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Some theoretical features of phosphorescence decay curves and thermoluminescence (TL) glow curves have been investi-
gated with some select depth distributions. In early studies a ™! (inverse-time dependence) behaviour for isothermal decay
was found assuming a uniform distribution of activation energies ranging from 0 to infinity. Additional studies explored the
TL features resulting for Gaussian distributions of activation energies. For broad enough distributions the ¢~! behavior for
isothermal luminescent decay again followed. It thus appears that broad distributions will quite generally result in ¢~}
phosphorescence behavior. We have addressed the more mathematically tractable situation of a continuous uniform
distribution within a finite range of energies, from E, to E,. The circumstances under which the 7~ law can be accepted as a
valid approximation, as well as the deviations from this law, are discussed using numerical calculations. Also, the expected
features of TL glow curves under similar conditions for continuous trap distributions are discussed. In particular the effective
values of the activation energies one can calculate using different known methods for its evaluation are studied. The
relationship of these derived effective values to the distributions actually used in the calculations is discussed.

The near-+~' time dependence of phosphorescence resulting from a model of electrons and holes recombining through
tunneling is contrasted to that for the standard first-order kinetics model with a broad excitation energy distribution also
giving a near-+~ ! dependence. The distinction appears in the curvature of yield curve with time during the onset of

phosphorescence.

1. Introduction

Most works dealing with the kinetics of the
thermoluminescence (TL) process are based on the
assumption that In a given temperature range,
only one trapping state and one kind of recombi-
nation center are active. When a series of TL
peaks is seen, it is still usually assumed that each
individual peak results from the transition from a
single trapping state to a single kind of recombi-
nation center. Right from the very beginning of
the study of TL, the possibility of having a con-
tinuous distribution of trapping states has been
taken into consideration. Randall and Wilkins [1],
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who were the first to give a theoretical account of
the TL phenomenon suggested this possibility and
studied the behavior of TL glow curves and iso-
thermal decay behavior (phosphorescence) assum-
ing uniform and exponential trap depth distri-
butions. For reasons discussed below, these authors
as well as most other investigators limited their
work to cases of first-order kinetics or, in other
words, cases in which thermally released charge
carriers can only interact with trapped recombina-
tion centers and cannot undergo retrapping into
empty trap sites. Under this assumption and as-
suming that the distribution extends uniformly
from 0 to oo, they showed that the expected time
dependence of phosphorescence should behave as
t~'. When the trap distribution is exponential,
namely Np=Ae “* dE where N is the con-
centration of trapping states with energies be-
tween £ and E + dE, they showed that phos-
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phorescence decays obeying a ¢ “*”* 1 Jaw, where
k 1s Boltzmann’s constant.

Medlin [2] investigated the TL behavior associ-
ated with activation energy distributions obeying a
Gaussian form N = C exp[—a(E — E;)*]. He
showed that isothermal decay following the law
I(t)=1,(1 + bt) " results over a reasonable time
range and related the constants b and m to the
distribution width and other relevant parameters.

Hornyak and Franklin [3] extended the TL
behavior studies of Gaussian-shaped trap distri-
butions taking retrapping into account in first-
order approximation. The possibility of retrapping
did not materially alter the conclusion that broad
distributions lead to isothermal luminescent decay
having a ' dependence.

Experimentally a ¢t™# behavior is rather com-
mon, except for the early time portion of the
decay curve, and B is quite often found to be
close to unity. It is to be noted that although in
crystalline samples the occurrence of discrete en-
ergy levels seems to be plausible, in amorphous
organic materials (see Pender and Fleming, [4]) as
well as amorphous inorganic materials (e.g. glassy
materials, see Kikuchi [5]), continuous or quasi-
continuous distributions of activation energies
seem more likely to occur.

A number of researchers have investigated TL
glow peaks that possibly result from a continuum
of activation energies. These include Bosacchi et
al. [6,7] who studied “quasi-disordered” materials,
and Pender and Fleming [4] who were interested
in organic materials such as polystyrene. The gen-
eral phenomenon was studied by Hagekyriakou
and Fleming [8] and Rudolf et al. [9]. The latter
authors utilized the fractional glow technique
(FGT) devised by Gobrecht and Hofmann [10] to
try to retrieve the energy distribution from a TL
glow curve. This technique comprises a repeated
“initial rise” measurement performed in small
temperature range heating and cooling cycles
yielding the activation energies as function of, say,
the middle of each small temperature range.

Kikuchi [5] studied the TL glow and phos-
phorescence behavior of glasses. He derived the
expression for phosphorescence decay with a uni-
form energy distribution of traps between the
energies £, and E,. In the present work we carry

this idea further, partly in order to get a measure
for how broad the energy range AEF=F, —- E,
should be so that the Randall and Wilkins ™'
result can be considered a good approximation. In
view of the results of the theoretical investigations
cited above, which show quite generally that broad
distributions with or without retrapping can lead
toa ¢! form of phosphorescence, this very simple
and mathematically tractable energy distribution
should provide a reliable criterion for determining
when this type of time dependence will result.

In the present work, in addition to the study of
calculated phosphorescence decay curves, we have
also calculated TL glow curves under similar con-
ditions. TL glow peaks clearly showed a broad-
ening which reflected the effect of the assumed
width AE. Some standard methods were then
used for evaluating activation energies from these
broadened glow peaks. Comparisons are made
contrasting the effective activation energy ob-
tained using these methods with the given energy
distribution of activation energies actually used in
the calculations.

2. Phosphorescence decay

As mentioned above, Randall and Wilkins [1]
wrote the phosphorescence decay function as

1(;)=/(; Npse P *exp[—st e #*T1dE, (1)

where T is the absolute temperature and s and
frequency factor assumed to be the same for all
the activation energies. Ng is the number of traps
between energies £ and E +dE. It should be
mentioned that this approach is limited to first-
order kinetics. As has been discussed by many
authors, first-order kinetics results from assuming
a situation in which retrapping is negligible com-
pared to recombination. It is quite obvious that
taking the integral from zero to infinity is ques-
tionable because the range of possible energies is
actually limited. More realistically we assume a
uniform trap distribution between E, and E, and
write (see also ref. [5])

E, <, o
I([) — _NES e*[:/v\’rexp[_st eflz/r\]'] dE. (2)
E
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Here Ny=n,/AE where AE=FE,—E, and n,
stands for the total number of traps. Integrating
eq. (2), one gets

T
1(t) = 5= [exp(—st e~ 5/T)
—exp(—st e B/ TY]. (3)

We now turn to finding the circumstances un-
der which the ¢! law approximates the more
general case of eq. (3). In order to do this, we
calculated decay curves, all with n,=35x 10°
em™?, s=10" s, T=300 K, and E,=0.7 eV,
E, being the center of the energy distribution. The
results are plotted on a log-log scale in fig. 1.
Curve (a) which corresponds to AE = 0.01 eV is in
fact indistinguishable from a simple exponential
decay. This shows up more clearly when the same
results are plotted on a semi-log graph. Curves (b)
and (c) result from choosing AE=0.05 eV and
AE = 0.1 eV respectively, and have shapes which
are neither exponential nor following the ¢~ ' law.
Curves (d), (e) and (f) are essentially straight lines
with a slope of —1 which, of course, shows that
the 0-oc0 Randall and Wilkins approximation is a
reasonably good one for E,=0.7 eV and AE > 0.2
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Fig. 1. Calculated phosphorescence decay curves with ny = 5X
10°cm™?, 5=10"" s7!, E,=0.7 eV and T =300 K, plotted
on a log-log graph. The widths of the distribution are (a)
AE=001eV,(b) AE=005eV,(c) AE=0.1¢eV,(d) AE=02
eV,(e) AE=03¢eV,(f) AE=04¢eV.

eV. The parameter playing an tmportant role in
this changing behavior pattern is the quantity
y=«T/AE.

For these truncated uniform distribution exam-
ples the criterion for the onset of the 1~ ! depen-
dence is AE > 0.2 eV in the chosen example or y
< 0.13. Nearly exponential decay results when
AE <0.01 eV and the value of y is y>2.5. As
expected, these results are quite consistent with
those found by Hornyak and Franklin [3] for
Gaussian-shaped activation energy distributions
as cited above. In the absence of retrapping the
general phosphorescence behavior was found by
them to be of the form [=1,yG(x, y), where
y=«TVa and x = A, with A, =se” /"7 It was
found that for very narrow distributions, i.e. y >
1.5 the decay was essentially an exponentially
decreasing function of time. For broad distri-
butions, i.e. y<0.15 the r~' dependence pre-
vailed. For value 0.15 <y < 1.5 the time depen-
dence slowly transformed from the one extreme
dependence to the other as y ranged from the
lower to the higher value.

For both the Gaussian and truncated uniform
distribution of trap energies the critical parameter
controlling the change from exponential to inverse
time dependence is the quantity y = kTVa = 1.66
kT /FWHM for the Gaussian case and y =«x7/AE
for the truncated uniform distribution. Although
the function G(x, y) is available in tabulated
form in Jahnke and Emde’s Tables of Functions
and in an approximate analytic form for G(x, y)
(see ref. [3]), the truncated uniform distribution is
considerably simpler to work with.

For the initial time dependence we adopt the
method suggested by Avouris and Morgan of plot-
ting /="' as a function of time, in order to check
the 1! behavior and deviations therefrom. Figure
2 depicts such a presentation of a calculated phos-
phorescence curve with £, =0.7 eV, AE=0.3¢V,
and 7T=300 K. The results show practically a
straight line for times greater than about 1.5 s. For
times less than 1.5 s a deviation from the straight
line behavior is evident and exhibits an initial
portion with a concave upward curvature. Similar
results have been found by Avouris and Morgan
[11] for some of their decay curves, which could
not be explained by their tunneling model. Tun-
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T=300 K
AE=03 eV a
E=0.7¢eV

(INTENSITY)™  (arbitrary units)

TIME (sec)
Fig. 2. Calculated /™! vs. time for ng=5x10%cm ™", s =10
s\, E,=07eV, T=300K and AE =0.3eV.

neling could account only for a convex behavior.
Indeed this type of behavior was seen in some
other experimental results (see also the discussion
below).

Changing the parameters (E,, AE, T or s) did
not vary the basic dependence, namely, the curve
had a positive intercept with the y-axis, it was
concave in its initial range and got linear at higher
values of . A comparison between the tunneling
model and the continuous distribution model will
be made in the discussion below.

To sum up this section, we would like to re-
write the decay curve given by eq. (3) using the
two dimensionless quantities z = st exp(— E,/«T)
and w=exp(—AE/2xT) where AE=FE,—E,
and E,=(FE,+ E,)/2. Equation (3) transforms
mto

nokT
I(z, w)= E(e'”’—e"'/”'). (3)
As pointed out by Randall and Wilkins the study
of I-¢ should yield useful information concerning
the kinetics involved. For example, for decay
curves resulting from a single narrow trapping
state, the plot of I-¢ as a function of log(r)

should yield a nearly TL-like glow peak [12]. In
the other limit of an extremely broad uniform trap
distribution (essentially from 0 to oo) [ -¢ should
be a constant as a function of r which is, of
course, a manifestation of the r~ ' behavior of
phospherescence. Equation (3”) can be written as

noT )
I-t=‘£,€? T —e YY), 37)

For any value of z which is not too smali (i.e.

excluding the very beginning of the decay curve),

and for values of AF large enough so that W is a

very small number, there follows e “* =1 and
~“/" =0 and therefore

1o~ 208
T AEC

From fig. 1 one can deduce that the ™' decay

applies for AE/kT = 6 excluding, again, the very

initial period of time.

3. Thermoluminescence

Thermoluminescence (TL) glow peaks have also
been calculated assuming first-order kinetics and a
continuous distribution of trapping states uni-
formly distributed over a finite energy range AE
= E, — E,. The expression for /(7)) under these
circumstances is

nyS rEx .,
I(T)=ﬁff'e’b/"r

X exp

«%/Tef/war'] dE, (4)

Ty

where B is the (constant linear) heating rate.

In contrast to the phosphorescence energy in-
tegral this integration cannot be performed ana-
lytically. Two alternative methods have been
utilized in order to calculate I(7) using eq. (4).
One approach is to divide AE into 50 or 100
intervals, calculate the first order glow curves and
add them up at each temperature, ending up with
the total glow curve for the entire energy distribu-
tion (see also ref. [9]). The other approach consists
of using the asymptotic series for evaluating the
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temperature interval in eq. (4) (see e.g. the ap-
pendix in refs. [13,3]),

fTe_E/"T'dT’
=Texp(—E/xT) Y. (xT/E)"(-1)""'n!
n=1
(5)
Thus eq. (4) can be approximated

(B E skT? —E/xT
I(T)~~[E. exp[ xT ~ BE ©

The first term in the square bracket is much larger
than the second term. Furthermore the main vari-
ation of the second term is through the exponen-
tial factor e £/*7. Thus, an approximation in
which the second term is simply written

—s«T? T( 2T )
——c¢ "1 + ...,
BE, 0

is not expected to effect the results very much.
With this change the integration is straightforward
resulting in

_ T 0 a—E /KT
I(T)—-———YAE[exp( ve )

—exp(—v e‘E‘/"T)], (7)
where
skT? 2kT  6k%T?
Y= 1-— + - ...
BE, E, E;

Using these two approximations in deriving
I(T) resulted in practically the same curves pro-
vided that AE was subdivided into a large enough
number of intervals in the first method and for
AE <0.1 eV. Once this was established, the sec-
ond method using eq. (7) was usually employed
since it was appreciably less time-consuming.
However, for AE> 0.1 eV only the method of
dividing AE into a large number of sub-ranges
was judged to yield satisfactory results. An exam-
ple of the calculated results is shown in fig. 3.
Curve (a) represents the calculated peak found
with AE =0.01 eV. This peak looks very much
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Fig. 3. Calculated glow curves for ny =10 cm™3, s=10"
s™!, E;=0.7eV,and (a) AE=0.01¢eV,(b) AE=0.1¢eV.

1

like a “normal” first-order peak as far as its
symmetry properties are concerned. This should,
of course, be expected due to the narrow energy
range, i.e. AE/E=1/70. In curve (b), however,
we have AE = 0.1 eV for which AE/E =1/7. The
resulting peak is much broader than that in curve
(a). The peak became even broader for larger
values of AE. As will be discussed below, this
feature of the peak being broad, in particular at
the high temperature half can be misinterpreted as
indicating a second or higher order kinetics oper-
ating for a single trapping level. The peak shape
characteristics have been studied by computing
TL peaks with different values of the parameters
E,, AE and s. The shape factor p, = 8/w where
8=T,— T, and w =T, — T, where T,, is the max-
imum temperature and 7, and 7, the low and
high half intensity temperatures respectively. It
has been found that p, was rather strongly depen-
dent on AE/E whereas the dependence on AE
and E, separately was insignificant. For example,
taking E;=0.7 eV and AE=0.1 eV resulted in
practically the same value of p, as E;=0.35 eV
and AEF=0.05 eV. For a given value of AE/E,
the results for p, depended only weakly on the
given values of the frequency factor s. The values
of p, as a function of AE/E; with s as a parame-
ter are shown in fig. 4. The same results as a
function of AE/E could of course also be shown.
The reason for the chosen presentation will be-
come evident in the discussion below. The solid
line represents the values of u, for s=10'" s7!
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Fig. 4. The shape factor p, = 8/w as a function of AE/E; for
curves calculated with E,;=0.7 eV, ny =10 cm3, and s=
107 57" in curve (a), s =10'" 57! in (b), and s =10"* s7! in

(©)-

(curve b), whereas curves (a) and (c) show the
dependence of p, on AE/E,, for s=10" s~' and
s=107 s, respectively.

Two methods have been widely used to de-
termine the activation energy distribution. These
are the “initial rise” method, and the Hoogen-
straaten method of various heating rates [14]. In
the original initial rise method, the logarithm of
the TL-intensity [/ is plotted as a function of
(1/T), in the low-temperature region of the glow
curve. The activation energy is evaluated from the
slope of this curve which is expected to be — E/«.
Gobrecht and Hofmann [10] further developed the
technique by using subsequent heating and cool-
ing cycles to obtain the “spectroscopy of traps”.
As shown by Rudolf et al. {9], this procedure does
not yield accurately the correct continuous distri-
bution. Halperin et al. [15] improved the method
by plotting In(//n”) vs. 1/T, where n is the
concentration of electrons still remaining trapped
at temperature T, and b is the effective order of
kinetics (which in our case is unity). We have used
this improved initial rise method for our simulated
glow curves although, strictly speaking, the correc-
tion of dividing by »n (in the first-order case) was
devised for TL peaks resulting from a discrete
energy level. Figure 5 depicts some representative
results. Curve (a) is seen to be a straight line

through a very broad temperature range, which
directly results from the very narrow energy range
used in this case, AE=0.01 eV for E,=0.7 eV.
The activation energy evaluated from the slope is
E.=0.715 eV, within 2% of the mean value. As
shown below, it is evident that having E, > E; has
to do with a slight inaccuracy of the method of
evaluating the activation energy rather than being
a result of the energy range involved. In all the
cases where larger values of AE were utilized in
the simulation of the TL peak, the slope-evaluated
effective energy E. was found to be smaller than
the actual average energy E,. Curve (b) is the plot
on the same scale of I/n when the simulated
curve is calculated with the same s and E, param-
eters but AE = 0.1 eV. After an initial straight-line
portion, the curve bends over as if the order of
kinetics was larger than unity, although at higher
temperatures (lower values of 1/7') the slope in-
creases again. The activation energy evaluated
from the initial straight line is 0.66 eV. In curve
(c). the results for AE=0.2 eV are shown. The
bending over of the curve occurs earlier in 1/7,
but the general behavior is similar to that in curve
(b). The slope of the initial straight line portion
yields an activation energy of E.=0.603 eV. In
this example as well as in other cases studied, the

LN (I/n)
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s4| (b} AE=0.iev
() AE=02ev
2t E=0T7eV 4
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|

o} | 1 l 1 1 1
30 25 30 35 40 45 50 55
0%/7
Fig. 5. Plot of In(I/n) as a function of 1000/7. The given

parameters are s =10'" s7', ny=10""cm ™3, E;=0.7 eV, and
(A) AE=001eV,(b) AE=0.1¢V,and (c) AE=0.2¢eV.
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Fig. 6. Plot of In(8/T2) vs. 1000/T,, for calculated glow

curves with s =10'" s, ny =10 cm™?, E,=0.7 eV, AE=

0.2 eV, and heating rates varying by factors of 2 from 0.125
K/sto8 K/s.

evaluated energy F, is in better agreement with
the low end of the distribution FE, rather than
with E,, the average energy.

The slope of —E_/k which yields the activa-
tion energy has more easily been evaluated by the
use of linear regression of the points of In(Z/n) vs.
1/T. As a by-product, one can get the y-intercept
which, in the simple single-level cases corresponds
to In(Bs). The value obtained for B8s in the pre-
sent study leads to an effective value of s, which
appears to be always lower than the value used in
generating the glow curves. This deviation from
the value of s used in the calculated glow curve
increases for larger values of AE/E,. Typically,

Table 1

for AE=0.2 eV and E,=0.7 eV, the effective
value found was s,=2x107° s~'. Although al-
ways on the lower side, s. is a reasonably good
estimate for s, at least to within an order of
magnitude.

The general heating rate method consists of
running a number of glow curves using different
heating rates B for samples given the same excita-
tion dose. One plots In(8/T2) vs. 1/T, and
evaluates the activation energy from the slope
which is expected to be —FE/k. Figure 6 shows
such a graph found by using different heating
rates in the simulated glow peaks with £, = 0.7 eV
and AE=0.2 eV. The line obtained has a slope
yielding E, =0.603 eV. For AE=0.1 eV and
AE =0.01 eV straight lines were also obtained
using semi-log plots yielding £, = 0.667 and E,,
= (.707, respectively.

4. Discussion

Phosphorescence decay curves and thermo-
luminescence glow curves have been numerically
simulated assuming first-order kinetics and a uni-
form continuous distribution of activation energies
in the energy range AE centered on energy E,. In
the case of phosphorescence, the required width
AE necessary for a broad energy distribution in
order to obtain the ¢! Randall and Wilkins re-
sult, has been tested. Although Randall and
Wilkins obtained the ¢~ ' behavior by assuming a
uniform continuous distribution from zero to
infinity we found practically the same behavior
for a distribution with a width of AE=0.2 eV
with E,=0.7 except for times at the very early
stages of the process. The 1~ ! behavior extends

Shape parameters and calculated activation energies from simulated glow curves relating to a truncated uniform distribution of

activation energies

E AE T, T T, e E, E,
(eV) (eV) (X) (K) (K) (eV) (eV)
0.7 0.01 301.1 3179 330.2 0.423 0.699 0.697
0.7 0.05 298.5 316.3 331.3 0.457 0.691 0.707
0.7 0.10 2914 3114 336.3 0.555 0.684 0.672
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further into the early stages as AFE increases be-
yond 0.2 eV,

It would appear that for activation energy dis-
tributions more or less bell-shaped (including the
truncated uniform distribution), the ¢! depen-
dence sets in when the ratio kT /AE is less than
about 0.15. On the other hand narrow distribu-
tions with k7 /A E greater than about 1 or 2 result
in essentially exponentially decaying phosphores-
cence with time.

It is interesting to compare the present results
for wide distributions generating the essentially
¢t~ behavior of phosphorescence with those ob-
tained by Avouris and Morgan who reported
experimental phosphorescence decay behavior in
Zn,Si0,: Mn as well as theoretical results based
on a model of electrons and holes recombining
through tunneling from shallow traps or from
excited states of deeper traps [11]. It would appear
that one could distinguish between the tunneling
and the continuum models by which direction the
I"' vs. t curve deviates from a straight line at
early times. The tunneling model proposed by
Avouris and Morgan [11] requires a downward or
convex bending curve for small r. However, their
experimental results yield a curve which bends
upward or 1s concave at small ¢ and therefore does
not agree with their model. Rather, the observed
behavior agrees better with the shapes generated
in the present work involving simple first-order
processes. It is to be noted, however, that our
treatment is based on a symmetric distribution of
activation energies. In this respect, it seems plausi-
ble that had we taken another symmetric distribu-
tion, e.g. a Gaussian, a similar time dependence
would have resulted. As for asymmetric distribu-
tions, the expression given by Randall and Wilkins
has been mentioned in the introduction namely
T o =T+ for an exponential distribution with
Ng = Ae *Ed E. This distribution may yield devia-
tions from the straight line that curves either way
depending on whether « is positive or negative.
Although this latter possibility (i.e. a« <0) might
appear unlikely, it could hold for a limited range
of activation energies. It therefore seems that it is
not possible unambiguously to tell the trap distri-
bution model from the tunneling one by merely
studying the decay curves. Considering this prob-

lem from a slightly different point of view, it
appears that the near-t~' time dependence is di-
rectly related to the fact that we sum different
exponential decay curves over a wide range of
time constants. This is also the case in the tunnel-
ing model where the different time constants are
related to the different distances between the donor
and acceptor. These spacings are usually imagined
to span a large range of distances. In the energy
distribution model, the different constants in the
time-dependent exponents are related to the dif-
ferent activation energies. In fact, one can think of
other mechanisms involving different time con-
stants such as a quasi-continuum of recombina-
tion centers with varying recombination probabil-
ity which could also result in a near-t~' depen-
dence.

Concerning the TL glow curves appropriate for
a broad range of activation energies, it is obvious
from the numerical calculations that the main
result is the broadening of the glow peak particu-
larly that of the high temperature half. It is to be
emphasized that our present treatment is limited
to the first-order kinetics which means that possi-
ble retrapping is assumed to be negligible. Work is
underway now which includes such retrapping.
This 1s significantly more complicated since once
retrapping is allowed, a free carrier can retrap to
any level in the continuous range, not necessarily
only to one at the same energy as that at the site it
left. Furthermore, the features described above of
broadening the glow curve due to the distribution
(as compared to a single level), namely, the broad-
ening of the high temperature half of the curve, is
similar to the effect of retrapping on the glow
peak. Therefore, the occurrence of a continuum of
trapping states would result in a peak in which the
presence of retrapping may be masked by the
features related to the continuous distribution of
energies. It is interesting to note that experimental
data resembling curves (b) and (c) of fig. 5 have
been successfully fitted assuming a single trap site
with no spread in activation energies but with the
presence of retrapping [16]. This further em-
phasizes the ambiguities present in TL processes.

Applying the simple methods for evaluating the
activation energy to the simulated peaks with a
range of energies as described above tended to
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yield values which were close to the lower end of
the energy distribution. Concentrating on the
broadest range of 0.2 eV reported above, and a
mean energy E,= 0.7 eV, we found an activation
energy of 0.603 eV for the modified initial rise
method, 0.657 eV for the shape method based on
the low temperature half of the glow peak and
0.603 eV for the various heating rates method. The
main lesson to be learned is that if there is evi-
dence of a distribution of activation energies, e.g.
by the shape of the decay curve and by the breadth
of the glow peak, in particular at the high temper-
ature half, then the activation energy one evaluates
is going to be on the low side of the distribution.
This conclusion may, of course, vary somewhat
with the details of the distribution, but it seems
that such a general rule applies.

Finally, if one encounters a ! decay curve,
the occurrence of a finite uniform distribution of
activation energies should be considered. Particu-
larly if this is accompanied by a TL glow curve
which is unusually broad as indicated by the
calculated shape factor p, with its corresponding
value of the effective ratio AE/E,. In general, the
initial rise activation energy should be evaluated,
and if possible, the different heating rate analysis
should be performed. These two measurements
should yield a reasonable value of E,. The width
AE of the distribution can then be estimated from
curves such as in fig. 4. As explained above, an
estimate of the value of s can also be determined
using the initial rise method. Using this value the
evaluation of AE/E, can be refined by moving to
the left or right of the central curve shown in fig. 4
(with s =100 s7").
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