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A B S T R A C T   

The dose response of dosimetric materials is of fundamental importance in luminescence dosimetry and lumi
nescence dating applications. In this paper we present a new analytical equation describing the trap filling 
process during irradiation of insulators, starting from the one trap and one recombination center model (OTOR). 
Even though this model has been studied extensively during the past 50 years, there are no published analytical 
solutions for the dose response n(D) in this model, where n is the concentration of filled traps and D is the 
irradiation dose. The new analytical equation contains the well-known Lambert function W, which has been used 
extensively during the past 20 years in diverse research areas. Under certain conditions, the new n(D) equation 
leads to the empirical saturating exponential function (SE). The new equation contains a smaller number of 
fitting parameters than two other commonly used fitting functions, the saturating exponential plus a linear 
function (SEL), and the double saturating exponential (DSE). In addition, the new equation contains physically 
meaningful parameters. Examples are shown of using the new equation to fit a variety of experimental signals, 
namely thermoluminescence (TL), optically simulated luminescence (OSL), isothermal TL (ITL) and electron spin 
resonance (ESR).   

1. Introduction 

The dose response of thermoluminescence (TL), isothermal thermo
luminescence (ITL), optically stimulated luminescence (OSL) and elec
tron spin resonance (ESR) signals is commonly shown as a graph of the 
intensity of these signals as a function of the irradiation dose. This type 
of graph is of fundamental importance in radiation dosimetry and 
luminescence dating. For a detailed bibliography on dose responses and 
the various published models, the reader is referred to the books by Chen 
and Pagonis [1], Chen and McKeever [2] and McKeever [3]. 

Experimentalists usually carry out two types of experiments, which 
measure two distinct types of dose responses. The first type of experi
ment measures the trapped charge at the end of the irradiation process, by 
using for example Electron Spin Resonance (ESR), or optical absorption 
techniques (OA). In this first type of experiment, the ESR and OA signals 
are usually assumed to be directly proportional to the concentration of 
filled traps n ðcm� 3Þ at the end of the irradiation process. In the second 
type of experiment, the trapped charge is measured at the end of two 
successive experimental stages, namely at the end of irradiation followed 

by thermal/optical stimulation of the sample. Examples of this second type 
of experiment are measurements of dose response of TL, ITL and OSL 
signals. In these types of experiment, the stimulated luminescence sig
nals may or may not be directly proportional to the concentration of 
filled traps at the end of the irradiation process, due to competition ef
fects between traps and centers during the optical/thermal stimulation 
stage. 

The simplest model describing the luminescence process during 
irradiation of a material is the one trap one recombination center model 
(OTOR). Although this model has been studied for more than 50 years, 
no explicit analytical equation exists to describe the dose response curves 
in the form nðDÞ within this model, where n ðcm� 3Þ is the concentration 
of filled traps and D ðGyÞ is the irradiation dose. The solution of the 
OTOR model for the irradiation process was given previously only as an 
implicit parametric equation DðnÞ, which must be inverted numerically to 
yield the dose response function nðDÞ. In the framework of the OTOR 
model, previous simulations have shown that nðDÞ has an initial linear 
dose response region for low doses, followed by a sublinear region in 
which the dose response varies as D1=2, before approaching saturation 
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(Lawless et al. [4]). 
The goals of the present work are:  

� To derive a new analytical expression for the dose response curves 
nðDÞ for the irradiation stage of the OTOR model, by using the well- 
known Lambert function W ([5,6]).  
� To verify the new analytical equation, by comparing it with the 

numerical solution of the differential equations in the OTOR model.  
� To compare the new equation with three commonly used data fitting 

functions: the saturating exponential (SE), saturating plus linear 
(SEL) and double saturating exponential (DSE) fitting equations.  
� To fit previously published experimental data for TL, OSL, ESR and 

ITL signals with the new analytical equation. 

This paper is organized as follows. Section 2 derives and verifies the 
new analytical equation for the dose response nðDÞ=N, within the 
framework of the OTOR model. Section 3 explores the relationship be
tween the new Lambert solution and the saturating exponential func
tion. Section 4 presents fits of previously published experimental data by 
using the new analytical equation. The paper concludes with a general 
discussion of the new dose response equation, and of the importance of 
the Lambert function in describing luminescence phenomena. 

2. Derivation of the new analytical dose response equation 

Fig. 1 shows a schematic diagram of the OTOR model, and the 
relevant electronic transitions during the irradiation of a sample. The 
differential equations governing the traffic of electrons between the 
trapping level, the recombination center and the conduction band in the 
OTOR model are [1]: 

dn
dt
¼AnðN � nÞnc; (1)  

dm
dt
¼BðM � mÞnv � Ammnc; (2)  

dnc

dt
¼X � AnðN � nÞnc � Ammnc; (3)  

dnv

dt
¼

dn
dt
þ

dnc

dt
�

dm
dt
: (4)  

mþ nv ¼ nþ nc: (5) 

Here n (cm� 3) and m (cm� 3) are the concentrations of electrons in 

traps and of holes in recombination centers respectively, and N and M 
(cm� 3) are the total concentrations of trapping states and recombination 
centers.nc (cm� 3) and nv (cm� 3) are respectively the concentrations of 
free electrons and holes. An (cm3s� 1) is the retrapping coefficient of 
electrons, Am (cm3s� 1) the recombination coefficient of electrons, and B 
(cm3s� 1) the trapping coefficient of holes in centers. X (cm� 3s� 1)is 
proportional to the dose-rate of excitation, and actually denotes the rate 
of production of electron-hole pairs by the excitation irradiation per unit 
volume per second. Eq. (5) is the charge neutrality condition. 

The above set of equations cannot be solved analytically. Instead, 
one uses the quasi-equilibrium (QE) assumption, to transform them into 
a single differential equation, as follows. The QE assumption requires 
that the free electron and free hole concentrations in the conduction and 
valence bands are quasi-stationary, and is mathematically expressed as 
([1]): 
�
�
�
�
dnc

dt

�
�
�
�≪

�
�
�
�
dn
dt

�
�
�
�;

�
�
�
�
dnv

dt

�
�
�
�≪

�
�
�
�
dm
dt

�
�
�
� and nc ≪ n; nv≪m: (6) 

In practice, this means that the concentration of nc in the conduction 
band and the concentration nv in the valence band are almost constant in 
time, and this allow us to set: 

dnc

dt
’

dnv

dt
’ 0 : (7) 

By setting dnc=dt ¼ 0 in Eq. (3), the nc values under the QE conditions 
are: 

nc¼
X

AnðN � nÞ þ m Am
: (8) 

By replacing nc from Eq. (8) into Eq. (1) and since n ’ m, the 
following single differential equation is obtained: 

dn
dt
¼

ðN � nÞAn

ðN � nÞAn þ n Am
X: (9) 

This equation was derived and integrated previously for example by 
Lawless et al. [4], who showed that it can be easily integrated by sep
aration of variables, to yield (Ref. [4], their Eq. (11)): 

Xt¼ nþ
Am

An

h
� N ln

�
1 �

n
N

�
� n
i
: (10) 

The product D ¼ Xt represents the irradiation dose received by the 
sample, and by introducing the dimensionless retrapping ratio R ¼ An=

Am in this equation, we obtain: 

D¼ nþ
1
R

h
� N ln

�
1 �

n
N

�
� n
i
: (11) 

This is an equation for DðnÞ, which has been inverted numerically by 
previous researchers, in order to plot the inverse function nðDÞ. Lawless 
et al. [4] developed approximate solutions of this equation for low doses 
and high doses. We now develop the exact analytical solution nðDÞ of this 
equation in terms of the Lambert W function, as follows. We rewrite Eq. 
(11) as: 

RD
N
¼

n
N
ðR � 1Þ � ln

�
1 �

n
N

�
; (12)  

and introduce the trap filling ratio x ¼ n=N to obtain: 

lnð1 � xÞþ ð1 � RÞx¼ �
RD
N

: (13) 

We note that this equation is of the general algebraic form: 

lnðaþ bxÞþ cx¼ ln d ; (14)  

which has the analytical solution (see for example the websites dedi
cated to the Lambert function [7,8]): 

Fig. 1. The OTOR model showing the various electronic transitions during the 
irradiation process. Transition (1): Creation of electron-hole pairs by radiation. 
Transition (2): Trapping of holes and recombination of electrons at the 
recombination centers (RC), Transition (3): Trapping of electrons in the dosi
metric trap. 
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x¼
1
c

W
�

cd
b

exp
�ac

b

��

�
a
b
: (15) 

The term inside the square brackets in this equation is the argument 
the Lambert function W½z�. By substituting a ¼ 1 , b ¼ � 1, c ¼ 1 � R, 
ln d ¼ � RD=N (or d ¼ expð � RD =NÞ), we obtain: 

nðDÞ
N
¼ 1þ

W½ðR � 1ÞexpðR � 1 � RD=NÞ�
1 � R

: (16) 

By defining a constant Dc such that: 

Dc¼N=R ; (17) 

Eq. (16) becomes: 

nðDÞ
N
¼ 1þ

W½ðR � 1ÞexpðR � 1 � D=DcÞ�

1 � R
: (18) 

This is the desired new analytical expression for the irradiation stage 
of the OTOR model, which gives the trap filling ratio nðDÞ= N as a 
function of the dose D, by using the Lambert function. It shows that the 
function nðDÞ=N depends only on two parameters, i.e. on the retrapping 
ratio R and on the constant Dc ¼ N=R . The parameter Dc has the same 
units as the dose D, and depends on the physical properties R;N of the 
material. 

The values R≪1 and R ¼ 1 correspond to first and second order ki
netics. Furthermore, under certain physical assumptions, values of R 
between 0 and 1 correspond to the empirical general order intermediate 
kinetic orders (see for example the discussion in Kitis et al. [9]). How
ever, it is noted that from a physical point of view, the retrapping ratio 
parameter R can have any positive real value, including values R > 1. 

Fig. 2 shows plots of nðDÞ=N from Eq. (18) as a function of the 
normalized dose D=Dc, for values of the retrapping ratio between R ¼
10� 2 and R ¼ 10 (solid lines). The open symbols in this figure represent 
the numerical solution of the differential Eq. (9), showing excellent 
agreement between the numerical solution and the new analytical Eq. 
(18). As may be expected from a physical point of view, the approach to 
saturation and the shape of the nðDÞ function depends on the amount of 
retrapping, i.e. on the value of the ratio R. 

We can check the behavior of the analytical solution at D ¼ 0, by 
noting that nð0Þ=N ¼ 1þ W½ðR � 1ÞexpðR � 1Þ =ð1 � RÞ�. Since 
Wðu exp uÞ ¼ u for any value of u; then W½ðR � 1ÞexpðR � 1Þ� ¼ R� 1 and 
we obtain nð0Þ=N ¼ 1þ ðR � 1Þ=ð1 � RÞ ¼ 0. This is consistent with the 
initial condition of empty traps nð0Þ ¼ 0. 

If the traps are not initially empty (i.e. nð0Þ ¼ n0 6¼ 0), the solution of 
Eq. (18) is found using the same method to be: 

nðDÞ
N
¼ 1þ

W½ðR � 1Þð1 � n0=NÞexpðR � 1þ n0=N � D=DcÞ�

1 � R
: (19) 

By setting n0 ¼ 0 in Eq. (19) one obtains Eq. (18), as expected. By 
collecting terms, the previous equation can be written as: 

nðDÞ
N
¼ 1þ

W½ðR � 1ÞexpðR � 1þ n0=N þ lnð1 � n0=NÞ � D=DcÞ�

1 � R
; (20)  

or 

nðDÞ
N
¼ 1þ

W½ðR � 1ÞexpðR � 1 � ðDþ DintÞ=DcÞ�

1 � R
; (21)  

where the constant Dint has the same dimensions as the irradiation dose 
D, and is defined by: 

Dint ¼Dc½n0 =Nþ lnð1 � n0 =NÞ� : (22) 

Equation (21) has the exact same mathematical form as Eq. (18), but 
is shifted along the horizontal D-axis by the amount Dint given by Eq. 
(22). 

In Section 4, Eq. (18) will be used to fit experimental data which start 
at the origin, while Eq. (21) will be used to fit experimental data which 
have a non-zero intercept on the y-axis. 

An important question is whether the QE conditions still apply for 
the large values of R > 1 used in the simulations of Fig. 2. The appli
cability of QE conditions was tested by comparing the numerical solu
tion of the kinetic rate equations (1)–(4), with the analytical Lambert 
solution Eq. (18). This was done for a range of R values between R ¼
0:001 and R ¼ 10, and the agreement of the two solutions was better 
than 1% for the complete dose response curve shown in Fig. 2. This 
agreement confirms that Eq. (18) is indeed consistent with the QE 
conditions, and can be applied for all values of R. 

3. The relationship between the Lambert W and the saturating 
exponential function 

The shape of the simulated dose response nðDÞ=N shown in Fig. 2 
depends strongly on the retrapping ratio R, and looks similar to a 
saturating exponential function (SE). The SE is often used to fit experi
mental dose responses in a variety of materials, and for a variety of 
luminescence signals. Its general form is ([10–12]): 

nðDÞ
N
¼ 1 � exp

�

�
D

Do

�

; (23)  

where Do is called the characteristic dose of the trap filling process. 
For many dosimetric materials, it is found that the dose response 

cannot be described by a SE, and researchers frequently use two more 
general equations, the SEL and DSE functions written as (Berger and 
Chen [13]): 

nðDÞ
N
¼B1 Dþ B2

�

1 � exp
�

�
D

Do

��

; (24)  

nðDÞ
N
¼B3

�

1 � exp
�

�
D

Do2

��

þ B4

�

1 � exp
�

�
D

Do1

��

; (25)  

where Bi ði¼ 1…4Þ are constants, and D0i are two constants character
istic of the sample with the dimensions of dose, respectively. It is 
important to note that the SE, SEL and DSE are considered more or less 
empirical analytical equations, and the constants Bi are not usually 
assigned a direct physical meaning. We now explore the relationship 
between the SE and the analytical solution in Eq. (18). 

The argument of the Lambert function in Eq. (18) is the parameter 
z ¼ ðR � 1Þexp½R � 1 � D =Dc�, which is a function of the dose D. In 
cases where this parameter jzj≪1, one can use the series approximation 
WðzÞ ffi z for the Lambert function in Eq. (18), to obtain: 

Fig. 2. Plots of the analytical Eq. (18) (solid lines) for several values of the 
retrapping ratio R, as a function of the normalized dose D= Dc. The open 
symbols are the numerical solution of the differential Eq. (9). 
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nðDÞ
N
ffi 1þ z

�

ð1 � RÞ¼ 1þ ðR � 1ÞexpðR � 1 � D =DcÞ

�

ð1 � RÞ ; (26)  

nðDÞ
N
ffi 1 � expðR � 1 � D =DcÞ : (27) 

This equation has the same mathematical form as the saturating 
exponential in Eq. (23), except for the extra term expðR � 1Þmultiplying 
the exponential term expð� D =DcÞ . When expðR � 1Þ ffi 1, i.e. when 
R ffi 1, the Lambert dose response equation in Eq. (18) becomes iden
tical with the SE in Eq. (23), and the two respective dose constants 
become equal (Do ¼ Dc). However, for small or large values of R, (e.g. 
when R ¼ 0:001 or R ¼ 3Þ, this extra expðR � 1Þ factor will produce a 
disagreement between the two expressions. 

Fig. 3 shows plots of dose response curves nðDÞ=N by using Eq. (18), 
for R ¼ 0:01; 0:5; 0:1; 2. These nðDÞ=N curves are fitted here with the SE 
function in Eq. (23), for comparison purposes. It is clear from this figure 
that significant differences between the SE and the new dose response 
equation appear for small or large values of R, while the two functions 
agree very closely for values of R ffi 1. This indicates that the new dose 
response equation based on the Lambert function is a more general 
flexible equation, which can be used to describe a variety of shapes of 
dose response data. 

In the next section we will use the Lambert dose response function 
Eq. (18) and Eq. (21), in order to fit published experimental data for a 
variety of luminescence signals in various dosimetric materials. 

4. Fitting experimental data with the new Lambert dose 
response function Eq. (18) and Eq. (21) 

The experimental data presented in this section were chosen as 
representative cases in the bibliography, which could not be fitted with a 
SE function, and required instead the use of a SEL or a DSE fitting 
function. As will be shown here, the new analytical Eq. (18) provides a 
satisfactory alternative to the empirical SEL and DSE regression models 
used previously in the literature. The experimental data shown in 
Figs. 4–7 were reproduced for the purposes of this paper from the 
original papers, by using digitizing software. 

Berger and Chen [13] considered OSL signals, which were measured 
using the single-aliquot regenerative dose protocol (SAR) on fine grain 
sedimentary quartz. They showed that their signals could not be fitted 
using SE functions, but one should use instead the SEL Eq. (24), or the 

DSE Eq. (25). These authors showed clearly that the DSE regression 
model fitted the OSL dose response data better than by the other two 
models. In addition to the comparison with experiment, Berger and Chen 
[13] also showed that a simulated dose response from the OTOR model 
also could not be fitted accurately using the SE and SEL functions, and 
required the use of a DSE. 

Fig. 4a shows the OSL data from Berger and Chen [13], their Fig. 1. A 
preheat of 240 �C for 10 s was employed during the SAR protocol, and 
the beta dose rate was 0.12 Gy/s. The two lines fitted to the data are the 
Lambert Eq. (18), and the DSE function used by Berger and Chen [13]. 
The two lines are indistinguishable, however it is important to note that 
the Lambert fitting function contains only two parameters (R;DcÞ, while 
the DSE Eq. (25) requires 4 fitting parameters. 

Fig. 4b shows a set of TL data from Berger [14], their Fig. 1. This is a 
set of additive-dose data for purified volcanic glass, measured at the 
321–330 �C temperature range of the glow curves, and preheated for 8 
days to remove unstable TL. This type of additive-dose data often con
tains a non-zero y-intercept, therefore the fitting procedure introduces 
an extra fitting parameter. The data in this figure was fitted with the 
Lambert Eq. (21), with the x-intercept represents the equivalent dose DE 

Fig. 3. Plots of the new Lambert dose response function in Eq. (18) shown as 
open symbols, and of the corresponding least squares fits using the empirical SE 
function (27) shown as solid lines. Significant differences are seen between Eq. 
(18) and the SE function, with agreement between the two functions occurring 
only for values R ffi 1. 

Fig. 4. (a) Fit to the normalized OSL SAR data by Berger and Chen [13], using 
Eq. (18). This set of OSL data starts at the origin. (b) Fit to the TL data by Berger 
[14], by using the new dose response Eq. (21), and also by using a DSE. This set 
of additive-dose TL data has a non-zero y-intercept, corresponding to the 
equivalent dose DE. 
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for this sample. 
In more recent experimental work, the SEL and DSE functions have 

been used to fit experimental ESR data (Duval [15], Trompier et al. 
[16]), OSL data (Lowick [17], Timar-Gabor et al. [18,19], 
Anechitei-Deacu et al. [20], Fuchs [21], Li et al. [22]), TL data (Berger 
and Chen [13], Berger [14], B€osken and Schmidt [23]), and ITL data 
(Vandenberghe et al. [24]). 

Fig. 5a shows ESR experimental data from Duval [15], by using the 
new dose response Eq. (18). These authors measured the dose response 
curves (DRCs) of the Al center from 15 sedimentary quartz samples from 
the Iberian Peninsula. The samples were irradiated in 11–14 dose steps 
up to a maximum dose of 23–40 kGy. It was found that the ESR signal 
grows almost linearly with the absorbed dose for doses above ~4 kGy. In 
this study it was concluded that the ESR signal contains at least two 
components, with the first component saturating at low doses and the 
second component showing no saturation even at these very high doses. 
The solid line in Fig. 5a is the least squares fits using the new Eq. (18). 
The observed good fit to the experimental data suggests that the ESR 
signal may contain a single component, which can be described by the new 
dose response function based on the Lambert function. 

Fig. 5b shows typical test dose-corrected OSL signals from three al
iquots of sample HF11 studied by Li et al. [22]. These authors fitted the 
data set for aliquots #1 and #2 using a single SE function, while the data 
for aliquot #3 was fitted using a single SEL function plus an extra linear 

term. The solid lines indicate the least squares fits using the new Eq. 
(18). The good fit to the different experimental behaviors in this figure 
shows the flexibility of the Lambert dose response function, which can 
be used to fit the variety of OSL dose response behaviors seen in a typical 
quartz single grain SAR protocol. 

Fig. 5. (a) Fit to ESR data from Duval [15], by using the new dose response Eq. 
(18). (b) Test dose-corrected OSL signals from sample HF11 in Li et al. [22]. The 
solid lines indicate the least squares fits using the new Eq. (18). 

Fig. 6. Fit to OSL SAR data by (a) Timar-Gabor et al. [18] and (b) Lowick [17].  

Fig. 7. Fit to isothermal TL SAR data from Vandenberghe et al. [24].  
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Fig. 6a shows SAR-OSL experimental dose response curves by Timar- 
Gabor et al. [18] (their Fig. 3), for fine grain and coarse grain quartz 
samples in a loess-palaeosol sequence. The data shown here for samples 
MV 10 and MV 8, and were fitted by the authors using a DSE. The solid 
lines in Fig. 6a are the least squares fits using the new Eq. (18), showing 
that the Lambert function can be used to describe both types of dose 
responses in quartz with a smaller number of parameters than the DSE, 
even at the high doses involved in this experiment. 

Similar data by Lowick [17] are shown in Fig. 6b, for a fine grained 
quartz sample NWG11, measured using a modified SAR protocol with a 
test dose of 18.6 Gy. Lowick [17] fitted this data using a SEL function; 
the solid line is the least squares fit using the new Eq. (18). 

Fig. 7 shows ITL experimental data by Vandenberghe et al. [24], 
fitted using the Lambert Eq. (18). ITL measurements were performed by 
holding the aliquots for 600 s at a fixed temperature, after they had been 
preheated for 10 s at 300 �C. The ITL curves were recorded as soon as the 
measurement temperature was reached. Once more, the experimental 
data for this different type of experiment can be fitted accurately using 
the new Lambert dose response function. 

The analytical Eq. (18) derived in this paper describes the dose 
response of the population of trapped electrons nðDÞ at the end of the 
irradiation stage. One would then expect that this equation can be used 
to describe the dose response of ESR data, which are assumed to be 
proportional to the dose response nðDÞ. In this section it was shown that 
Eq. (18) can also be used to describe the dose response of the lumines
cence signal IðDÞ measured during a TL, ITL or OSL experiment. The 
luminescence intensity in the OTOR model is proportional to n only for 
first-order kinetics, and therefore one would expect fitting of the 
experimental data to yield values of R < 1. The values of R and Dc for the 
fits in Figs. 5–7 are summarized in Table 1. The data in this Table show 
that the condition R < 1 is indeed satisfied in all cases, except in one 
case for which the value of R ¼ 1:86 was obtained. This shows that using 
Eq. (18) to fit luminescence intensity is consistent with the assumption 
of first order kinetics. 

5. Discussion 

The existing models of nonlinear dose response nðDÞ in dosimetric 
materials are usually classified into two major categories. Models in the 
first category describe the dose response nðDÞ, on the basis of mecha
nisms taking place during the irradiation stage. Such models provide an 
explanation for, among others, nonlinearity effects of ESR and OA 
measurements. Models in the second category describe nonlinearity ef
fects as a result of competition mechanisms occurring during the readout 
stage, i.e. during the optical or thermal stimulation of the previously 
irradiated sample. 

The analytical equation in this paper belongs to the first group of 
models, and can not provide an explanation for superlinearity effects, 
since there are no competing traps included in the OTOR model. 
Analytical expressions for nðDÞ from models based on the irradiation 
stage, were previously proposed by Walig�orski et al. [25,26], based on 
the track structure theory of Katz [27]. These previously used dose 
response curves have the form of a saturating exponential. 

Levy [28] presented a phenomenological explanation of the origin of 
the SEL and DSE dose response functions, and how they can be used to 
describe the trap filling process. The proposed physical mechanism by 
Levy [28] is the creation of additional traps during the irradiation of the 
samples. 

6. Summary and conclusions 

In this paper, a new analytical equation describing the trap filling 
ratio nðDÞ=N was derived within the OTOR model, by using the Lambert 
function. The Lambert function was used by Kitis and Vlachos [29] to 
solve the OTOR model during the readout stage, in order to obtain an 
analytical expression for TL, OSL etc. Later Lovedy et al. [30,31] also 

solved the OTOR model using the equivalent Wright ω function. In all 
modern software these functions are built-in functions like the common 
transcendental functions of sine, cosine, logarithm etc. Recently the 
applications of the W function in phenomenological luminescence 
models (TL, OSL etc) were reviewed by Kitis et al. [9]. For a general 
discussion of the properties of the W function and its many uses in sci
ence, the reader is referred to the original papers by Corless ([5,6]). 

The new analytical Eq. (18) was verified by comparing with the 
numerical solution of the corresponding differential equation, and is 
characterized by the retrapping ratio R in the model. For values of R ffi
1 the new analytical equation can be approximated very well by a SE 
function, while for R � 0:1 or R > 1 the two functions diverge 
significantly. 

The results of the previous sections showed that the new dose 
response function in Eqs. (18) and (21) are more general functions than 
the SE, SEL and DSE equations. In addition, the proposed fitting function 
contains a smaller number of parameters than the SEL and DSE, and is 
based on the physically meaningful parameters R; Dc instead of empir
ical constants. 

From a physical point of view, the new equation provides a simpler 
interpretation of the shape of the dose response curve, than the SEL and 
DSE. This is because it is not necessary to invoke the presence of two 
components/traps during the irradiation and the luminescence process, 
as is common practice when using the SEL and DSE. In the new inter
pretation provided by Eq. (18), the experimental data represent the dose 
response of a single trap, instead of the two traps implied in the DSE and 
SEL functions. 

The new analytical equation can stand alone, in the sense that it can 
be used to describe different dose behaviors, independently of the OTOR 
model. However, it can not be used to fit superlinearity phenomena, 
since these are due to competition effects which are not included in the 
OTOR model. 
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