the Lambert W-
function which are applicable for delocalized models (Kitis and
Vlachos, 2013), and analytical equations based on tunneling in a
random distribution of defects, and which are applicable for
localized models (Kitis and Pagonis, 2013). Section 3 proposes a
newmodel for luminescence in quartz, which is applicable for time
scales ranging from microseconds to seconds. Section 4 is a review
of recent research on two different descriptions of ground state
tunneling phenomena in a random distribution of defects; a
macroscopic differential equations approach, and a microscopic
Monte Carlo approach. Finally, section 5 discusses some of the
current challenges associated with luminescence signals measured
at elevated temperatures, and suggestions aremade for futurework
in this research area.

2. Developments in new analytical equations for localized
and delocalized models

In this section we summarize two recent theoretical works on
analytical equations which can be used for describing luminescence
signals.

2.1. Analytical solutions for the OTOR model using the Lambert
function

The OTORmodel (one-trap one-recombination center) shown in
Fig. 1 is the simplest model describing luminescence and is based
on delocalized transitions. The differential equations governing the
traffic of electrons between the one trapping level, the
Fig. 1. The delocalized OTOR model containing a single trap and a single recombina-
tion center. Transition 1 represents thermal or optical excitation, transition 2 corre-
sponds to the luminescence process from the conduction band into the recombination
center, and transition 3 represents the retrapping process.
recombination center and the conduction band are described in
detail in Chen and Pagonis (2011). The OTOR rate equations cannot
be solved in closed form. However, by using the simplifying quasi-
equilibrium (QE) conditions it is possible to reduce the system of
equations in the OTOR model into the following single equation
known as the general one trap model (GOT):

IðtÞ ¼ �dn
dt

¼ pðtÞ n2

ðN � nÞRþ n
; (1)

where N (cm�3) is the total concentration of electron traps in the
crystal, nc and n (cm�3) correspondingly are the instantaneous
concentrations of electrons in the conduction band and in the filled
traps, An and Am (cm3s�1) are the re-trapping and recombination
rates, and R¼ An/Am is the retrapping ratio. The quantity p(t) (s�1) is
the time rate which depends on the stimulation mode used during
the experiments. For the case of isothermal excitation and optically
stimulated luminescence (OSL), p(t) ¼ constant. For the case of
thermoluminescence (TL) the quantity p(t)¼ sexp(-E/kBT)where E,s
are the thermal kinetic parameters characterizing the traps, kB is
the Boltzmann constant and T is the temperature of the sample
which is usually increasing linearly with time. The QE conditions
used in deriving the GOTmodel in Equation (1) are nc << n and jdnc/
dtj<<jdn/dtj.

Kitis and Vlachos (2013) obtained analytical solutions for
equation (1) in terms of the two real branches of the well-known
transcendental Lambert function W(z). These two branches of the
Lambert function are shown in Fig. 2. These authors found that the
two types of solutions depend on the ratio R ¼ An/Am of the re-
trapping and recombination rates An, Am. For R < 1 the solution of
the OTOR model is based on the first real branch of the Lambert
function, which is defined in the region (�1/e)<z<∞ and is denoted
byW[0,z] in Fig. 2. For R> 1 the solution of the OTORmodel is based
on the second real branch of the Lambert which is defined in the
region (�1/e)<z < 0 and is denoted by W[-1,z] in Fig. 2. In its most
general form the Lambert function is defined as the function
satisfying the equation W(z)eW(z) ¼ z for any complex number z. In
mathematical form the solution of equation (1) is:

IðtÞ ¼ pðtÞ R

ð1� RÞ2
N

W½k; ez� þW½k; ez�2
; (2)

z ¼ NR
noð1� RÞ ln

�
noj1� Rj

NR

�
þ 1
1� R

Zt

to

pðtÞdt (3)

where k ¼ 0 or k ¼ -1 for the two real branches of W(z)
correspondingly.

The advantages of using the Lambert function as a deconvolu-
tion function for luminescence signals are: (a) Fitting of experi-
mental TL data with the Lambert function produces accurate values
of activation energy E (Sadek et al., 2014) (b)W(z) can be used to fit
unusual shapes of TL glow curves, where the General Order Kinetics
(GOK) and Mixed Order Kinetics (MOK) equations may fail, (c) The
Lambert function W(z) is easy to program, since it is already
available in many commercial software packages like MATLAB,
MINUIT andMATHEMATICA, (d) Analysis of experimental datawith
W(z) provides a physical interpretation of the luminescence signals
based on the retrapping ratio R. By contrast, analysis of data using
GOK kinetics is based instead of the empirical kinetic order
parameter b which has no direct physical meaning.

This latter case is of major importance, so it will be clarified by
an example. A single TL peak is numerically generated using the
OTOR model with input parameters E ¼ 1eV, s ¼ 1010 s�1, and



Fig. 2. The two branches of the Lambert W function, showing the different regions of
the z parameter for which they are defined.
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n0 ¼ N ¼ 1010cm�3, and for two different values of the retrapping
ratio R ¼ 0.25 and R ¼ 1000. Fig. 3 shows that the two calculations
produce TL glow curves with very different shapes for the two
values of R. These two peaks were fitted using the GOK analytical
equations and also using Equation (2) in the form given by Sadek
et al., (2015). The TL peak for R ¼ 0.25 was fitted using the first
branch, and the TL peak for R¼ 1000 using the second branch of the
Lambert W function. The open circles represent the simulated
peaks and the solid lines the fit by the Lambert equation (2) and by
the following well-known GOK equation:

IðTÞ ¼ s
00
n0 exp

�
� E
kT

�2641þ s
00 ðb� 1Þ

b

ZT
To

exp
�
� E
kT 0

�
dT 0

3
75
� b

b�1

(4)

with no representing concentration of trapped electrons at time
Fig. 3. A single TL peak numerical simulated using the OTOR model for two different values
the results of fitting the numerically simulated peak using general order kinetics (GOK) and G
fails to reproduce the correct E values in the model.
t ¼ 0 (in m�3), b is the general kinetic order parameter, s
00
is an

empirical parameter acting as an “effective” frequency factor for
general order kinetics (in s�1), E is the activation energy (in eV),
k ¼ Boltzmann constant (in eV. K�1), t ¼ time (in s), and T is the
absolute temperature (in K). A linear heating rate b is used to heat
the sample (in K.s�1), resulting in the temperature varying as
T ¼ To þ bt, where To is the temperature at time t ¼ 0 (in K).

It is clear that both equations fit both peaks accurately. However,
the fitting results shown in the inset table of Fig. 3 indicate that in
the case of R ¼ 0.25 the Lambert function reproduces exactly the
input values of E and R, and gives a FOM value two orders of
magnitude better than the GOK method which overestimates the E
value by 7%. In the case of R ¼ 1000, again both equations give
excellent fits. However, the Lambert based fit reproduces the E and
R values exactly, whereas the GOK equation gives completely
erroneous results of E ¼ 0.48 eV instead of the expected value
E¼ 1 eV. This example shows that the differences between the GOK
equation and the Lambert based analytical equations are of a deeply
physical nature, rather than due to mathematical differences be-
tween the two fitting models. The correct values of the kinetic
parameters are only obtained using the physically meaningful
Lambert equation, while the empirical GOK equations fail
completely. For further examples of using the Lambert functions,
the reader is referred to the recent experiments by Kitis et al.
(2016), who used the Lambert W function to fit isothermal lumi-
nescence signals in synthetic luminescence materials.
2.2. Localized transitions: the tunneling model of Jain et al. (2012)

A second major recent theoretical development is the model
developed by Jain et al. (2012), which has provided a description of
tunneling phenomena in a random distribution of electron-hole
pairs. The model is shown schematically in Fig. 4a. The main as-
sumptions of the model are the presence of a random distribution
of electron-hole pairs, in which the concentration of holes (accep-
tors) is much larger than the concentration of electrons (donors).
Thermal or optical excitation raises the electrons from the ground
into the excited state of the system. Tunneling takes place from the
of the retrapping ratio R ¼ 0.25 and 1000, as discussed in the text. The inset table gives
OT equations. Excellent fits are obtained with both equations, however the GOK model
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excited state of the electron trap into the recombination center, and
to the nearest neighbors only. Kitis and Pagonis (2013) quantified
the semi-analytical model of Jain et al. (2012) by deriving analytical
expressions for different experimental stimulation modes. The
analytical equations for excited state tunneling developed by Kitis
and Pagonis (2013) are:

nðtÞ ¼ no exp
h
� r0FðtÞ3

i
(5)

FðtÞ ¼ ln

0
@1þ 1:8

Zt

0

Adt0
1
A (6)

LðtÞ ¼ �dn
dt

¼ AFðtÞ2 exp½�FðtÞ�exp
h
� r0½FðtÞ�3

i
(7)

where A represents the rate of thermal/optical stimulation, r0 is the
dimensionless charge density, t is the elapsed time since the
beginning of experiment, no and n(t) are the initial and instanta-
neous concentration of point defects in the ground state corre-
spondingly. The parameter A has the same physical meaning for
different experimental stimulation modes as the parameter p(t) in
Equation (1).

The analytical equations (5)e(7) developed by Kitis and Pagonis
(2013) were used recently to describe luminescence signals from a
variety of feldspars and apatites in a quantitative manner
(Polymeris et al., 2014; Sfampa et al., 2014; Pagonis et al., 2014a).
Fig. 5a shows a typical example of fitting a continuous wave
infrared stimulated luminescence signal (CW-IRSL) from a ortho-
clase sample with laboratory code VRS3, while Fig. 5b shows an
example of a fitted isothermal signal from Durango apatite,
measured at 220 �C. For both types of signals Equations (5)e(7) give
excellent fits to the experimental data. The experimental setup,
sample preparation and experimental conditions for the experi-
ments shown in Fig. 5 were described previously in Polymeris et al.
(2014). Luminescence measurements were carried out using a Riso
TL/OSL reader (model TL/OSL-DA-15), equipped with a90Sr/90Y beta
particle source, delivering a nominal dose rate of 0.075 Gy/s. A
9635QA photomultiplier tube was used with a 7.5 mm Hoya U-340
filter (~340 nm, FWHM ~80 nm), and the IRSL stimulation wave-
length is 875 (±40) nm with the maximum power ~135 mW/cm2.
All necessary heating was performed in a nitrogen atmosphere
with a low constant heating rate of 2 �C/s, in order to avoid
Fig. 4. (a) Tunneling phenomena from the excited state are described by Equation (7) in the
Simultaneous irradiation and tunneling phenomena are described by Equation (15) in the
significant temperature lag. For the experiment in Fig. 5a, the
irradiated aliquot of sample VRS3 was first preheated to a tem-
perature of 300 �C, followed by measurement of its CW-IRSL signal
for 2000 s at 50 �C. For the prompt isothermal measurements re-
ported in Fig. 5b for the Durango apatite, a combination of Pil-
kington HA-3 heat absorbing and Corning 7e59 (320e440 nm)
blue filter were used for light detection. This Durango apatite
sample is known to exhibiting strong anomalous fading (Sfampa
et al., 2014).
3. Developments in comprehensive empirical models for
quartz

This section is organized as follows. Sections 3.1 and 3.2 sum-
marize some of the comprehensive empirical models which have
been developed for quartz during the past 10 years. Some of these
models are based on localized transitions and these have been used
to describe time resolved experiments in quartz in the microsec-
onds time scale, while other models are based on delocalized
transitions and have been used mostly to describe phenomena in
the seconds scale. In Section 3.3 we propose a newmodel for quartz
which is based on both localized and delocalized transitions.
3.1. Empirical models for quartz based on localized transitions- time
resolved experiments

For a comprehensive review of quartz models based on localized
transitions the reader is referred to the recent review paper by
Chithambo et al. (2016). The main purpose of these types of models
is to describe quantitatively time resolved experiments in quartz in
the microseconds time scale. Extensive experimental studies of
luminescence lifetimes in quartz (see for example Chithambo et al.,
2016), have suggested a general energy scheme consisting of three
independent radiative luminescence centers denoted by LH, LL and
LS, and a non-radiative luminescence center denoted by R. These
radiative centers are associated with distinct characteristic life-
times denoted by tH, tL and tS correspondingly. Time resolved
luminescence from sedimentary quartz annealed below 500 �C is
dominated by a single component with a luminescence lifetime tH
~42 ms, while luminescence in samples annealed above 500 �C is
dominated by a characteristic lifetime of tL~32 ms. Pagonis et al.
(2010) presented a new kinetic model for time resolved experi-
ments which includes thermal quenching in quartz, and which is
based on the Mott-Seitz mechanism. In this model all
text. (b) Tunneling from the ground state are described by Equation (14) in the text. (c)
text.



Fig. 5. (a) CW-IRSL experimental data for orthoclase sample VRS3, fitted using Equa-
tion (7) in the text. (b) Isothermal experimental data for Durango apatite, fitted using
Equation (7) in the text.
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recombination transitions are localized within the recombination
center, in contrast to delocalized models of Section 3.2, in which all
charge transitions take place via the conduction and valence bands.

One of the main challenges for these localized transition models
is the inclusion of thermal quenching effects, which are well known
experimentally in quartz and other dosimetric materials (Nikiforov
et al., 2001; Pagonis et al., 2011a, 2014b). In the quartz model of
Pagonis et al. (2010), thermal quenching arises from the competi-
tion between radiative and non-radiative electronic transitions
taking place within the recombination center. Unfortunately, in
quartz the nature of both the traps and luminescence centers are
still unknown or uncertain, and are the subject of current research.
As the temperature of the sample is increased, electrons are
removed from the excited states according to the Boltzmann factors
and this leads to both a decrease of the intensity of the lumines-
cence signal and to a simultaneous decrease of the apparent
luminescence lifetime tL. The model of Pagonis et al. (2010) suc-
cessfully describes these variations of the luminescence lifetimes
and luminescence intensity when optical stimulation takes place in
temperatures between 20 and 200 �C (Chithambo et al., 2016).

Pagonis et al. (2010) showed that their model can also describe
luminescence processes in quartz from a time scale of microsec-
onds (for TR-OSL experiments), up to a time scale of seconds (for TL
and OSL experiments). No modifications are required in the model
in order to transition from one time scale to the other. In later work
Pagonis et al. (2014b) expanded this model, in an effort to include
the experimentally observed lifetimes tH and tL for annealed
sedimentary quartz samples.

While the comprehensive quartz models described in this sec-
tion successfully combine localized and delocalized transitions over
time scales extending several orders of magnitude, the lumines-
cence mechanism in quartz is known to be very complex, and this
has led to the parallel development of several empirical compre-
hensive models which are based on delocalized transitions. One of
these models is described in the next subsection.

3.2. Empirical models for quartz based on delocalized transitions-
TL and OSL experiments

For a recent comparative review of comprehensive quartz
models based on delocalized transitions, the reader is referred to
the recent comprehensive paper by Friedrich et al. (2016). The first
empirical comprehensive quartz model was developed by Bailey
(2001), and it contains 5 electron traps and 4 hole centers. Levels
1e4 in the original Bailey model give rise to TL peaks at ~110 �C,
230 �C and two peaks around 330 �C, and levels 3 and 4 also give
rise to OSL signals. Level 5 is a thermally disconnected deep elec-
tron center, and levels 6e9 are two hole reservoirs, a stable lumi-
nescence center and a non-radiative recombination center
correspondingly. The model by Bailey (2001) was expanded by
Pagonis et al. (2008) to include two additional levels 10 and 11, in
order to simulate the experimentally observed thermally trans-
ferred OSL (TT-OSL) signals.

In an extensive simulation study, Pagonis et al. (2011b) showed
that the model by Pagonis et al. (2008) can simulate a very wide
range of experimental results, as well as various experimental
protocols used for several TL/OSL dating techniques. This study
simulated successfully the following: (a) quantitative description of
TL glow curves and their dose response, (b) OSL bleach curves and
their dose response (c) the predose technique in quartz, (d) pho-
totransfer phenomena (e) SAR-OSL dating protocol and (f) SAR-TL
dating protocols.

The type of delocalized transition model described in this sec-
tion cannot provide a description of TR-OSL experiments in quartz,
which take place in themicroseconds time range. Therefore there is
a need to combine delocalized and localized transitions in a more
comprehensive model, which will cover a wider range of time
scales. In the next section we propose such a new comprehensive
model for quartz, based on both localized and delocalized
transitions.

3.3. A proposed new comprehensive model for quartz

Fig. 6 shows a proposed new comprehensive model for quartz,
which maintains the mathematical and physical characteristics of
both the previous delocalized and localized models discussed in
sections 3.1 and 3.2. Level 1 in the model represents a shallow
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electron trapping level, which gives rise to a TL peak at ~110 �Cwith
a heating rate of 5 K/s. Level 2 represents a generic “230 �C TL” trap,
while Levels 3 and 4 are usually termed the fast and medium OSL
components and they yield TL peaks at ~330 �C as well as give rise
to OSL signals. Level 5 is a deep electron center which is considered
thermally disconnected, and levels 6 and 7 are thermally unstable,
non-radiative recombination centers (“hole reservoirs”). Level 8 is a
thermally stable, radiative recombination center often termed the
“luminescence center” (L) and Level 9 is a thermally stable, non-
radiative recombination center termed a “killer” center (K). As
discussed above, levels 10 and 11 were introduced in order to
simulate the experimentally observed thermally transferred OSL
(TT-OSL) signals.

The important localized transitions in the model are shown in
the middle of Fig. 6, and are denoted by AR and ANR by following the
notation in the localized quartz model of Pagonis et al. (2010). As
discussed in section 3.1, thermal quenching arises from the
competition between these radiative (AR) and non-radiative (ANR)
electronic transitions taking place within the recombination center.
The equations for the traffic of charge carriers in the new proposed
model are as follows:

dni
dt

¼ ncðNi � niÞAi � niPqoi exp

"
� Ethi
kBT

#
� nisi exp

�
� Ei
kBT

�
;

(8)

ði ¼ 1;…5 and i ¼ 10;11Þ

dnj
dt

¼ nv
�
Nj � nj

�
Aj � njsje

�
� Еj

kBT

�
� ncnjBj; (9)

j ¼ 6;7;9

dnL
dt

¼ ACBncðNL � nLÞ � A8nvnL � ARnL � nLANR expð�W=kBTÞ
� nLsL exp½�EL=kT�

(10)
Fig. 6. The new proposed model for quartz, which contains both localized and delocalized tra
the text. This energy scheme describes thermal quenching using the Mott-Seitz mechanism
dnc
dt

¼ R� ACBncðNL � nLÞ �
X5
i¼1

�
dni
dt

�
�

X11
i¼10

�
dni
dt

�

�
X

j¼6;7;9

�
ncnjBj

�
(11)

dnv
dt

¼ dnc
dt

þ
X5
i¼1

�
dni
dt

�
þ

X11
i¼10

�
dni
dt

�
�

X
j¼6;7;9

�
dnj
dt

�
(12)

The instantaneous luminescence IðtÞ resulting from the radia-
tive transition shown in the middle of Fig. 6 is defined as:

IðtÞ ¼ ARnL (13)

In these equations Ni are the total concentrations of electron
traps or hole centers (cm�3), ni are the instantaneous concentra-
tions of trapped electrons or holes (cm�3), si are the frequency
factors (s�1), Ei are the electron trap depths below the conduction
band or hole trap depths above the valence band (eV), Ai (i ¼ 1…5,
and i ¼ 10,11) are the conduction band to electron trap transition
probability coefficients (cm3 s�1), Aj (j ¼ 6…9) are the valence band
to hole trap transition probability coefficient (cm3 s�1), valence
band to trap transition probability coefficients (cm3 s�1) and Bj
(j ¼ 6…9) are the conduction band to hole center transition prob-
ability coefficients (cm3 s�1). The photo-eviction constant is q0i
(s�1) at T ¼∞, the thermal assistance energy Ethi (eV) and P (s�1) is
the rate of optical stimulation. AR and ANR (s�1) are the radiative and
non-radiative transition rates necessary to simulate the thermal
quenching process, and their numerical values are taken from
Pagonis et al. (2010).

It is noted that Equations (8)e(9) describe exclusively delo-
calized transitions involving the conduction and valence bands,
while Equation (10) refers to the luminescence center (level j ¼ 8 in
themodel), which is based on localized transitions, andwhich is the
basis of the new proposed model. A new set of parameters are used
in the model to describe localized transitions within the lumines-
cence center. This center is described in terms of electronic states
and electronic transitions, by following the mathematical formalism
in Pagonis et al. (2010). By following the notation of Pagonis et al.
(2010), let us denote by nL the concentration of electrons in the
excited state of the luminescence center, and by NL the corre-
sponding total concentration of these traps in the crystal. The
quantities nL and NL are then completely analogous to the quanti-
ties n2 and N2 in the model of Pagonis et al. (2010).
nsitions. The various transitions and the parameters used in the model are described in
.
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It must be emphasized that the key difference between the
delocalized model by Pagonis et al. (2008) and the new model is
Equation (10), in which the luminescence center is described in
terms of electronic states and electronic transitions, instead of in
terms of holes and delocalized transitions.

Equation (10) describes mathematically five possible transitions
involving the electrons in the excited state of the luminescence
center, as follows. The first term ACBncðNL � nLÞ describes the time
rate of electrons being trapped with a rate coefficient ACB from the
CB into the excited state nL. This term is positive, since it leads to an
increase of the concentration of electrons nL in the excited state of
the recombination center, by the capturing of electrons from the CB.
The second term �A8nvnL describes holes being trapped with a
probability coefficient A8 from the valence band into the excited
electronic state. This term is negative, since it leads to a decrease of
the concentration of electrons nL by the capturing of holes from the
VB. The third term ARnL describes electrons undergoing the radia-
tive transition from the excited into the ground state of the center,
and the fourth term nLANR expð�W=kBTÞ describes the non-
radiative localized transition which competes for electrons from
the excited state. The last term nLsLe�EL=kT describes the thermal
properties of the electrons in the excited state, using the frequency
coefficient sL and thermal activation energy EL. It is noted that the
above equation (10) for dnL=dt contains both localized and delo-
calized transitions.

When using the model in Fig. 6 with the original values of the
parameters in Pagonis et al. (2008), it was found that the conduc-
tion band empties very slowly, on a time scale of ~0.1 s. This value is
in contradiction to several experimental and simulation studies,
which show that the CB probably empties much faster, perhaps
within a fewmicroseconds (Chithambo et al., 2016). This deficiency
of this type of model was discussed in Pagonis et al. (2010, page
909), and is due to the very low values of total concentrations of
electrons used in the empirical quartz models. In order to achieve a
free carrier lifetime of t � 1 ms, it was found necessary to increase
the values of all electron and hole concentrations in the model by a
factor of 5x104, while leaving all other parameters in the model
unchanged. From a physical point of view, when using higher
values of the total concentrations of carriers in the model, all pro-
cesses in the system will take place much faster, but the relative
distribution of electrons and holes in the various traps and centers
remains the same. The final values of all parameters used in the
new comprehensive model of Fig. 6 are shown in Table 1.

The new model shown in Fig. 6 was tested extensively, and it
provides a quantitative description of luminescence phenomena in
quartz from microseconds up to seconds. Specifically, the new
model can describe (a) TR-OSL experiments (in the microseconds
time range) as shown in Fig. 7, (b) TL experiments in the seconds
Table 1
Kinetic parameters for the new proposed model shown in Fig. 4. The various pa-
rameters are discussed in the text.

Ni

cm�3
Ei eV si

s�1
Ai Bi q0i

s�1
Eith eV

cm3s�1

1 7.5e11 0.97 5e12 1e-8 0.75 1
2 5e11 1.55 5e14 1e-8 0 0
3 2e12 1.73 6.5e13 5e-9 6 0.1
4 1.2e13 1.8 1.5e13 5e-10 4.5 0.13
5 2.5e15 2 1e10 1e-10 0 0
6 1.5e13 1.43 5e13 5e-7 5e-9 0 0
7 5e14 1.75 5e14 1e-9 5e-10 0 0
8 1.5e15 5 1e13 1e-10 1e-10 0 0
9 6 e16 5 1e13 1e-14 3e-10 0 0
10 2.5e14 1.65 3.9e13 1e-11 0.01 0.2
11 2e14 1.6 5e12 6e-12 0 0
time range including thermal quenching, as shown in Fig. 8, and (c)
the complex TT-OSL quartz dating protocol discussed in Pagonis
et al. (2011b) is shown in Fig. 9. In summary, the new model
maintains the physical and mathematical properties of the earlier
models, by using both their localized and delocalized characteris-
tics. Further testing of the model and comparison with experi-
mental data is in progress and will be presented elsewhere.
4. Models of ground state tunneling in random distributions
of defects

This section presents a general overview of ground state
tunneling phenomena in systems of random defects. Quantum
mechanical tunneling and the associated phenomenon of “anom-
alous fading” of luminescence signals are now well established as
dominant mechanisms in feldspars and apatites (Pagonis and Kitis,
2015). Two types of tunneling processes have been investigated
experimentally and by the development of appropriatemodels. The
first type of quantum mechanical tunneling is considered to take
place directly from the ground state of the trap, as shown in Fig. 4b.
The second type of quantummechanical tunneling is considered to
take place via the excited state of the system of electron-hole pairs,
and was discussed briefly in Section 2.2 of this paper and shown in
Fig. 4a. Two possible complementary modeling approaches have
been used in the literature to simulate ground state tunneling in
random distribution of defects: a macroscopic description using
Fig. 7. Time resolved (TR) experimental data for quartz, in the microseconds scale. (a)
Luminescence lifetime as a function of the stimulation temperature and (b) Total TR-
OSL area as a function of stimulation temperature. The solid lines represent the best
fits obtained from the new proposed model in Fig. 6.



Fig. 8. Simulated TL quartz data in the seconds scale for different heating rates b,
demonstrating the effect of thermal quenching. These simulated data were also ob-
tained from the new proposed model in Fig. 6.

Fig. 9. Simulated TT-OSL protocol dose response, obtained with the model shown in
Fig. 6.
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differential equations, and a microscopic descriptions based on
Monte Carlo simulations. These two approaches are discussed in
the next two subsections.
4.1. Ground state tunneling in random defects: the differential
equation approach

The differential equation description of ground state tunneling
is now well established and provides a macroscopic description of
the system. Recently Pagonis and Kitis (2015) considered mathe-
matical aspects of the two ground state tunneling models by
Huntley (2006) and by Li and Li (2008), shown in Fig. 4b and c
correspondingly. The loss of charge in a distribution of random
defects is described by the following well-known analytical equa-
tion (Tachiya and Mozumder, 1974; Huntley, 2006):

nðtÞ ¼ no exp
h
� r0 lnð1:8stÞ3

i
; (14)

where r0 is the dimensionless charge density describing the system
and s is the tunneling frequency. Pagonis and Kitis (2015)
developed the following new analytical equation describing the
effect of anomalous fading on the dose response curves (DRCs) of
naturally irradiated samples, based on themodel by Li and Li (2008)
shown in Fig. 4c:

LnðDnÞ ¼
�
1� exp

�
� Dn

D0

��
M exp

�
� r0 ln

�
Dos
DR

�3�
(15)

where Ln is the luminescence signal, Dn is the natural irradiation
dose (Gy),Do is the characteristic dose (Gy),M is the total number of
traps, DR is the natural irradiation rate (Gy/ka) and s (s�1) is the
tunneling frequency.
4.2. Ground state tunneling in random defects: the Monte Carlo
approach

In this subsection we describe a different modeling approach
based onMonte Carlo techniques. There have been several efforts to
develop models for luminescence signals in feldspars, based on a
random distribution of donor-acceptor pairs. One of the basic as-
sumptions of these models is that whenever an electron trap is
occupied, the electron will always have the same nearest hole with
which to recombine, i.e. the number density of trapped holes in the
phosphor is assumed to be much larger than the concentration of
trapped electrons. Larsen et al. (2009) presented a numerical
Monte Carlo model that simulated the processes of charge loss,
charge creation and charge recombination in feldspar. In contrast to
the assumptions made by previous analytical models, they
assumed that the number density of electrons and holes are equal
at all times. The focus of their study was to reproduce the experi-
mentally observed values of the well-known g-factor describing
anomalous fading effects. These authors were not able to get reli-
able results for bulk crystals, and obtained good agreement with
experiment only when they assumed that the material consisted of
small nanocrystals, and that charge carriers were allowed to
recombine only within these smaller volumes.

Pagonis and Kulp (2017) presented a different version of the
model by Larsen et al. (2009), in which the number density of ac-
ceptors far exceeds that of donors. The new version of the model
was used to simulate the loss of charge due to ground state
tunneling, as well as the charge creation by natural irradiation of
the samples. The results from the model compared well with the
analytical equations (14) and (15) presented in the previous sub-
section. The simulations can describe the loss of charge on a wide
variety of time scales, frommicroseconds to thousands of years. The
effect of crystal size, charge carrier density, natural irradiation dose
rate and total number of charge carriers were studied in a quanti-
tative manner. Finally, Pagonis and Kulp (2017) examined the
possibility of extending the version of the model to describe
luminescence signals originating in the nearest neighbor hopping
mechanism in feldspars. The results from the model were
compared with experimental data from time-resolved infrared
stimulated luminescence (TR-IRSL) in these materials.

The Monte Carlo simulations can provide valuable insight into
the various factors which affect the luminescence mechanism in
these materials. Fig. 10 shows an interactive simulation of the effect
of various parameters on the loss of charge in feldspars (Kulp and
Pagonis, 2016). The simulation consists of several “buttons” which
can be activated in any sequence by the user, to investigate the
changes taking place in the curve n(t) describing the loss of charge
due to ground state tunneling. In Fig. 10 these buttons vary the
tunneling frequency s, the potential barrier penetration constant a,
the dimensions of the cube and the number of Monte Carlo runs
(number of solids). The solid line in Fig. 10 represents the analytical



Fig. 10. Interactive demonstrations of ground state tunneling. The user can vary the various parameters in the model and immediately see the effect of each parameter in the loss of
charge over time. Variation of the parameters is achieved by activating the various “buttons” shown here. The solid line represents the analytical equation (14).
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equations described by the analytical equation (14). The simula-
tions were developed by using the command Manipulate in Math-
ematica. The computer code for the interactive demonstrations in
Fig. 10 are available to all users via the Wolfram Demonstration
Project, a web-based open-access collection of interactive scientific
animations (Kulp and Pagonis, 2016).

The advantages of using a Monte Carlo method, as opposed to
the differential approach, are (Pagonis and Kulp, 2017):

(a) the method is fast, efficient and avoids numerical in-
tegrations required in the differential equation approach.

(b) it can be used to produce accurate results in cases of low
stimulation probability, in which it is known that the
analytical equations of Kitis and Pagonis (2013) fail.

(c) it can be used for both freshly irradiated samples and for
irradiated samples which underwent thermal or optical pre-
treatments.

(d) it can also be used to describe time-resolved experiments
based on Mott hopping processes (Mott and Davis, 1979).
5. Conclusions and future challenges in luminescence
modeling

This paper has presented an overview of recent developments in
luminescence modeling. Section 2 summarized presented recent
theoretical developments based on the Lambert W-function, and
how this mathematical function can be used to fit experimental TL,
OSL and LM-OSL data based on delocalized transitions within the
GOT model. The availability of the analytical Lambert solutions for
the GOT model presents a significant mathematical step in the
development and understanding of basic processes based on
delocalized transitions, and how they may be distinguished
experimentally from localized transitions. For example, recent
work has shown that it may be possible for experiments to
distinguish between localized and delocalized processes in a ma-
terial, by analyzing isothermal TL signals assuming differentmodels
(Kitis et al., 2016).

Similarly, in the case of localized tunneling transitions for
random distributions of defects, the analytical equations developed
by Kitis and Pagonis (2013) based on the model by Jain et al. (2012),
represent a new rich area of research which is still being explored
both experimentally and with modeling work. This work has led to
a better understanding of ground state tunneling phenomena in
feldspars, apatites and similar natural and synthetic luminescence
materials. However, there is much work to be done in order to
understand the associated phenomena of tunneling from the
excited state of the electron-hole pair in a luminescence material.

Closely associated with tunneling from the excited state of the
electron-hole pair are two fundamental areas of research which are
of importance for both luminescence dating and luminescence
dosimetry. These are the temperature dependence of the lumi-
nescence signal in feldspars and apatites, and the exact nature of
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the various luminescence pathways including the band tail states in
these materials. Understanding these various pathways is a key
part of improving the various proposed experimental protocols for
dating these materials (postIR-IR protocols, MET-IR protocols etc).

Section 3 presented a new model for luminescence in quartz,
which is applicable for time scales ranging from microseconds to
seconds. This type of model which combines localized and delo-
calized transitions could also be applicable to the study of lumi-
nescence signals from materials like YPO4 double doped with
lanthanides. These materials exhibit temperature dependent
tunneling phenomena and apparently can be described by a com-
bination of localized and delocalized transitions. Often such ma-
terials also demonstrate the anomalous heating rate effect, in
which the area under a TL glow curve increases with heating rate,
instead of the opposite behavior that one sees in materials with
thermal quenching (Mandowski and Bos, 2011).

Section 4 in this paper presented two different descriptions of
ground state tunneling phenomena in a random distribution of
defects; a macroscopic differential equations approach, and a
microscopic Monte Carlo approach. Both of these approaches can
easily be extended for the case of excited state tunneling. While the
differential equation approach has been well studied, little work
has been done on the relevant Monte Carlo research for tunneling
materials. This is an area where future research can yield new re-
sults, of importance to both fundamental understanding of
tunneling luminescence and for practical dosimetry applications.
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