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A B S T R A C T

A theory is developed to predict statistical noise in the trap populations of small samples or single grains
subjected to high-energy ionizing irradiation. Using a model of the radiation process and a one-trap one-
center model of a thermoluminescent (TL) material, the statistical behavior of the number of occupied traps
during irradiation is predicted. The model focuses on the inherent physics of the process. Experimental sources
of error are not considered. The interaction of radiation with the TL material is modeled in a simple way
using the Bethe equation. The trap and center populations in the TL material are modeled both with the
conventional phenomenological equations and also the more general Master Equation approach. The theory
predicts, as the irradiation process proceeds, the mean, standard deviation, dispersion, skewness, and kurtosis
of the probability distribution of occupied traps in the TL material. For the same applied dose, the standard
deviation and dispersion of the trap population depend strongly on the type of radiation as well as the shape
and orientation of the material. High-energy radiation sources, such as alpha, beta, or gamma rays, are found
to produce standard deviations and dispersion much larger than low-energy sources, such as UV radiation. The
results are summarized in tables which enable, for useful limiting cases, easy calculation of not just standard
deviation but also skewness and kurtosis for various radiation sources and geometries.
. Introduction

The recent publications on single-grain experiments have demon-
trated the importance of statistical noise in the thermoluminescence
nd optically stimulated luminescence processes. Noise can be an issue
henever low doses or small samples are of interest. We will investigate

he noise associated with inherent statistical nature of the physical ther-
oluminescence process of irradiation by energetic particles, such as

lpha, beta, and gamma rays. Instrumentation and other experimental
ources of noise are not considered. The trap and center populations
n the material will be modeled using the master equation approach.
o quantify the effect, the irradiation process will be modeled with a
implified Bethe theory. The model will be applied to samples or grains
f different shapes to show the importance of both sample shape and
rientation for thermoluminescence statistics.

Thermoluminescence, optically stimulated luminescence, and re-
ated phenomena have been studied extensively with the first successful
odels of thermoluminescence emission having appeared over seventy

ears ago (Randall and Wilkins, 1945a,b; Garlick and Gibson, 1948).
hen an insulator or semiconductor is irradiated, electrons and/or

∗ Corresponding author.
E-mail address: lawless@alumni.princeton.edu (J.L. Lawless).

holes can be excited and subsequently caught in metastable traps. If
the material is later heated, typically in an oven, the electrons are
released from the traps and some of them will radiatively recombine.
Light emitted in this way is called thermoluminescence. These phe-
nomena have found widespread application for dating in archeology
and geology as well as for dosimetry. Several books review the theory
and applications (Aitken, 1985; McKeever, 1985; Chen and McKeever,
1997; Yukihara and McKeever, 2011; Chen and Pagonis, 2011).

Experimental techniques have been developed for reducing noise or
improving the signal-to-noise ratio for thermoluminescence or optically
stimulated luminescence measurements of low doses or small samples.
One approach for improving the signal-to-noise ratio of thermolumi-
nescence at low doses is rapid heating such as with a CO2 laser (Gasiot
et al., 1982; Bräunlich, 1990; Lawless et al., 2002). For small samples,
noise levels can be important even at high doses. For example, special-
ized instruments have been developed to minimize instrumental noise
when measuring luminescence from single-grains (Duller et al., 1999;
Bøtter-Jensen et al., 2000; Duller, 2004; Jacobs et al., 2006; Jacobs and
Roberts, 2007).
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To quantify the inherent – as opposed to instrumental – noise of
the thermoluminescence process, we will develop a master equation
for the trap and center populations during irradiation (van Kampen,
1992; Lawless et al., 2020). Master equations have been used in a wide
variety of fields ranging from the analysis of energy distributions of
free electrons in both plasmas and solids (Fokker, 1914; Planck, 1917;
Dendy, 1990; Kolobov, 2003) to the prediction of the carbon-monoxide
vibrational laser (Rich and Treanor, 1970) to general theories of reac-
tion rate constants (Fain, 1981). In the field of thermoluminescence,
the master equation approach has been previously used to predict au-
tocorrelation of fluctuations in thermoluminescence intensity (Swandic,
1992, 1996).

We have previously used a master equation to study irradiation from
low-energy sources such as ultraviolet light (Lawless et al., 2020). One
photon of UV light may produce only one electron–hole pair. In this
paper, we investigate the statistical behavior of high-energy radiation
sources such as alpha, beta, or gamma rays. For these sources, a single
ray may produce thousands or more electron–hole pairs and this can
lead to a strong increase in the inherent noise level. When looked
at in detail, the physics of irradiation by high-energy particles can
be quite complex (National Academy of Sciences, 1964; Salvat et al.,
2007; Nuclear Energy Agency, 2019). To illustrate our master equation
theory, we will use the Bethe theory for stopping power combined with
some simplifying assumptions.

The present theory is focused on the statistical properties of the
noise in glow curves or OSL rather than the mean values. Guérin
et al. (2015) use a numerical Monte-Carlo simulation to consider the
statistics of irradiation from randomly-distributed potassium isotopes.
This differs from the present work which is analytical, using a master
equation, and which considers uniform radiation sources.

A key result is that the statistical properties of thermoluminescence
can depend strongly on the geometrical shape of the sample. While
the mean properties may remain unchanged, the statistical noise can
vary dramatically depending of the relative orientation of the sample
to the radiation source. A cylindrical sample, for example, can have
completely different statistical behaviors depending on whether the
source of the radiation is on the axis or transverse to it. This effect
will be quantified for some model geometries.

To define terminology and provide a point of reference, the next
section presents the usual phenomenological model of irradiation of a
one-trap one-center system. Then the master equation will be devel-
oped for three cases of the same physical system and we will show
how statistical properties, such as standard deviation, skewness, and
kurtosis, can be derived. To obtain quantitative results, a model of
energy deposition during irradiation is needed. This is developed in
Section 4 using the Bethe theory with some simplifying assumptions. In
Section 5, the irradiation model is combined with the master equation
results to find the statistical properties of irradiated samples of differing
shapes and orientations. This is followed by a section containing several
example calculations illustrating how quick and simple estimates of
standard deviations and other statistical properties can be computed.
The strengths and limitations of this approach are summarized in the
last section.

2. Phenomenological model

While the statistical properties will be developed in later sections,
we will first review the phenomenological model of the irradiation
process. A simple model consisting of one electron trap and one recom-
bination center will be considered. This is illustrated in Fig. 1 where
the electron trap has a concentration of 𝑁 (cm−3) with an occupation
f 𝑛 (cm−3), and the recombination center has a concentration of 𝑀
cm−3) with an occupation of 𝑚 (cm−3). 𝐴𝑚 (cm3/s) is the rate constant
or recombination of free electrons with the center. 𝐵 (cm3/s) is the
2

Fig. 1. Energy level diagram of the model with an active trap 𝑁 and a hole
recombination center 𝑀 . During irradiation, electron–hole pairs are created with rate
𝑋. During heating, the electrons in trap 𝑁 are thermally-excited, with a rate controlled
by 𝑠, 𝐸, and recombine with the holes in 𝑀 .

rate constant for trapping of free holes in the center. The corresponding
phenomenological equations are:
𝑑𝑛
𝑑𝑡

= 𝐴(𝑁 − 𝑛)𝑛𝑐 (1)
𝑑𝑛𝑐
𝑑𝑡

= 𝑋 − 𝐴(𝑁 − 𝑛)𝑛𝑐 − 𝐴𝑚𝑚𝑛𝑐 (2)
𝑑𝑚
𝑑𝑡

= 𝐵(𝑀 − 𝑚)𝑛𝑣 − 𝐴𝑚𝑚𝑛𝑐 (3)
𝑑𝑛𝑣
𝑑𝑡

= 𝑋 − 𝐵(𝑀 − 𝑚)𝑛𝑣 (4)

where 𝑋 (cm−3/s) is the rate at which radiation creates electron–hole
pairs, 𝑛𝑐 (cm−3) is the concentration of free electrons, 𝑛𝑣 (cm−3) is
the concentration of free holes, and 𝑡 (s) is time. We will assume that
initially, at 𝑡 = 0, before irradiation starts, the trap and center are
empty:

𝑛 = 0 at 𝑡 = 0 (5)

𝑚 = 0 at 𝑡 = 0 (6)

Experimental measurements show that rate constants for capture for
free electrons or holes in traps or centers typically have values in the
range from 10−10 cm3∕s to 10−5 cm3∕s. Rose (1955) and Lax (1960)
Typical trap or center concentrations of interest in TL range from
1012 cm−3 to 1017 cm−3. Consequently, the lifetime of free electrons or
free holes, which is often measured in microseconds, is typically far less
than the time scale over which irradiation or heating occurs. It follows
that:
1
𝑛𝑐

𝑑𝑛𝑐
𝑑𝑡

≪ 𝐴(𝑁 − 𝑛) and 1
𝑛𝑣

𝑑𝑛𝑣
𝑑𝑡

≪ 𝐵(𝑀 − 𝑚) (7)

his leads to the quasi-steady approximation which allows Eqs. (2) and
4) to be simplified to:

𝑛𝑐 =
𝑋

𝐴(𝑁 − 𝑛) + 𝐴𝑚𝑚
(8)

𝑛𝑣 = 𝑋
𝐵(𝑀 − 𝑚)

(9)

hen the quasi-steady approximation is valid, it follows that:

𝑐 ≪ 𝑛 and 𝑛𝑣 ≪ 𝑚

n this case and using Eqs. (8) and (9), we can simplify Eqs. (1) and
3) to:
𝑑𝑛
𝑑𝑡

=
𝐴(𝑁 − 𝑛)

𝐴(𝑁 − 𝑛) + 𝐴𝑚𝑚
𝑋 (10)

𝑚 = 𝑛 (11)
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Eqs. (10) and (11) with initial conditions Eqs. (5) and (6) are the
governing equations that apply to arbitrary dose. For simplicity, we will
also consider the case for which the dose is low enough that:

𝑛 ≪ 𝐴
𝐴 + 𝐴𝑚

𝑁 (12)

In this case, Eq. (10) reduces to:
𝑑𝑛
𝑑𝑡

= 𝑋 (13)

q. (13) can be integrated to find the trap concentration 𝑛 as a function
f time. Using initial conditions Eqs. (5) and (6) as well as Eq. (11), it
ollows that at low-dose:

(𝑡) = 𝑛(𝑡) = (𝑡) (14)

here:

(𝑡) = ∫

𝑡

0
𝑋(𝑡′)𝑑𝑡′ (15)

here 𝑡′ is a variable-of-integration. The quantity  is the applied dose
s measured in electron–hole pairs per unit volume. The relationship
etween  and the dose measured in units of Grays will be discussed
ater. Eq. (14) indicates that every ion-pair creation, which occurs at
ate 𝑋, results in the capture of a free electron by the trap and a free
ole by the center. This is a property of the one-trap one-center model
n the low dose limit (Eq. (12)).

In sum, we have derived the equations for the growth of trap
nd center populations for a one-trap one-center system. At low dose,
his leads to the particularly simple result, Eqs. (14) and (15), that
rap population is proportional to dose. The phenomenological equa-
ions predict trap and center populations that grow deterministically.
hese equations cannot predict the statistical nature of trap and center
opulations. That will be addressed in the next section.

. Master equations

For small samples or small doses, the statistical nature of irradi-
tion and recombination can become important. In this section, we
evelop master equations which govern the statistical behavior of sam-
les irradiated by high-energy particles. In particular, the probability
istributions for trap populations will be predicted. In the following
hree subsections, this is done for three different radiation models. We
ill also explore how these distributions connect to the conventional
henomenological equations.

Unlike the phenomenological model, it will matter here what type
f irradiation is applied. In Lawless et al. (2020), it was assumed that
ne irradiation event results in one electron–hole pair as is typical of
V irradiation but not of irradiation by high-energy sources such X-rays
r beta rays. Here, we consider high-energy sources.

Let us consider a sample of volume 𝑉 and, within this volume, it
as M centers and N traps. M and N are integers and are connected to
he macroscopic quantities 𝑀 and 𝑁 via:

= M∕𝑉 and 𝑁 = N∕𝑉 (16)

Let 𝑃𝑖 be the probability that a sample, which might be a single grain,
has exactly 𝑖 electrons in its N traps at some time 𝑡. Because 𝑃𝑖 is a
probability, we will require that:
N
∑

𝑖=0
𝑃𝑖 = 1 (17)

In the first subsection that follows, we will develop solutions for the
probabilities 𝑃𝑖 as a function of time first for a simple model which
illustrates the key characteristics but admits analytical solutions. After
this, a subsection is devoted to a more general model. While full
solution of this model typically requires numerical methods, we will
find analytical solutions for means, standard deviations and higher
moments of its probability distribution. A third subsection addresses
a special case which admits analytical solutions over the whole range
3

from low dose to high dose. d
3.1. Simple model

Consider the case where each ionizing ray generates exactly 𝐺∗
lectron–hole pairs in its track as it passes through the sample, such
s a single grain, where 𝐺∗ is a fixed number. If we keep the definition
f 𝑋 the same as in the macroscopic model, then, in a sample of volume
, we have tracks occurring at the rate of 𝑋𝑉 ∕𝐺∗ per second.

While the phenomenological model of Section 2 was concerned
ith average ionization rates, the master equation model of interest here

equires knowledge of individual ionization events and how they affect
he distribution of trap population probabilities, 𝑃𝑖. The first step is to
onsider a very short (infinitesimal) time interval 𝑑𝑡. Over this time,
he material will be subject to either zero or one radiation tracks.1 If

zero tracks occur, then no ionization happens over this interval. If one
track is incident, then 𝐺∗ ionizations occur.

If we restrict the model to low dose as we did for the phenomenolog-
ical model, then every free electron is captured by one of the N traps.
It follows that the two ways that 𝑃𝑖 may change over some small time
interval, 𝑑𝑡, are:

1. It could be that the sample has exactly 𝑖 − 𝐺∗ electrons in the
traps and then an ionization event that results in an increase in
trap population to 𝑖 occurs. For a sample of volume 𝑉 that is
subjected to irradiation at rate 𝑋, this causes 𝑃𝑖 to increase by
(𝑋𝑉 ∕𝐺∗)𝑃𝑖−𝐺∗

𝑑𝑡. This applies to all trap populations 𝑖 for which
𝑖 ≥ 𝐺∗.

2. It could be that the sample has exactly 𝑖 electrons in the traps
and then an ionization event occurs that results in an increase
in trap population from 𝑖 to 𝑖+𝐺∗. This causes 𝑃𝑖 to decrease by
(𝑋𝑉 ∕𝐺∗)𝑃𝑖𝑑𝑡. This applies for all possible trap populations 𝑖.

Combining these two possible events together, we have the master
equation for low dose:

𝑑𝑃𝑖
𝑑𝑡

=

{

− (𝑋𝑉 ∕𝐺∗)𝑃𝑖 for 0 ≤ 𝑖 < 𝐺∗

(𝑋𝑉 ∕𝐺∗)𝑃𝑖−𝐺∗
− (𝑋𝑉 ∕𝐺∗)𝑃𝑖 for 𝐺∗ ≤ 𝑖

(18)

The second line in Eq. (18) is for 𝑖 ≥ 𝐺∗ and thus both scenarios as
above are included. For the first line in Eq. (18) which applies to 𝑖 < 𝐺∗,
only the second scenario is included.

In order that both Eqs. (17) and (18) be obeyed at all times, it is
necessary that:
∑

𝑖=0

𝑑𝑃𝑖
𝑑𝑡

= 0 (19)

Note that every positive term in Eq. (18) for some 𝑖 is balanced by an
equal negative term for another 𝑖. Consequently, Eq. (18) obeys Eq. (19)
and, therefore, if the initial conditions are chosen to obey Eq. (17), then
Eq. (17) will also be obeyed at all times.

It is often assumed as an initial condition in thermoluminescence
problems that the traps are empty. We would express that in terms of
𝑃𝑖 by:

𝑃𝑖(𝑡 = 0) =

{

1 for 𝑖 = 0
0 for 𝑖 > 0

(20)

For this initial condition, the master equation Eq. (18) has an exact
solution in the form of a modified Poisson distribution:

𝑃𝑖 =

⎧

⎪

⎨

⎪

⎩

(𝑉∕𝐺∗)𝑖∕𝐺∗
(𝑖∕𝐺∗)!

𝑒−𝑉∕𝐺∗ for 𝑖 = 𝑗𝐺∗ for integer 𝑗

0 otherwise
(21)

1 Since 𝑑𝑡 is assumed infinitesimally small, the chance of two or more
ays arriving is negligible. This is the nature of a Poisson Process and further
iscussion can be found in statistics textbooks.
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where 𝑉 is the sample volume and  is the dose as defined in Eq. (15).
The expected value of the trap population is defined by:

E
[

𝑖
]

=
∑

𝑖
𝑖𝑃𝑖 (22)

Substituting Eq. (21) into Eq. (22), we find the expected value of the
trap population as a function of dose:

E
[

𝑖
]

= 𝑉 (23)
[

𝑖
]

is the expected total number of trapped electrons in the sample.
More details on the derivation of the statistical properties of the fixed-

model are given in Appendix A.) The number of trapped electrons
er unit volume is:

E
[

𝑖
]

𝑉
=  (24)

omparing Eq. (24) with Eq. (14), it is clear that the quantity 𝑛 in the
henomenological equations should be identified with the statistical
xpected value of trapped electrons per unit volume:

≡
E
[

𝑖
]

𝑉
(25)

Unlike the phenomenological model, Eq. (21) can give us infor-
ation on the statistical variation of trap population. The standard
eviation, 𝜎, of the trap population is defined by:
2 =

∑

𝑖=0

(

𝑖 − E
[

𝑖
])2𝑃𝑖 (26)

rom Eq. (21), the standard deviation can be found to be:

=
√

𝐺∗E
[

𝑖
]

(27)

A common way to characterize the relative size of a standard deviation
is to compare its square to the expected value of the population. This
ratio is called dispersion. In our case:

D = 𝜎2

E
[

𝑖
] = 𝐺∗ (28)

or many distributions commonly considered in statistics, including the
sual Poisson distribution, D = 1 or, at least, D is of order 1. It is
mportant to note here that, since 𝐺∗ may be quite large, the dispersion

may also be quite large.
The phenomenological model was developed under the low dose

ssumption as expressed by Eq. (12). For the master equation, the low
ose assumption is expressed analogously: any 𝑃𝑖 with a significant
large) value is for an 𝑖 that is small enough that:

≪ 𝐴
𝐴 + 𝐴𝑚

N for any 𝑖 for which 𝑃𝑖 is significant (29)

In addition to limiting dose, Eq. (29) implies limit on 𝐺∗: 𝐺∗ ≪ 𝐴
𝐴+𝐴𝑚

N.
In sum, we have considered the low-dose limit of the simple case

where each ray (or track) produces exactly 𝐺∗ electron–hole pairs.
The predicted mean trap population is the same as predicted by the
phenomenological model, Eq. (14). The standard deviation in the trap
population, however, is proportional to

√

𝐺∗. For the special case of UV
irradiation with 𝐺∗ = 1, the standard deviation agrees with our earlier
esult (Lawless et al., 2020). For irradiation by high-energy particles,
uch as alpha or beta rays, we shall see that values of 𝐺∗ may be orders

of magnitude larger than 1.

3.2. Variable G: A more general model

It is more typical that the number of electron–hole pairs produced
in a sample by an incident ionizing ray may vary widely from one
ray to the next. We will consider that case here and this will produce
results that are similar to but more general than those of the preceding
subsection.
4

Let the expected number of rays per unit time incident on our
sample be X (s−1). Let the probability that a ray produces 𝐺 electron–
hole pairs be 𝑓𝐺. 𝑓𝐺 will depend on the type of ray, the energy of
the ray, and the geometry and material properties of the sample. If we
consider the probability 𝑃𝑖 that the material has exactly 𝑖 filled traps,
there are two reasons why 𝑃𝑖 might change:

1. There is a chance that the material could have some lower
number of trapped electrons, say 𝑖 − 𝐺, and, over a short time
interval 𝑑𝑡, a ray passes through the material and generates
exactly 𝐺 electron–hole pairs. This would cause 𝑃𝑖 to increase
by 𝑓𝐺X𝑃𝑖−𝐺𝑑𝑡.
Note that, in this scenario, the initial number of trapped elec-
trons is 𝑖−𝐺. Since the initial number of trapped electrons cannot
be negative, this scenario only apples when 𝑖 ≥ 𝐺.

2. If the material currently has 𝑖 filled traps, there is a chance that,
over a short time interval 𝑑𝑡, a ray passes through the material
causing the creation of 𝐺 electron–hole pairs. For each 𝐺 this
reduces the 𝑃𝑖 by 𝑓𝐺X𝑃𝑖𝑑𝑡 and the total effect on 𝑃𝑖 is the sum
over all possible 𝐺.

Thus, our master equation becomes:

𝑑𝑃𝑖
𝑑𝑡

=
𝑖

∑

𝐺=0
𝑓𝐺X𝑃𝑖−𝐺 −

∑

𝐺≥0
𝑓𝐺X𝑃𝑖 (30)

The first sum on the right-hand-side of Eq. (30) refers to excitation from
𝑖−𝐺 trapped electrons to 𝑖 trapped electrons. Since the initial number of
electrons can never be negative, the limits on the sum are set to ensure
that 𝑖 − 𝐺 is nonnegative.

Since 𝑓𝐺 is a probability, we require that:
∑

𝐺≥0
𝑓𝐺 = 1 (31)

The assumption underlying Eq. (30) is that, if radiation creates 𝐺
electron–hole pairs, then the trap and center populations increase by 𝐺.
This is true only at low enough dose that capture of the free electron by
the trap is much more probable than its recombination with the center.
While, in principle, the sum over ‘‘𝑖 ≥ 0’’ extends from 𝑖 = 0 to 𝑖 = N, the
low dose approximation requires that 𝑃𝑖 become negligibly small before
𝑖 approaches N. In a phenomenological model, low dose assumption is
expressed by Eq. (12). For the master equation approach, it is expressed
by the analogous requirement that the dose is low enough that 𝑃𝑖 is
negligibly small for large 𝑖 as per Eq. (29).

Examination of Eq. (30) will also show that solutions obeying
Eq. (29) are only possible if 𝑓𝐺 becomes zero or at least negligibly small
for large 𝐺. We will make quantitative estimates for 𝑓𝐺 in Section 4
and provide sample calculations of 𝑃𝑖 in Section 6 showing that this
requirement is easy to meet. For completeness, the opposite limiting
case where large 𝐺 values dominate is taken up in Section 3.3 and
also discussed in Section 4.

The first important property to determine is the rate of change of
the mean trap population. Combining Eqs. (22) and (30), we have:

𝑑E
[

𝑖
]

𝑑𝑡
=
∑

𝑖≥0
𝑖
𝑑𝑃𝑖
𝑑𝑡

(32)

= X
∑

𝑖≥0

𝑖
∑

𝐺=0
𝑓𝐺𝑖𝑃𝑖−𝐺 − X

∑

𝑖≥0

∑

𝐺≥0
𝑓𝐺𝑖𝑃𝑖 (33)

Continuing on from Eq. (33) and rearranging the summation using the
method detailed in Appendix C, we find:

𝑑E
[

𝑖
]

𝑑𝑡
= X

∑

𝐺≥0

∑

𝑖≥0
𝑓𝐺(𝑖 + 𝐺)𝑃𝑖 − X

∑

𝐺≥0

∑

𝑖≥0
𝑓𝐺𝑖𝑃𝑖 (34)

= X
∑

𝐺≥0

∑

𝑖≥0
𝑓𝐺𝐺𝑃𝑖 (35)

= X
∑

(

𝑓𝐺𝐺
)
∑

𝑃𝑖 (36)

𝐺≥0 𝑖≥0
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= X𝐺 (37)

here 𝐺 is defined by:

𝐺 =
∑

𝐺≥0
𝑓𝐺𝐺 (38)

ince X is the average number of rays per unit time that pass through
he sample and 𝐺 is the average number of electron–hole pairs pro-

duced for those rays, it follows that:

𝑋𝑉 = X𝐺 (39)

This means that Eq. (37) can also be written as:

𝑑E
[

𝑖
]

𝑑𝑡
= 𝑋𝑉 (40)

Combined with initial condition Eq. (20), Eq. (40) can be immediately
integrated to find the growth in the expected trap population with
exposure time:

E
[

𝑖
]

= 𝑉(𝑡) (41)

where (𝑡) is the ionization dose (cm−3) accumulated as of time 𝑡 and is
defined by Eq. (15). We will later develop the connection between the
dose  (electron–hole pairs per unit volume) which is commonly used
in theoretical studies and the dose 𝐺, measured in Grays, which is
commonly used in experimental work. If we identify 𝑛 as the expected
value of trap population per unit volume:

𝑛 = E
[

𝑖
]

∕𝑉 (42)

Eq. (40) becomes:
𝑑𝑛
𝑑𝑡

= 𝑋 (43)

q. (43) agrees with Eq. (10) which shows that the 𝑛 in the phenomeno-
ogical equations should be interpreted as the statistical expected value
f trap concentration.

To understand the reproducibility of experiments, it is helpful to
now the standard deviation and other properties of the trap population
istribution. To do this, we start by defining the 𝑘-th central moment
f the distribution as:

𝑘 =
∑

𝑖≥0

(

𝑖 − E
[

𝑖
])𝑘𝑃𝑖 (44)

rom the definition of 𝜇𝑘 in Eq. (44) and the definition of standard
eviation 𝜎 (Eq. (26)), it is clear that:
2 = 𝜇2 (45)

ombining Eq. (44) with the master Eq. (30) and after much algebra
see Appendix B), we find:

𝑑𝜎2

𝑑𝑡
= X𝐺2 (46)

here 𝐺2 and all higher raw moments of 𝐺 are defined by:

𝐺𝑘 =
∑

𝐺≥0
𝑓𝐺𝐺

𝑘 (47)

rom the identity X𝐺 = 𝑋𝑉 , Eq. (46) becomes:

𝑑𝜎2

𝑑𝑡
= 𝐺2

𝐺
𝑋𝑉 (48)

If we start from empty traps at 𝑡 = 0 (Eq. (20)), then Eq. (48) integrates
to:

𝜎2 = 𝐺2

𝐺
𝑉 (49)

or, using Eq. (41):

𝜎2 = 𝐺2
E
[

𝑖
]

(50)
5

𝐺

The index of dispersion is found by taking the ratio of Eq. (50) to
Eq. (41):

D = 𝜎2

E
[

𝑖
] = 𝐺2

𝐺
(51)

Just as for the fixed-𝐺∗ model of Section 3.1, it is possible for the
dispersion in Eq. (51) to be much larger than one.

As dose increases, the trap population distribution will approach
a Gaussian distribution. Since we know the mean, Eq. (37), and the
standard deviation, Eq. (49), we have all the parameters needed to fully
specify a Gaussian distribution. Our focus, however, is on low doses and
the Gaussian distribution may not apply. In later sections, we will show
that, at low doses, the distribution of trap population is not Gaussian,
and not even approximately Gaussian. For low dose, thus, it is helpful
to know more moments.

The third central moment of the distribution, 𝜇3, quantifies the
asymmetry of the distribution. As derived in the appendix, Eq. (B.14),
grows as:
𝑑𝜇3
𝑑𝑡

= X𝐺3 (52)

If we again assume initially empty traps (Eq. (20)), this integrates to:

𝜇3 =
𝐺3

𝐺
𝑉 (53)

When 𝜇3 is commonly normalized by the cube of standard deviation
and the result is called Pearson’s moment coefficient of skewness, 𝜇3:

3̃ =
𝜇3
𝜎3

(54)

Combining Eq. (49) with Eq. (53)

3̃ =
𝐺3

𝐺2
3∕2

𝐺
1∕2

(𝑉 𝐷)
−1∕2

(55)

e see that skewness starts out large and positive, indicating the
istribution is highly asymmetric and has a larger tail on the positive
ide than on the negative side of the mean. Eq. (55) shows that skew-
ess declines as dose increases. For comparison, a normal (Gaussian)
istribution has zero skewness.

Like the second central moment, the fourth central moment of the
istribution reflects the width but is more sensitive to the tails of the
istribution. As derived in the appendix (Eq. (B.15)), the fourth central
oment of the distribution grows as:

𝑑𝜇4
𝑑𝑡

= X
(

6𝐺2𝜎2 + 𝐺4
)

(56)

Again starting from empty traps (Eq. (20)), and using Eq. (49), Eq. (56)
can be integrated to find:

𝜇4 = 3

(

𝐺2

𝐺
𝑉

)2

+ 𝐺4

𝐺
𝑉 (57)

If we normalize 𝜇4 by the standard deviation, we obtain Pearson’s
kurtosis coefficient, 𝜇4:

4̃ =
𝜇4
𝜎4

(58)

Substituting Eq. (57) into Eq. (58), we find

4̃ = 3 + 𝐺 𝐺4
(

𝐺2
)2

𝑉
(59)

If we think of the standard deviation as the width of the ‘shoulders’
of the distribution, then kurtosis measures the width of the tails of the
distribution relative to the shoulders. Eq. (59) shows that the kurtosis
starts very large, indicating wide tails, and decreases asymptotically to
3 at high dose. The kurtosis of the Gaussian distribution is 3.

As a special case of the above results, consider:

𝑓𝐺 =

{

1 for 𝐺 = 𝐺∗ (60)

0 for 𝐺 ≠ 𝐺∗
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For this special case, 𝐺𝑛 = 𝐺∗
𝑛 and the results here for standard devi-

tion, Eq. (49), and dispersion, Eq. (51), reduce to the corresponding
esults of the preceding subsection, Eqs. (27) and (28), respectively. In
ddition, for this case, the results above for skewness, Eq. (55), and
urtosis, Eq. (59) reduce to:

3̃ =
√

𝐺∗
𝑉 𝐷

(61)

4̃ = 3 +
𝐺∗
𝑉

(62)

In sum, equations for the statistical properties of the trap population
after irradiation have been developed. These results apply at low-dose,
Eq. (12), and allow for a variable number, 𝐺, of electron–hole pairs
produced by each incident ray. While the expected value population
again agrees with the phenomenological model, these equations can
also predict the complete probability distribution of trap population
after irradiation. Simple formulas are found for standard deviation,
Eq. (49), dispersion, Eq. (51), and the higher central moments including
skewness, Eq. (55), and kurtosis, Eq. (59). All these properties depend
on the mean value of 𝐺, 𝐺, and on its higher raw moments, 𝐺𝑛.
Numerical values for 𝐺 and 𝐺𝑛 can be estimated using the results to
e found in Section 4 and Section 5.

.3. Large 𝐺 at arbitrary dose

In the preceding subsections, we assumed that the typical number of
lectrons freed by a single ray, 𝐺, was much smaller than the number of
raps in the sample, N. For completeness, we will consider the opposite
ase here where 𝐺 ≫ N. The approach here also differs from the
revious two subsections in that it does not assume a low dose: the
olution developed here is valid for all doses, from low to high.

The assumption here is that every incident ray produces enough free
lectrons, 𝐺, to more than fill all the N traps with any electrons left over
ecombining at the center. Let X be the number of such rays per unit
ime incident on the sample. Thus, if there is some probability 𝑃𝑖 that
traps are filled, where 0 ≤ 𝑖 ≤ N − 1, at time 𝑡, then, after some short

ime interval, 𝑑𝑡, 𝑃𝑖 will decrease by X𝑃𝑖𝑑𝑡 and the probability that all
he traps are full, that is 𝑃𝑖 with 𝑖 = N, increases by a corresponding
mount. The total increase in the probability that all traps are full
ill be the sum of these individual contributions from 𝑖 in the range
≤ 𝑖 ≤ N − 1. Thus, the master equation becomes:

𝑑𝑃𝑖
𝑑𝑡

=

{

−X𝑃𝑖 for 0 ≤ 𝑖 < N
∑N−1

𝑗=0 X𝑃𝑗 for 𝑖 = N
(63)

here X is the number of rays per unit time incident on the sample.
ssuming that the traps are initially empty, Eq. (20), the solution to
q. (63) is:

𝑖 =

⎧

⎪

⎨

⎪

⎩

exp(−X𝑡) for 𝑖 = 0
0 for 0 < 𝑖 < N
1 − exp(−X𝑡) for 𝑖 = N

(64)

t follows that the expected value of the trap population is:
[

𝑖
]

=
∑

𝑖
𝑖𝑃𝑖 = N

[

1 − exp(−X𝑡)
]

(65)

gain using Eq. (64), we can immediately find the 𝑘th central moment
f the distribution:

𝑘 =
∑

𝑖=0

(

𝑖 − E
[

𝑖
])𝑘𝑃𝑖 (66)

= N𝑘 [(exp(−X𝑡) − 1)𝑘 exp(−X𝑡) + (exp(−X𝑡))𝑘 (1 − exp(−X𝑡))
]

(67)

r, using Eq. (65), Eq. (67) can be rewritten as:

𝑘 =

(

1 −
E
[

𝑖
])

(

−E
[

𝑖
])𝑘 +

(

E
[

𝑖
])

(

N − E
[

𝑖
])𝑘 (68)
6

N N
Fig. 2. The expected value E
[

𝑖
]

(Eq. (65)), standard deviation 𝜎 (Eq. (69)), skewness
Eq. (73)), and kurtosis (Eq. (76)) of the large 𝐺 solution are shown as a function

of radiation exposure. Both E
[

𝑖
]

and 𝜎 scale linearly with the number of traps in the
ample, N. The curves shown were computed for N = 100. The curves for skewness and

kurtosis are independent of N.

To find the standard deviation, 𝜎, we take the square root of the
second central moment, 𝜇2:

𝜎 =
√

𝜇2 = N
√

(1 − exp(−X𝑡)) exp(−X𝑡) (69)

Or, using Eq. (68):

𝜎 =
√

E
[

𝑖
] (

N − E
[

𝑖
])

(70)

t follows that the dispersion is:

= N − E
[

𝑖
]

(71)

ince N tends to be very large, the dispersion starts large at low dose
nd remains large up until saturation, E

[

𝑖
]

→ N, is approached.
The asymmetry of the distribution, as given by Pearson’s moment

oefficient of skewness, is:

3̃ =
𝜇3
𝜎3

(72)

=
2 exp(−X𝑡) − 1

[

exp(−X𝑡) (1 − exp(−X𝑡))
]1∕2

(73)

r, using Eq. (68):

3̃ =
N − 2E

[

𝑖
]

√

E
[

𝑖
] (

N − E
[

𝑖
])

(74)

From Eq. (74), we see that skewness is very large and positive at low
dose, for which E

[

𝑖
]

≪ N, and very large in absolute value and negative
at high dose, for which E

[

𝑖
]

→ N. Skewness is zero when E
[

𝑖
]

= N∕2.
Using Eq. (67), kurtosis, which measures the relative tail width, is:

4̃ =
𝜇4
𝜎4

(75)

=
1 − 3 exp(−X𝑡) + 3 exp(−2X𝑡)

exp(−X𝑡) (1 − exp(−X𝑡))
(76)

sing Eq. (68), this becomes:

4̃ =

(

E
[

𝑖
]

∕N
)2

1 − E
[

𝑖
]

∕N
+

(

1 − E
[

𝑖
]

∕N
)2

E
[

𝑖
]

∕N
(77)

Similar to skewness, kurtosis becomes very large at either low dose or
high dose. At E

[

𝑖
]

= N∕2, kurtosis reaches a minimum value of 1 which
is the lowest possible kurtosis for any distribution. For comparison, the
kurtosis of a Gaussian distribution is 3.
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Table 1
Statistical properties of the three models of irradiation: fixed-𝐺, variable-𝐺, and large-𝐺. The results of the large-𝐺 model are
shown both in the general form, as derived in Section 3.3 and its low-dose limit for which the other two models are valid.

Model: Fixed 𝐺 Variable 𝐺 Large 𝐺 Large 𝐺
(Section 3.1) (Section 3.2) (Section 3.3)

Dose range: Low Low Low Any

Expected value, E
[

𝑖
]

V V (N∕𝐺)𝑉 N
(

1 − exp(−∕𝐺)
)

Standard deviation, 𝜎
√

𝐺∗E
[

𝑖
]

√

(

𝐺2∕𝐺
2)

𝐺E
[

𝑖
]

√

NE
[

𝑖
]

√

E
[

𝑖
] (

N − E
[

𝑖
])

Dispersion, D 𝐺∗ 𝐺2∕𝐺 N N − E
[

𝑖
]

Skewness, 𝜇3

√

𝐺∗∕E
[

𝑖
]

(

𝐺3∕𝐺2
3∕2

)

√

𝐺∕E
[

𝑖
]

√

N∕E
[

𝑖
] N−2E

[

𝑖
]

√

E
[

𝑖
](

N−E
[

𝑖
])

Kurtosis, 𝜇4 𝐺∗
/

E
[

𝑖
]

+ 3
(

𝐺4∕𝐺2
2
)

(

𝐺∕E
[

𝑖
]

)

+ 3 N∕E
[

𝑖
]

− 2
(

E
[

𝑖
]

∕N
)2

1−E
[

𝑖
]

∕N
+

(

1−E
[

𝑖
]

∕N
)2

E
[

𝑖
]

∕N
w
t
o
m
m
r
o
m
p
t
t
i

𝑣

T
1
2

o

In Fig. 2, the various statistical properties of the large-𝐺 model are
plotted against the radiation exposure, X𝑡. X𝑡 can also be interpreted
s the statistically expected number of rays that the material has
xperienced. To illustrate, let us consider X𝑡 = 0.1. Since the arrival

of rays of radiation is a Poisson process, this means that there is a
9.05% chance of the material experiencing exactly one ray over this
time, a 0.45% chance of it experiencing exactly two rays, and so on,
with a total chance of 9.52% that one or more rays arrive. Consequently,
if this experiment was repeated a large number of times, we would
expect 9.52% of the experiments to show full traps at the end and
100 − 9.52 = 90.48% to show empty traps. Thus, for a material with
N = 100 total traps, we would expect the experimentally-measured
mean trap concentration after irradiation to tend toward 9.52 and this
matches the value of E

[

𝑖
]

derived from Eq. (65) and as shown in Fig. 2.
The standard deviation in the number of filled traps that one would
measure after these experiments is 29 which is larger than the mean.
The standard deviation is shown by the dashed line in Fig. 2. The
kurtosis is 8.6, indicating wide tails in the distribution of results. The
skewness is positive, 2.76, indicating that the tails in the measured trap
population skew to the high side.

The applicability of the large-𝐺 model, which requires N ≪ 𝐺,
is likely limited to small and very pure samples subjected to a high
energy but short-range radiation. These requirements on the material
and radiation will be considered further in Section 4.

3.4. Summary

The similarity and differences between the three models are high-
lighted in Table 1. For each model, it is found that the statistical
properties of the irradiated sample depend strongly on the number
𝐺 of electron–holes pairs created per ray of radiation. Each model
makes different assumptions about 𝐺. Unlike the other two, the large-𝐺

odel of Section 3.3 is valid over the full low through the high dose
ange. To make it easier to see the parallelism between the models,
he large-𝐺 results are also shown in Table 1 in the low-dose limit.
he expected number of trapped electrons after irradiation, E

[

𝑖
]

, is the
ame for the fixed-𝐺 and variable-𝐺 models. The large-𝐺 model predicts
smaller number of trapped electrons because, in this model, many

f the radiation-produced electron–hole pairs result in recombination,
ot trapping. All three models predict a standard deviation of trap
opulation that, in the low dose limit, scales with the square root of the
rap population and a dispersion that depends on the type of radiation
ut not the dose. We will find in a later section that, for common
eometries, the factors 𝐺2∕𝐺

2
, 𝐺3∕𝐺2

3∕2
and 𝐺4∕𝐺2

2
which appear in

he variable 𝐺 model are all of order one.

. Irradiation model

The results of the previous section allow the determination of the
tatistical behavior of irradiated materials if the values of the probabil-
ties 𝑓 are known. To proceed further, we need estimates of 𝑓 and
7

𝐺 𝐺 R
Table 2
Data for common TL materials. (Attix, 2004; Wilson et al., 1982; ICRU, 1984; Berger
et al., 2005).

Material 𝑛𝐴𝑍∕𝜌 (1023 g−1) 𝐼 (eV)

CaF2 2.93 166
LiF 2.79 94
NaI 2.571 452
SiO2 3.01 139
Al2O3 2.95 145

this requires a model of the irradiation process and knowledge of the
geometry of the thermoluminescent grain or sample. We will address
the irradiation model in this section and the geometry in the next.
For irradiation by alpha or beta rays, Bethe theory, along with some
simplifying assumptions, will be used. There are two steps discussed in
this section: the first is to quantify stopping power and the second is to
convert stopping power to electron–hole pair production rate.

For the first step, consider a particle of radiation as it travels
through a material and loses energy. The rate of energy loss per unit
distance is called stopping power, 𝑆P. For beta rays, the electronic
stopping power as given by Bethe’s theory is: (Dalgarno, 1962)

𝑆P ≡ −𝑑𝑇
𝑑𝑥

= 2𝜋
(

𝑒2

4𝜋𝜖0

)2 𝑛𝐴𝑍
𝑚𝑒𝑣2

[

ln

(

𝑚𝑒𝑣2𝑇

2𝐼2(1 − (𝑣∕𝑐)2)

)

−
(

2
√

1 − (𝑣∕𝑐)2 − 1 + (𝑣∕𝑐)2
)

ln 2 (78)

+ 1 − (𝑣∕𝑐)2 + 1
8

(

1 −
√

1 − (𝑣∕𝑐)2
)

]

here 𝑇 is the particle kinetic energy (J) and 𝑥 (m) is the distance
raveled. 𝑒 is charge of an electron (Coulombs), 𝜖0 is the permittivity
f free space (C∕V∕m), 𝑛𝐴 is the number density of atoms in the target
aterial (m−3), 𝑍 is the number of electrons per atom in the target
aterial, 𝑚𝑒 is the electron rest mass (kg), 𝑣 is the speed of particle of

adiation (m∕s), 𝑐 is the speed of light (m∕s), 𝐼 is the logarithmic mean
f atomic excitation energies (J) weighted by oscillator strength in the
aterial. Some typical values are shown in Table 2. Thus, stopping
ower is a function of the properties of both the incident particle and
he target material. For typical beta sources, the relativistic corrections,
erms involving 𝑣∕𝑐, are important. The relationship between 𝑣 and 𝑇
s given by:

= 𝑐
√

1 − 1
(1 + 𝑇 ∕𝑚𝑒𝑐2)

2
(79)

abulated values of stopping powers for beta rays are available (ICRU,
984). This can also be conveniently accessed online (Berger et al.,
005).(see Table 2). .

The second step is to relate the energy loss to the creation rate
f electron–hole pairs (Attix, 2004; Arshak and Korostynska, 2006;
yan, 1973; Scholze et al., 1998; Alig and Bloom, 1975; Klein, 1968;
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Table 3
Energy per ion pair, 𝑊 , for pure samples of various materials of interest. (Attix, 2004;
Arshak and Korostynska, 2006; Ryan, 1973; Scholze et al., 1998).

Material 𝑊 (eV)

Si 3.6
Ge 2.8
GaAs 4.8
SiO2 17
CdTe 4.4

Goldstein, 1965; Barnett et al., 2013). The energy lost by the incident
particle to excitation of atomic electrons can take many forms. The
excited electrons can be valence electrons or inner shell. The elec-
tron may be excited to a higher state or it may be freed. The freed
electrons, called secondary electrons, are generally superthermal and
may have enough energy to travel and ionize further electrons. The
decay of highly excited states may release photons which travel further
and cause subsequent ionizations. For our purposes, the important
parameter is the ratio of energy deposited to number of electron–hole
pairs created. This ratio, called 𝑊 , is found to depend strongly on the

aterial but, at least for high-energy radiation, only weakly on the type
f radiation. Consequently, if −𝑑𝑇 ∕𝑑𝑥 is the loss of energy to electronic

excitation of a ray per unit distance, then the number of electron–hole
pairs created per unit distance traveled by each ray is:

− 1
𝑊

𝑑𝑇
𝑑𝑥

(80)

To find the total number of electron–hole pairs created by the ray, we
can integrate:

𝐺 = 1
𝑊 ∫

min(𝑅,𝐿)

0

(

−𝑑𝑇
𝑑𝑥

)

𝑑𝑥 (81)

here 𝑑𝑥 is an element of distance that the ray traverses. The upper
imit of integration is the total distance the ray travels which is either
he distance, 𝐿, that the ray travels from entry until it exits the material,
r if the ray does not exit, the range 𝑅 that it travels before stopping.
he distance 𝐿 of course depends on where the ray enters the sample
nd the direction of the ray relative to the sample.

Beta rays can be deflected during their travel through a material
ith the result that the path traveled to reach a particular penetration
epth into a material is larger than that penetration depth. The ratio
f the penetration depth to actual path length (or, in some literature,
ts inverse) is called the detour factor. For electrons emitted by 90Y, the
etour factor in water is about 0.65 (Ljungberg and Sjögreen Gleisner,
018; Fernández-Varea et al., 1996). The detour factor tends to be
maller, and therefore more important, for lower energy beta sources
r higher-Z target materials. For detailed quantitative analysis of a
articular experiment with a particular radiation source and target
aterial, analysis may need to include the detour factor. For simplicity

n this current study, we set the detour factor to one and assume the
ays travel in straight lines.

For various beta ray energies and target materials, the ionizations
er track, 𝐺, is plotted against material thickness in Fig. 3. For short
engths, 𝐺 grows linearly with material thickness. As the material
hickness increases, the ray’s energy 𝑇 decreases and, consequently, as
er Eq. (78), the stopping power, 𝑆P ≡ −𝑑𝑇 ∕𝑑𝑥 increases, and 𝐺 grows
aster than linearly. After the range has been exceeded, the beta ray has
eposited all of its energy and there is no further increase in 𝐺.

For an alpha ray, Bethe theory (Dalgarno, 1962) predicts the stop-
ing power to be:

𝑑𝑇
𝑑𝑥

= 4𝜋
(

𝑧𝑒2

4𝜋𝜖0

)2 𝑛𝐴𝑍
𝑚𝑒𝑣2

[

ln
(

2𝑚𝑒𝑣2

𝐼

)

+ ln

(

1
1 − (𝑣∕𝑐)2

)

− (𝑣∕𝑐)2
]

8

(82) i
Fig. 3. The number of electron–hole pairs created per track, 𝐺, is plotted against
material thickness for various beta ray energies and a target material of silica. A detour
factor of one is assumed. A detour factor different from one would result in a larger
number of ionizations for a given material thickness. The results here were calculated
using Eq. (81) where the stopping power, 𝑆P = −𝑑𝑇 ∕𝑑𝑥, can be calculated using either
Eq. (78) or the ESTAR database (Berger et al., 2005).

Fig. 4. The projected range of an alpha particle is plotted against the particle’s initial
energy for three different materials.

where: 𝑧 is the charge of incident particle (2 for an alpha ray) and other
parameters are as above. The relationship between 𝑣 and 𝑇 is given by:

𝑣 = 𝑐
√

1 − 1
(1 + 𝑇 ∕𝑚𝛼𝑐2)

2
(83)

here 𝑚𝛼 is the rest mass of the alpha particle, 𝑚𝛼=4 AMU. For
ypical alpha sources, the terms involving 𝑣∕𝑐 are small and can be
eglected. Tabulated values of stopping powers and ranges for alpha
ays are available (Berger et al., 2005; ICRU, 1993). This can also be
onveniently accessed online (Berger et al., 2005).

Bethe theory, Eq. (78) and (82), provides stopping power caused
y collisions of the radiation with electrons in the target’s atoms and
olecules. This is the dominant source of stopping power over the

ange of typical interest in thermoluminescence. It should be noted,
hough, that for very low energy alpha rays, say 𝑇 < 10−2 MeV,
ollisions of the alpha ray with nuclei become important. For beta rays
t high energies, say 𝑇 > 10 MeV, energy loss to radiation becomes
mportant.
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A key difference between alpha and beta radiation is that, at typical
energies, the order of 1 MeV, the range of alpha particles is orders of
magnitude shorter than that of beta particles. The projected range of
alpha particles in various materials is shown in Fig. 4. The densities for
SiO2, LiF, and Al2O3 were assumed to be 2.32 g∕cm3, 2.635 g∕cm3, and
3.97 g∕cm3 respectively. Samples with greater porosity (lower density)
will have proportionally lower stopping powers and longer ranges.
For the materials and ranges of energy shown, a sample of 10 μm or
greater thickness will completely stop an alpha particle. Consequently,
for samples of such thickness, the number of electron–hole pairs created
by the alpha ray is simply:

𝐺 = 𝑇 ∕𝑊 (84)

In Section 3, models were considered for the limits of small-𝐺 and
arge-𝐺. The theory in this section can be used to estimate which is
ore appropriate. As an example, consider a very pure sample, say
∼ 1012 cm−3 with a linear dimension of 𝑑 ∼ 10 μm. Thus, 𝑉 ∼ 𝑑3 ∼

0−9 cm3 and N ∼ 1012×10−9 ∼ 103. If it is subjected to alpha radiation,
ay 𝑇 ∼ 1 MeV, the radiation will be absorbed within the sample (see
ig. 4) and 𝐺 can be estimated from Eq. (84). With 𝑊 ∼ 10 eV, we have
∼ 𝑇 ∕𝑊 ∼ 105. Thus N ≪ 𝐺 and the large-𝐺 model is appropriate in

his case.
When looked at in detail, the ionization process is statistical. Thus,

or a given material with characteristic 𝑊 and a given ray of energy
, the actual number 𝐺 of electron–hole pairs created will vary from
ne incident ray to the next. The dispersion of 𝐺 due to this, however,
s typically one or less (Klein, 1968) and consequently we will neglect
t here.

The assumption of straight line paths for alpha rays is typically
ccurate. For beta rays, it is accurate for thin materials or higher
nergies rays and lower 𝑍 materials (Scott, 1963; Highland, 1975,
979; Lynch and Dahl, 1991; Turner, 2007). A first estimate for the
rror caused assuming straight lines for beta rays might be obtained
y considering the detour factor. A detour factor of 0.5, for example,
ould indicate that twice as much ionization was occurring in the
aterial per unit depth in a slab-like geometry than the straight line
odel would predict. This leads to an increase in standard deviation

nd dispersion of the trap population. A better estimate would use
Monte-Carlo simulation of beta particle paths and ionization in the

ample material and for the sample geometry (Kawrakow, 2000; Sood,
017; Salvat et al., 2007; Nuclear Energy Agency, 2019; Nikjoo et al.,
006; Agostinelli et al., 2003; Allison et al., 2006) but that is beyond
he scope of this article.

Lastly, the usual experimental unit of radiation is Gray where
Gray = 1 J/kg while the usual theoretical unit, such as  in Eq. (15),

s ionizations per unit volume. The relationship between the two is:

𝐺 = 𝑊
𝜌

 (85)

here 𝑊 is again the average energy per ionization (Table 3) and 𝜌 is
he material mass density.

. Sample geometry

A sample of thermoluminescent material, which may be as small as
single grain, may occur in a variety of shapes. Some sample shapes
ill be considered and, using the simplified radiation model of Sec-

ion 4, the probability distribution 𝑓𝐺 of the number of electron–hole
airs created by a single radiation track. Knowledge of the distribution
𝐺 will enable calculation of the statistical properties of irradiation as
escribed in Section 3.

To simplify the calculations, we consider two limiting cases, one
or thick samples and one for thin samples relative to the range of a
adiation particle. Thus, a thin sample is one for which the radiation
rack enters on one side and, with little change in energy, exits on
nother. A thick sample is one for which the particle of radiation is
9

topped within the material.
Suppose that a ray has energy 𝑇0 when it enters the sample and
nergy 𝑇1 at the end of its path through the sample. In that case, the
umber of electron–hole pairs created by the ray is:

=
𝑇0 − 𝑇1
𝑊

(86)

where 𝑊 is the energy per electron–hole pair. For a thick sample,
𝑇1 = 0. For a thin sample, the stopping power theory of Section 5.2 is
eeded to calculate 𝑇1. These two cases will be considered in the next
wo subsections.

.1. Thick sample

Consider the case where the penetration depth of the radiation is
ess than the sample thickness for which the number of electron–hole
airs created by each ray is given by Eq. (84). We can consider three
ases:

• If we have low dose and 𝐺 ≪ N and monoenergetic radiation,
then the number of electron–hole pairs is also the number of
new trapped electrons and the model of Section 3.1 applies with
𝐺∗ = 𝑇 ∕𝑊 where 𝑇 is the energy of the radiation and 𝑊 is the
material’s energy per electron–hole pair.

• If we have low dose and 𝐺 ≪ N and the radiation has a
distribution of energies, as is typical of radioisotope sources, then
the variable 𝐺 theory of Section 3.2 can be applied. If 𝑓𝑇 is
the probability distribution of energy 𝑇 , then, using Eq. (84),
the distribution of 𝐺 would be a scaled version of 𝑓𝑇 : 𝑓𝐺(𝐺) =
𝑊 𝑓𝑇 (𝑊𝐺).

• If 𝐺 ≫ N, as might be the case of high energy radiation and tiny
pure samples, then the theory of Section 3.3 applies. This theory
applies over the complete range from low dose to high dose.

ote that a sample as thin as 10 μm may be considered ‘thick’ when
he sample is subjected to radiation with a short penetration depth such
s alpha radiation at typical source energies (see Fig. 4). The same
ample, or even much thicker samples, would be considered ‘thin’ when
ubjected to beta radiation, as can be seen from Fig. 3.

.2. Thin sample

If the ray travels completely through the sample, the theory of the
revious section no longer applies and a new theory that accounts for
he geometry of the sample is needed. A theory is developed below for
amples that are thin compared to the radiation penetration depth and
his theory is applied to samples in the shape of spheres or cylinders.
or cylinders, two orientations between the cylinder and the radiation
ource are considered.

If the ray travels completely through the sample, the number of
lectron–hole pairs is given by:

= 1
𝑊 ∫

𝐿

0
𝑆P𝑑𝑥 (87)

where 𝑊 is the energy per electron–hole pair, 𝐿 is the path length
of that particular ray in the sample, 𝑑𝑥 is an element of distance that
the ray traverses, and 𝑆P = −𝑑𝑇 ∕𝑑𝑥 is the sample stopping power for
this type of radiation. If the penetration depth of the radiation is much
larger than the sample thickness, we can assume that the loss of energy
by the ray is small enough that the stopping power is approximately
constant, then:

𝐺 =
𝑆P
𝑊

𝐿 (88)

Consequently, for a fixed incident energy 𝑇 , the value of 𝐺 for some
ray is proportional to the path length of that particular ray through the
sample, 𝐿. It follows that for mono-energetic radiation sources:

𝐺𝑛 =
(

𝑆P
)𝑛

𝐿𝑛 (89)

𝑊
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where 𝐿𝑛 is the statistical average of 𝐿𝑛 over all paths of the ray
through the material weighted by the probability of each path. As
shown in Table 1, we know that the major statistical properties of
irradiation depend on the raw moments 𝐺𝑛. From Eq. (89), we know
that 𝐺𝑛 is proportional to 𝐿𝑛. Consequently, to understand the statistics
of different sample or grain shapes, we can focus on evaluating 𝐿𝑛. We

ill calculate 𝐿𝑛 first for a sphere and then for two orientations of a
cylinder.

From the variable 𝐺 column of Table 1, we see that various ratios
of 𝐺𝑛 appear of the form 𝐺𝑎×𝑏∕𝐺𝑎𝑏. It is useful to note that from
q. (89) these ratios are independent of the type of radiation and solely
etermined by geometry:

𝐺𝑎×𝑏

𝐺𝑎𝑏
= 𝐿𝑎×𝑏

𝐿𝑎𝑏
(90)

hese ratios will be tabulated for each of the geometries considered
elow.

These calculations are for monoenergetic radiation. If the radiation
as a wide energy distribution, one would need to start with Eq. (88)
nd consider both 𝑆P and 𝐿 as statistical variables.

.2.1. Sphere
We will obtain the values of 𝐿𝑛 for a spherical sample of diameter

. The sphere has a projected area of:

= 𝜋
4
𝑑2 (91)

f a ray travels through the sphere at an offset distance 𝑟 from the center
f the sphere, then the path length 𝐿 of the ray through the sphere is
= 2

√

(𝑑∕2)2 − 𝑟2. We average the 𝑛th power of this path length over
the sphere’s projected area:

𝐿𝑛 =
∫ 𝑑∕2
0 ∫ 2𝜋

0 𝐿𝑛𝑟𝑑𝜃𝑑𝑟
𝜋
4 𝑑

2
(92)

=
∫ 𝑑∕2
0 ∫ 2𝜋

0

(

2
√

(𝑑∕2)2 − 𝑟2
)𝑛

𝑟𝑑𝜃𝑑𝑟

𝜋
4 𝑑

2
(93)

= 2
𝑛 + 2

𝑑𝑛 (94)

Note that the product of the projected area 𝐴 and the mean path length
𝐿 is:

𝐴𝐿 =
(𝜋
4
𝑑2

)(2
3
𝑑
)

= 𝜋
6
𝑑3 = 𝑉sph (95)

here 𝑉sph is the volume of the sphere.
The raw moments Eq. (94), combined with Eq. (89) and the equa-

ions of Section 3.2 (Table 1), are sufficient to compute the basic
tatistical properties of mean, standard deviation, skewness, and kur-
osis. If we want to compute the actual probability distribution of the
umber of trapped elections, we need 𝑓𝐺:

𝐺 ≈ 2𝐺∕𝐺max
2 for 0 ≤ 𝐺 ≤ 𝐺max (96)

here 𝐺max is the value of 𝐺 for a track that passes through the sphere’s
enter:

max =
𝑆P 𝑑
𝑊

(97)

here 𝑆P is the stopping power and 𝑊 is the energy per electron–hole
air.

.2.2. Cylinder
For the path of a ray through a cylindrical sample, we will consider

wo orientations: transverse and axial. If a cylinder has diameter 𝑑 and
ength 𝑙, then, in the transverse orientation, it has a projected area of:
10

= 𝑑𝑙 (98)
able 4
aw moment values are shown for various sample shapes and orientations. The results

or spheres are from Eq. (94) while the results for cylinders are from Eq. (101)
transverse orientation) and Eq. (104) (axial orientation). The ratios provided here
re the ones useful for calculating standard deviation, skewness, and kurtosis in the
ariable 𝐺 model (see Table 1). While the values for 𝐿𝑛 are exact, the values for the

ratios have been rounded to three decimals.

Shape 𝐿 𝐿2 𝐿3 𝐿4 𝐿2
/

𝐿
2

𝐿3
/

𝐿2
3∕2

𝐿4
/

𝐿2
2

Sphere 2
3
𝑑 1

2
𝑑2 2

5
𝑑3 1

3
𝑑4 1.125 1.131 1.333

Cylinder, transverse 𝜋
4
𝑑 2

3
𝑑2 3𝜋

16
𝑑3 8

15
𝑑4 1.081 1.082 1.200

Cylinder, axial 𝑙 𝑙2 𝑙3 𝑙4 1 1 1

If a ray passes through the cylinder at an offset distance 𝑟 from
he axis of the cylinder, then the path length 𝐿 of the ray is 𝐿 =
√

(𝑑∕2)2 − 𝑟2. We average the 𝑛th power of this path length over the
sphere’s projected area:

𝐿𝑛 =
∫ 𝑙
0 2 ∫ 𝑑∕2

0

(

2
√

(𝑑∕2)2 − 𝑟2
)𝑛

𝑑𝑟𝑑𝑙

𝑑 𝑙
(99)

This reduces to:

𝐿𝑛 = 𝑑𝑛 ∫

1

0
(1 − 𝑡2)𝑛∕2𝑑𝑡 (100)

=
𝐵( 12 ,

2+𝑛
2 )

2
𝑑𝑛 (101)

where 𝐵(𝑥, 𝑦) is the beta function (Gradshteyn and Ryzhik, 1965;
Abramowitz and Stegun, 1970). Values for the first four raw moments
are given in Table 4. Again, the product of the projected area and the
mean path length is:

𝐴𝐿 =

(

𝑑 𝑙

)(

𝐵( 12 ,
3
2 )

2
𝑑

)

= 𝜋
4
𝑑2𝑙 = 𝑉cyl (102)

where 𝑉cyl the cylinder volume.
To compute the trap occupation probability distribution, 𝑃𝑖, itself,

we will also need the factors 𝑓𝐺:

𝑓𝐺 =
𝐺∕𝐺max

√

𝐺max
2 − 𝐺2

(103)

where again 𝐺max = 𝑆P𝑑∕𝑊 .
If the ray approaches the cylinder parallel to the axis, then the path

ength is simply 𝑙 and:

𝐿𝑛 = 𝑙𝑛 (104)

Formulas for 𝐿𝑛 and ratios of 𝐿𝑛 for various geometries are summarized
in Table 4.

6. Results

Using the master equation of Section 3, the irradiation model of
Section 4, and the geometrical model of Section 5, the statistical
properties of the irradiation process of thermoluminescent materials
can be calculated. We will present some sample calculations for both
spherical and cylindrical sample shapes. A key result is that the noise
level in the irradiation process, as measured by the standard deviation
of the trap population, is much larger than might be expected from a
Poisson process model.

As the first example, consider a sphere of silica of diameter 𝑑 =
0.00472 cm (47 μm or 0.186 mil) and irradiated by 1 MeV beta rays.
From Eq. (78) or Berger et al. (2005), ICRU (1984), the stopping power
of these rays in silica is 3.6×106 eV∕cm. A 1 MeV beta ray in silica
has a range of 0.2 cm and since this is much larger than the diameter
𝑑, the ‘thin’ sphere theory of Section 5.2 applies. From Table 3, an
electron–hole pair is created in silica on average for every 𝑊 = 17 eV
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of energy deposited. Thus, a single beta ray passing through the center
of the sphere will generate (Eq. (89)):

𝐺max =
𝑆P
𝑊

𝑑 (105)

=
3.6×106 eV∕cm

17 eV
× 0.00472 cm (106)

= 1000 electron–hole pairs (107)

This number can also be read from Fig. 3 using 𝑑 as the material
hickness. Even if we suppose that our silica sample is exceptionally
ure, say 𝑁 as low as 1010 cm−3, we have N = 𝑉 𝑁 ∼ 105, and the

assumption 𝐺 ≪ N is well satisfied. Thus, the large 𝐺 model does not
apply while, for low doses, the variable 𝐺 model of Section 3.2 does.

For the average ray passing through the sphere, Eq. (89) can be
combined with the formula for 𝐿 (Eq. (94) or Table 4) to find:

𝐺 =
𝑆P
𝑊

𝐿 (108)

=
𝑆P
𝑊

( 2
3
𝑑
)

(109)

= 667 electron–hole pairs (110)

This number can also be read from Fig. 3 using 𝐿 = (2∕3)𝑑 as the
aterial thickness. The standard deviation in the number of electrons

n the traps after irradiation is found from Eq. (50) (see Table 1):

=

√

√

√

√

(

𝐺2

𝐺
2

)

𝐺E
[

𝑖
]

(111)

=
√

1.125 × 667 E
[

𝑖
]

(112)

=
√

750 E
[

𝑖
]

(113)

here E
[

𝑖
]

is the expected value of the trap population. The ratio
𝐺2∕𝐺

2
was evaluated using Eq. (90) and the theory for a sphere in

ection 5.2.1 as summarized in Table 4.
𝜎 is the standard deviation of the total number of filled electron

raps in the whole of the sample of volume 𝑉 . The standard deviation
of the trap concentration is:

𝜎𝑛 =
𝜎
𝑉

=
√

750 𝑛∕𝑉 (114)

where 𝑛 = E
[

𝑖
]

∕𝑉 is the expected value of trap concentration. From
Eq. (41) and for a fixed dose , E

[

𝑖
]

∝ 𝑉 and, thus, by Eq. (113), 𝜎
scales with 𝑉 1∕2. By contrast, from Eq. (114), the standard deviation of
the trap concentration 𝜎𝑛 at fixed dose scales with 𝑉 −1∕2.

The dispersion for this sample is:

D ≡ 𝜎2

E
[

𝑖
] = 𝐺2

𝐺
2
𝐺 = 𝐿2

𝐿
2
𝐺 = 1.125 × 667 = 750 (115)

This is nearly three orders of magnitude larger than the dispersion of
a Poisson process.

The skewness and kurtosis of the distribution can also be computed.
Continuing to consider the spherical sample and combining Eqs. (55)
and (90) with Eq. (101) (see Table 4), the skewness is:

3̃ =
𝐺3

𝐺2
3∕2

√

𝐺
𝑉

(116)

= 𝐿3

𝐿2
3∕2

√

𝐺
𝑉

(117)

= 1.131
√

667
𝑉 𝐷

(118)

=
√

853
𝑉 𝐷

(119)

Similarly, for kurtosis:

4̃ = 3 + 𝐺4

2
𝐺
𝑉

(120)
11

𝐺2
Fig. 5. A sample calculation was performed for the probability distribution of trap
population, 𝑃𝑖, in a spherical sample during irradiation. Probabilities 𝑃𝑖 are plotted
gainst the number of occupied traps, 𝑖, for four different exposure times. The sample
as assumed to be spherical, made of silica, and having a stopping power sufficient

o generate 1000 electrons in a radiation track passing through the diameter.

Fig. 6. The probability distribution of trap population, 𝑃𝑖, is plotted against the number
of occupied traps, 𝑖, for a cylindrical silica sample exposed to beta irradiation. Other
than shape, the same parameters as in Fig. 5 are used.

= 3 + 𝐿4

𝐿2
2

𝐺
𝑉

(121)

= 3 + 1.333 667
𝑉

(122)

= 3 + 889
𝑉

(123)

For a normal (Gaussian) distribution, 𝜇3 = 0 and 𝜇4 = 3. Eqs. (119)
and (123) show that, initially, when dose or E

[

𝑖
]

is close to zero, the
distribution has large skewness and kurtosis. As dose increases, the
distribution approaches Gaussian.

The above results were obtained analytically. To find the actual
probability distribution, 𝑃 , we will solve the master equation Eq. (30)
𝑖
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numerically. We will continue considering the 𝑑 = 0.00472 cm silica
sphere irradiated by 1 MeV beta rays. 𝑃𝑖 is the probability that 𝑖 traps
re filled and it varies as a function of time 𝑡 as determined by Eq. (30).
esults for 𝑃𝑖, starting from initially empty traps (Eq. (20)), are shown

n Fig. 5 for an irradiation rate of 𝑋 = 1.16×108 cm3∕s. At time 𝑡 = 0.1 s,
most of the traps are still empty. Among the non-empty traps, there is
a local peak of probability at 𝑖 = 1000 trapped electrons. There is also
smaller peak at 𝑖 = 1423. As time goes on, the distribution broadens out.
By 𝑡 = 10 s, the distribution begins to resemble a Gaussian distribution.

A striking feature of Fig. 5 is sharp drop in probability that is
seen at 1000 trapped electrons. This is because the diameter of the
sphere was chosen so that one ray passing through the diameter creates
1000 ionizations. In other words, 𝐺max = 1000. This means that any
random ray passing through may create from 0 to 1000 ionizations but
never 1001 or more. Thus, a single ray can create 1000 ionizations but
1001 ionizations requires two or more rays. This is why, when starting
from empty traps and at the lowest doses, you see a peak at 1000 and
discontinuous drop between 1000 and 1001. This effect continues, but
weakens, at multiples of 𝐺max. For example, a concentration of 2000
an be achieved with just two rays but 2001 requires at least three.

For comparison, consider a cylindrical sample of silica of the same
iameter and volume as the spherical sample considered above and
riented with its axis transverse to the incoming radiation. Because this
ylinder has the same diameter as the sphere, the value of 𝐺max remains
he same:

max =
𝑆P
𝑊

𝑑 (124)

=
3.6×105 eV∕cm

17 eV
× 0.00472 cm (125)

= 1000 electron–hole pairs (126)

Because of the cylindrical shape, however, the value of 𝐺 is different:

𝐺 =
𝑆P
𝑊

𝐿 (127)

=
𝑆P
𝑊

(𝜋
4
𝑑
)

(128)

= 785 electron–hole pairs (129)

where the value of 𝐿 was evaluated from Eq. (101) (see also Table 4).
his number can also be read from Fig. 3 using 𝐿 = (𝜋∕4)𝑑 as the

material thickness. The standard deviation in the number of electrons
in the traps after irradiation is found from Eq. (50) (see Table 1):

𝜎 =

√

√

√

√

(

𝐺2

𝐺
2

)

𝐺E
[

𝑖
]

(130)

=

√

√

√

√

(

𝐿2

𝐿
2

)

𝐺E
[

𝑖
]

(131)

=
√

1.081 × 785 E
[

𝑖
]

(132)

=
√

848 E
[

𝑖
]

(133)

here the ratio 𝐺
2
∕𝐺

2
was evaluated using Eq. (90) and the theory for

cylinder in transverse orientation in Section 5.2.2 as summarized in
able 4. The dispersion for this sample is:

≡ 𝜎2

E
[

𝑖
] = 848 (134)

gain, this is three orders of magnitude larger than the dispersion of a
oisson process.

The probability distribution 𝑃𝑖 for trap population 𝑖 for this cylin-
rical silica sample after irradiation can be calculated numerically and
s shown in Fig. 6. For the cylinder, the peaks in the distribution at
= 𝐺max = 1000 are much taller and sharper than for the sphere. This

s because the shape of 𝑓𝐺 differs greatly between a sphere, Eq. (96),
nd a cylinder, Eq. (103). The 𝑖 = 𝐺 = 1000 peak is strong even at
12

max
Fig. 7. The mean E
[

𝑖
]

(solid) and standard deviation 𝜎 (dashed) of the population
f occupied traps corresponding to Fig. 6 are plotted against irradiation time. For
omparison, the much smaller standard deviation 𝜎 (dotted) of a Poisson distribution
ith the same mean is also shown.

Fig. 8. The skewness and kurtosis of the probability distribution of occupied traps are
plotted against time under the same assumptions as used for Fig. 6. The large kurtosis
for short irradiation times means that experiments will see more-than-expected outliers
while the large skewness means more of those outliers will be at the high side than
the low side.

𝑡 = 10 s where the distribution has otherwise developed into a nearly
Gaussian shape.

Even when the distribution achieves a Gaussian distribution, the
standard deviation is large. The mean and standard deviation for the
cylindrical case are shown in Fig. 7. For comparison, the plot also
shows the standard deviation of a Poisson process with the same
mean. The actual standard deviation for this process is over an order
of magnitude larger than what it would be for a Poisson process.
Fig. 7 shows mean and standard deviation increasing as dose increases.
Both continue to increase with increasing dose as long as the dose
is below saturation (as defined by Eqs. (12) and (29)). As the dose
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approaches saturation, the mean would approach a limit while the
standard deviation returns to zero.

Fig. 8 shows the skewness and kurtosis of the probability distribu-
tion for the cylindrical sample in Fig. 6. The combination of large
positive skewness and large kurtosis means that experimental results
would have ‘outliers’ on the large signal side.

The distributions in Figs. 5 and 6 are the result of numerical integra-
tion of Eq. (30) using the scipy.integrate.odeint solver under
Python version 3.7. The numerical method solved 30,000 simultaneous
differential equations for trap occupation numbers 0 ≤ 𝑖 < 30,000.
Calculation time was less than two minutes.

Finally, the importance of orientation can be illustrated by con-
sidering a larger longer cylinder, 𝑑 = 0.1 mm in diameter and 𝓁 =
mm long, made of alumina and subjected to 2 MeV beta rays. At
MeV, the stopping power is about 3.6 MeV∕cm and the range is about
mm, again justifying the use of the thin sample model. As before, for

he case of irradiation coming transverse to the cylinder axis, we can
alculate the standard deviation for the number of trapped electrons
fter irradiation as:

=

√

√

√

√

(

𝐺2

𝐺
2

)

𝐺E
[

𝑖
]

(135)

=

√

√

√

√

(

𝐿2

𝐿
2

)

𝑆P
𝑊

(𝜋
4

)

𝑑E
[

𝑖
]

(136)

=
√

1.081 × 1660 E
[

𝑖
]

(137)

=
√

1800 E
[

𝑖
]

for the transverse orientation (138)

y contrast, if the radiation arrives along the axial direction, the
tandard deviation of trapped electrons is:

=

√

√

√

√

(

𝐺2

𝐺
2

)

𝐺 E
[

𝑖
]

(139)

=

√

√

√

√

(

𝐿2

𝐿
2

)

(

𝑆P
𝑊

𝓁
)

E
[

𝑖
]

(140)

=
√

1 × 21,200 E
[

𝑖
]

(141)

=
√

21,200 E
[

𝑖
]

for the axial orientation (142)

or a cylinder with these dimensions, while the dispersion is 1800
hen the radiation is transverse, it is an order of magnitude larger,

21,200, when the radiation is along the axial direction. In other words,
even if one is using the same sample material in a thermoluminescence
measurement, the statistics of the glow curve can vary depending on
the orientation of the sample to the radiation source.

7. Summary and conclusions

The present work divides into two parts. The first part developed a
general model for the statistical behavior of irradiation of a one-trap
one-center system at low dose. It found that the statistical properties,
such as standard deviation and skewness, can be determined from raw
moments, 𝐺𝑛, of the number of electron–hole pairs created by each
radiation track. The second part developed a simplified model for alpha
or beta radiation that enable estimates of the raw moments 𝐺𝑛 to be
made for various particle energies and sample geometries. Some key
points are:

• The irradiation process of a thermoluminescent material is sta-
tistical and, if the same experiment is performed multiple times,
different numbers of trapped electrons will be created. The aver-
age number of trapped electrons is predicted by the conventional
phenomenological theory. The theory developed herein predicts
the standard deviation and other statistical features of the number
of trapped electrons after irradiation.
13
• This study is motivated by the large standard deviations observed
in single-grain experiments. Note that we have not addressed any
instrumental sources of noise. This theory is focused on the noise
and statistics inherent to the physical process of irradiation.

• For alpha, beta, or gamma irradiation, the predicted standard
deviation and dispersion can be orders of magnitude larger than
one might expect from a conventional Poisson process model.

• The statistics of the irradiation process depend not just on the
thermoluminescent material and type of radiation but also on
the size, shape, and orientation of the material. We examined a
sample case where the dispersion varied by an order of magnitude
when merely the orientation of sample was changed.

• At low doses or under some other conditions, experimental data
may show more outliers than would be expected for data with
a Gaussian distribution. This is quantified by the calculations of
skewness and kurtosis herein. For these conditions, the statistical
analyzes that assume a Gaussian distribution should not be used
to assess the data.

The simplified model of irradiation enables, in many cases, simple
analytical formulas for the statistical properties of irradiation. In cases
where more accuracy is desired or in more complex cases, where,
for example, there might be backscattered radiation from the sample
holder (Hansen et al., 2018; Kumar, 2019; Tabata and Ito, 1992) or
the sample might be small enough that secondary electrons escape or
particle energy might be low enough that the straight-track approxi-
mation is not useful, more sophisticated numerical models of radiation
transport would be needed (Kawrakow, 2000; Sood, 2017; Salvat et al.,
2007; Nuclear Energy Agency, 2019; Nikjoo et al., 2006; Agostinelli
et al., 2003; Allison et al., 2006). Such a radiation transport model
would replace simplified models in Sections 4 and 5 but the model of
Section 3 would remain valid and could be used to analyze the results.
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Appendix A. Moments of fixed-𝑮 distribution

To compute the statistical properties of the fixed-𝐺 model, we will
start by taking raw 𝑘-moments of the distribution:

𝜇′
𝑘 =

∞
∑

𝑖=0
𝑖𝑘𝑃𝑖 (A.1)

where 𝑃𝑖 is given by the fixed-𝐺 distribution in Eq. (21). Note that 𝑃𝑖
in Eq. (21) is zero unless 𝑖 is an integer multiple of 𝐺∗. Keeping only
the non-zero terms, we have:

𝜇′
𝑘 =

∞
∑

𝑗=0

(

𝑗𝐺∗
)𝑘𝑃𝑗𝐺∗

(A.2)

= 𝐺∗
𝑘

[ ∞
∑

𝑗=0
𝑗𝑘

(𝑉∕𝐺∗)
𝑗

𝑗!
𝑒−𝑉∕𝐺∗

]

(A.3)

The quantity in square brackets in Eq. (A.3) is simply the 𝑘th raw
moment of the standard Poisson distribution of parameter 𝑉∕𝐺∗. As
these are well-known, we can immediately write:

𝜇′
0 = 1 (A.4)

𝜇′
1 = 𝐺∗

(

𝑉∕𝐺∗
)

(A.5)

𝜇′
2 = 𝐺∗

2
[

(

𝑉∕𝐺∗
)2 +

(

𝑉∕𝐺∗
)

]

(A.6)

𝜇′
3 = 𝐺∗

3
[

(

𝑉∕𝐺∗
)3 + 3

(

𝑉∕𝐺∗
)2 +

(

𝑉∕𝐺∗
)

]

(A.7)

𝜇′
4 = 𝐺∗

4
[

(

𝑉∕𝐺∗
)4 + 6

(

𝑉∕𝐺∗
)3 + 7

(

𝑉∕𝐺∗
)2 +

(

𝑉∕𝐺∗
)

]

(A.8)
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𝜇

𝜇

Fig. C.9. The terms in the summation of Eq. (C.1) are shown. In Eq. (C.1), the inner sum is over 𝐺 and the outer sum is over 𝑖. The inner sum is limited to 0 ≤ 𝐺 ≤ 𝑖. In Eq. (C.6),
by contrast, we introduce 𝑗 which labels diagonals with the inner sum being over 𝑗 and the outer sum being over 𝐺. The same terms are summed in both Eqs. (C.1) and (C.6),
only the order in which they are summed has changed.
It follows from the definitions that the mean, standard deviation,
skewness, and kurtosis of the fixed-𝐺 distribution are given by:

E
[

𝑖
]

= 𝜇′
1 = 𝑉 (A.9)

𝜎 =
√

𝜇′
2 − 𝜇′

1
2 = 𝐺∗𝑉 (A.10)

3̃ =

√

√

√

√

√

√

𝜇′
3 − 3𝜇′

2𝜇
′
1 + 2𝜇′

1
3

(

𝜇′
2 − 𝜇′

1
2
)3∕2

=
√

𝐺∗
𝑉

(A.11)

4̃ =

(

𝜇′
4 − 4𝜇′

3𝜇
′
1 + 6𝜇′

2𝜇
′
1
2 − 3𝜇′

1
4
)

𝜎2
= 3 +

𝐺∗
𝑉

(A.12)

These results for fixed-𝐺 are summarized and compared to the other
models in Table 1.

Appendix B. Calculation of 𝝁𝒌

We do not have a general analytical solution for the trap occupancy
distribution for the variable-𝐺 case. We can, subject to the low-dose
approximation, obtain general information about the central moments
of the distribution as defined by:

𝜇𝑘 =
∑

𝑖≥0

(

𝑖 − E
[

𝑖
])𝑘𝑃𝑖 (B.1)

where 𝑘 is an integer and 𝜇𝑘 is a central moment. Differentiating
Eq. (B.1):

𝑑𝜇𝑘
𝑑𝑡

=
∑

𝑖≥0

(

𝑖 − E
[

𝑖
])𝑘 𝑑𝑃𝑖

𝑑𝑡
− 𝑘

∑

𝑖≥0

(

𝑖 − E
[

𝑖
])𝑘−1𝑃𝑖

𝑑E
[

𝑖
]

𝑑𝑡
(B.2)

=
∑

𝑖≥0

(

𝑖 − E
[

𝑖
])𝑘 𝑑𝑃𝑖

𝑑𝑡
− 𝑘 𝜇𝑘−1 X𝐺 (B.3)

where Eqs. (37), (17), and (B.1) were used. Evaluating 𝑑𝑃𝑖
𝑑𝑡 using the

master Eqs. (30), (B.3) can be further reduced:

𝑑𝜇𝑘
𝑑𝑡

= X
∑

𝑖≥0

𝑖
∑

𝐺=0
𝑓𝐺

(

𝑖 − E
[

𝑖
])𝑘𝑃𝑖−𝐺

− X
∑

𝑖≥0

∑

𝐺≥0
𝑓𝐺

(

𝑖 − E
[

𝑖
])𝑘𝑃𝑖 − 𝑘 𝜇𝑘−1 X𝐺 (B.4)

= X
∑

𝑗≥0

∑

𝐺≥0
𝑓𝐺

(

𝑗 + 𝐺 − E
[

𝑖
])𝑘𝑃𝑗

− X

(

∑

𝐺≥0
𝑓𝐺

)(

∑

𝑖≥0

(

𝑖 − E
[

𝑖
])𝑘𝑃𝑖

)

− 𝑘 𝜇𝑘−1 X𝐺 (B.5)

= X
∑

𝑗≥0

∑

𝐺≥0

𝑘
∑

𝓁=0

(

𝑘
𝓁

)

𝑓𝐺𝐺
𝑙(𝑗 − E

[

𝑖
])𝑘−𝑙𝑃𝑗 − X𝜇𝑘 − 𝑘 𝜇𝑘−1 X𝐺 (B.6)

= X
𝑘
∑

𝓁=0

(

𝑘
𝓁

)

(

∑

𝐺≥0
𝑓𝐺𝐺

𝓁

)(

∑

𝑗≥0

(

𝑗 − E
[

𝑖
])𝑘−𝓁𝑃𝑗

)

− X𝜇 − 𝑘 𝜇 X𝐺 (B.7)
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𝑘 𝑘−1
= X
𝑘
∑

𝓁=0

(

𝑘
𝓁

)

𝐺𝓁𝜇𝑘−𝓁 − X𝜇𝑘 − 𝑘 X𝐺𝜇𝑘−1 (B.8)

= X
𝑘
∑

𝓁=2

(

𝑘
𝓁

)

𝐺𝓁𝜇𝑘−𝓁 (B.9)

where
(𝑘
𝓁

)

is the binomial coefficient:
(

𝑘
𝓁

)

= 𝑘!
(𝑘 − 𝓁)! 𝓁!

(B.10)

and 𝐺𝓁 is defined by Eq. (47). Let us summarize the behavior of the
first five central moments of 𝜇𝑘. From the definition of 𝜇𝑘, Eq. (B.1),
we have trivially:

𝜇0 = 1 (B.11)

𝜇1 = 0 (B.12)

For the next three central moments, we do not know their values but
Eq. (B.9) does give us their time derivatives:
𝑑𝜇2
𝑑𝑡

= X𝐺2 (B.13)
𝑑𝜇3
𝑑𝑡

= X𝐺3 (B.14)
𝑑𝜇4
𝑑𝑡

= X
(

6𝐺2𝜇2 + 𝐺4
)

(B.15)

Eq. (B.13) through Eq. (B.15) are used to compute the standard devia-
tion, skewness, and kurtosis under the large-𝐺 model of Section 3.3.

Appendix C. Reversing order of summation

To proceed from Eq. (33) to Eq. (34), we need to reverse the order
of summation of the first term on the right-hand-side of Eq. (33). The
sum in question is:

Sum =
∑

𝑖≥0

𝑖
∑

𝐺=0
𝑓𝐺𝑖𝑃𝑖−𝐺 (C.1)

Because the inner sum has an upper limit, 𝑖, that is dependent on the
outer sum, reversing the order of the sums requires care.

We introduce a delta function defined by:

𝛿𝐺≤𝑖 ≡

{

1 for 𝐺 ≤ 𝑖
0 for 𝐺 > 𝑖

(C.2)

Using Eq. (C.2), we can rewrite Eq. (C.1):

Sum =
∑

𝑖≥0

∑

𝐺≥0
𝛿𝐺≤𝑖𝑓𝐺𝑖𝑃𝑖−𝐺 (C.3)

In Eq. (C.3), the limits of the two sums are now independent and,
since the sum is absolutely convergent, we can interchange the order
of summation:

Sum =
∑∑

𝛿𝐺≤𝑖𝑓𝐺𝑖𝑃𝑖−𝐺 (C.4)

𝐺≥0 𝑖≥0
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Since we do not need to sum over terms that are zero, Eq. (C.4) reduces
to:

Sum =
∑

𝐺≥0

∑

𝑖≥𝐺
𝑓𝐺𝑖𝑃𝑖−𝐺 (C.5)

ow, let us introduce a new variable 𝑗 = 𝑖 − 𝐺. With this, Eq. (C.5)
ecomes:

um =
∑

𝐺≥0

∑

𝑗≥0
𝑓𝐺(𝑗 + 𝐺)𝑃𝑗 (C.6)

The change from Eq. (C.1) to Eq. (C.6) can be illustrated as shown
n Fig. C.9.

At this point, ‘𝑗’ in Eq. (C.6) is just a variable of summation and we
an replace it with ‘𝑖’:

um =
∑

𝐺≥0

∑

𝑖≥0
𝑓𝐺(𝑖 + 𝐺)𝑃𝑖 (C.7)

his is the form of the sum used in Eq. (34)
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