OSL-thermochronometry of feldspar from the KTB borehole, Germany

Benny Guralnik a,b,c,*, Mayank Jain b, Frédéric Herman d, Christina Ankjærgaard c, Andrew S. Murray e, Pierre G. Valla d, Frank Preusser f, Georgina E. King d, Reuven Chen g, Sally E. Lowick h, Myungho Kook h, Edward J. Rhodes k

a Department of Earth Sciences, ETH, 8092 Zürich, Switzerland
b Centre for Nuclear Technologies, DTU–Risø, Frederiksbergvej 39, Building 201, 4000 Roskilde, Denmark
c Soil Geography and Landscape group and the Netherlands Centre for Luminescence Dating, Wageningen University, Droevendaalsesteeg 3, 6708PB Wageningen, The Netherlands
d Department of Earth Surface Dynamics, University of Lausanne, Geopolis, 1015 Lausanne, Switzerland
e Nordic Laboratory for Luminescence Dating, Aarhus University, Frederiksbergvej 39, Building 201, 4000 Roskilde, Denmark
f Institute of Earth and Environmental Sciences – Geology, University of Freiburg, Albertstr. 23b, 72104 Freiburg, Germany
g Raymond and Beverly Sackler School of Physics and Astronomy, Tel Aviv University, Tel Aviv 69978, Israel
h Institute of Geological Sciences, University of Bern, Baltzerstrasse 1+3, 3012 Bern, Switzerland
i Department of Earth, Planetary, and Space Sciences, UCLA, Los Angeles, CA 90095-1567, USA
j Department of Geography, University of Sheffield, Sheffield S10 2TN, UK

A R T I C L E I N F O

Article history:
Received 15 August 2014
Received in revised form 15 April 2015
Accepted 27 April 2015
Available online 14 May 2015
Editor: A. Yin

Keywords:
low-temperature thermochronology
OSL-thermochronometry
feldspar IRSL
KTB drillhole
geo-thermal gradient
in-situ palaeothermometry

A B S T R A C T

The reconstruction of thermal histories of rocks (thermochronometry) is a fundamental tool both in Earth science and in geological exploration. However, few methods are currently capable of resolving the low-temperature thermal evolution of the upper ~2 km of the Earth’s crust. Here we introduce a new thermochronometer based on the infrared stimulated luminescence (IRSL) from feldspar, and validate the extrapolation of its response to artificial radiation and heat in the laboratory to natural environmental conditions. Specifically, we present a new detailed Na-feldspar IRSL thermochronometry from a well-documented thermally-stable crustal environment at the German Continental Deep Drilling Program (KTB). There, the natural luminescence of Na-feldspar extracted from twelve borehole samples (0.1–2.3 km depth, corresponding to 10–70 °C) can be either (i) predicted within uncertainties from the current geothermal gradient, or (ii) inverted into a geothermal palaeo-gradient of 29 ± 2 °C km−1, integrating natural thermal conditions over the last ~65 ka. The demonstrated ability to invert a depth-luminescence dataset into a meaningful geothermal palaeo-gradient opens new venues for reconstructing recent ambient temperatures of the shallow crust (<0.3 Ma, 40–70 °C range), or for studying equally recent and rapid transient cooling in active orogens (<0.3 Ma, >200 °C Ma−1 range). Although Na-feldspar IRSL is prone to field saturation in colder or slower environments, the method’s primary relevance appears to be for borehole and tunnel studies, where it may offer remarkably recent (<0.3 Ma) information on the thermal structure and history of hydrothermal fields, nuclear waste repositories and hydrocarbon reservoirs.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Many geological processes involving the cooling of rocks are recorded through the accumulation and diffusion of natural radioactivity products in certain rock-forming minerals. By quantifying such products and their associated rates of accumulation and loss, it is possible to constrain a rock’s time-temperature history, and consequently its geological evolution (Reiners and Ehlers, 2005). The recent introduction of Optically Stimulated Luminescence (OSL) dating into the family of low-temperature thermochronometers (Herman et al., 2010; Guralnik et al., 2013) has been motivated by keen interest to resolve the most recent thermal histories of bedrock on sub-Quaternary timescales, where other methods are often insensitive. Together with thermoluminescence (TL) and electron spin resonance (ESR), OSL belongs to ‘trapped charge dating’ (Grün, 2001), an umbrella-term for several methods concerned with quantifying the build-up of free electrical...
charge in crystalline defects and impurities, and the translation of this charge into radiometric ages. The core idea of trapped charge thermochronometry dates back to the mid-1950s, when the first correlations between TL glow-curves and the environmental or palaeoenvironmental temperatures were first noticed and described (Houtermans et al., 1957).

Initially used for meteorite classification (Gröger et al., 1958), luminescence thermochronometry was soon borrowed into diverse contexts including geological ore prospecting (e.g. Lowering, 1958), dating contact metamorphism (e.g. Johnson, 1963) and palaeoclimate reconstruction (e.g. Ronca and Zeller, 1965). The latter theme flourished during the lunar exploration era, enabling the remarkable inference of in-situ temperatures within lunar regolith (Hoyt et al., 1971; Durrani et al., 1977). Further expansion of luminescence thermochronometry into hydrothermal prospecting (e.g. Takahisha, 1979), palaeoseismological inference (e.g. Ikeya et al., 1982), and hydrocarbon exploration (e.g. Ypma and Hochman, 1991), was recently superseded by studies utilising ESR or OSL signals to derive orogenic exhumation rates (Grün et al., 1999; Herman et al., 2010).

Despite its long-standing history, trapped charge thermochronometry has an apparent lack of calibration and/or validation under well-constrained laboratory and natural conditions. Thus, even the most elaborate thermal inversions were partly based on ad-hoc assumptions regarding the kinetics of electron trapping (Ronca and Zeller, 1965), the thermal stability of the electron traps (Hoyt et al., 1971), or the athermal loss pathway (Durrani et al., 1977). With the notable exception of Durrani et al. (1972, 1973), the majority of later studies circumvented the time-consuming determination of laboratory kinetics by adherence to their standard literature values and/or simplifying approximations (e.g. Grün et al., 1999; Herman et al., 2010). Thus, although several studies produced pioneering and insightful qualitative results, their projection onto absolute scales may be seen as subject for further investigation (Guralnik et al., 2013, 2015a).

In the current paper, we calibrate the response of one particular trapped charge signal (the infrared stimulated luminescence from feldspar, hereafter IRSL; Hütte et al., 1988) to radiation and heat under laboratory conditions, and verify the resulting calibration in a well-constrained ‘natural laboratory’ (the KTB borehole; Hirschmann et al., 1997). Our laboratory calibration procedure reintroduces a full signal characterisation (Durrani et al., 1972, 1973), studying in detail the response of all samples to both cumulative radiation and progressive isothermal storage. This laboratory behaviour is then fitted by a composite kinetic model (Huntley, 2006; Guralnik et al., 2015b), utilising only six physical parameters to describe >100 experimental sample-dependent observations. In contrast to previous studies which documented a decrease of TL or ESR with borehole depth (e.g. Ypma and Hochman, 1991; Prokein and Wagner, 1994; Grün et al., 1999), our data and model allow us to perform a formal inversion of IRSL into apparent storage temperatures, and compare those to independently-obtained direct measurements (e.g. Clauser et al., 1997), yielding a satisfactory match. Our paper concludes with a discussion of the sensitivity of the method, confirming the applicability of Na-feldspar IRSL to constrain recent rock palaeotemperatures in the <0.3 Ma, 40–70°C range, which is currently rarely accessible by alternative methodologies.

2. Materials and methods

2.1. Study site and sampled depths

The KTB is a deep scientific drilling borehole in southwestern Germany, penetrating ~9 km of the Variscan crystalline basement (Hirschmann et al., 1997). The repetitive rock column at the KTB (Fig. 1a) consists of intensely folded, foliated, and steeply dipping units of metabasite and gneiss, disclosing a long and discontinuous history of reverse faulting and supracrustal stacking (Wolfe and Stockli, 2010, and references therein). The inferred thermal stability of the site from ~25 Ma onwards (Coyle et al., 1997) offers a unique opportunity to observe various luminescence systems under the simplifying assumption of a natural dynamic equilibrium (Hoyt et al., 1971; Prokein and Wagner, 1994). In the scope of this study, the minor imprint of Pleistocene glaciations on borehole temperatures (<3°C; Clauser et al., 1997) may be safely disregarded in light of our comparable analytical uncertainties. In a previous work, Prokein and Wagner (1994) have qualitatively described a reduction of TL in three KTB quartz samples within a depth range of 0.3–1.8 km. In the present study, we re-sampled a comparable range with an increased resolution: twelve evenly-spaced core samples were obtained from a depth range of 0.1–2.3 km (Fig. 1a and Table 1), corresponding to a thermal window of ca. 10–70°C (Clauser et al., 1997). Our samples included seven gneisses and five amphibolites, whose representative mineralogy is shown in Figs. 1b–c.

Our target depth range (0.1–2.3 km) aimed to characterise the ‘partial retention zone’ (PRZ) of the IRSL thermochronometer, bracketing the region where apparent ages tapp drop from 90% to 10% of their near-surface value (e.g. Reiners and Brandon, 2006). Other thermochronological data from KTB depth of 0.1–2.3 km (Wolfe and Stockli, 2010 and references therein) is characterised by uniform apparent ages of tapp ~370 Ma from hornblende K–Ar and Ar/Ar (Tc ~500°C), tapp ~360 Ma from muscovite K–Ar and Ar/Ar (Tc ~350°C), tapp ~320 Ma from biotite K–Ar and Ar/Ar (Tc ~300°C), tapp ~240 Ma from titanite fission-track (Tc ~240°C), and tapp ~85 Ma from both titanite and zircon (U–Th)/He (Tc ~200°C and ~180°C, respectively), where Tc is the closure temperature of each thermochronometer (Dodson, 1973; Reiners and Brandon, 2006). While the two lowest-temperature systems do exhibit a significant age decrease within the 0.2–2.3 km depth range, with apatite fission-track ages reducing from ~70 Ma to ~50 Ma (Tc ~120°C; Coyle et al., 1997), and apatite (U–Th)/He ages from ~55 Ma to ~22 Ma (with an abnormally high Tc ~90 ±20°C; Warnock et al., 1997), this depth brackets only the top portions of their inferred partial retention zones at the KTB (Warnock et al., 1997), thus leaving the search for alternative systems with a shallower PRZ still open.

2.2. Sample preparation and luminescence instrumentation

While the intended target mineral of this study was initially quartz (cf. Prokein and Wagner, 1994; Herman et al., 2010), the observed quartz OSL was dim and further heavily overprinted by feldspar luminescence from intergrowths or inclusions (Guralnik et al., 2015a). However the feldspar IRSL measured at 50°C (hereafter IRSL50) exhibited familiar characteristics, and so we adopted the latter as a valid alternative to quartz OSL (Wallinga et al., 2000; Buylaert et al., 2011; Sohbat, 2013). Initially considering the increasingly popular elevated stimulation temperature protocols (e.g. Li and Li, 2011; Buylaert et al., 2012), the post-IR IRSL290 of both the uppermost and the lowestmost samples was found in field saturation, precluding further investigation of post-IR IRSL signals.

For luminescence measurements, light-unbleached feldspar crystals from the inside of each core sample were extracted by standard laboratory procedures (Supplementary Figure and Table S1), and mounted on stainless steel discs to produce large (4–6 mm) aliquots. All IRSL measurements were performed on automated Risø TL/OSL DA-15/20 readers, each possessing a 90Sr/90Y beta source (0.1–0.3 Gy s−1) and a heater plate (20–650°C) calibrated to within systematic uncertainties of <4% and <1%, respec-
Fig. 1. (a) Schematic lithological column at the KTB (after Hirschmann et al., 1997), and sampled core depths. (b–c) Representative thin sections of an amphibolite (b) and a gneiss (c), showing a single view-field displayed half in plain (PPL), and half in cross-polarised (XPL) light. Gt – garnet, Hb – hornblende (amphibole), Qz – quartz, Fs – feldspar, Ab – albite, Bi – biotite, Sil – sillimanite.

Table 1 Overview of samples used in this study.

<table>
<thead>
<tr>
<th>Sample ID</th>
<th>Whole-rock radiochemistry</th>
<th>Aliquot mineralogy</th>
<th>Natural dose rate d</th>
</tr>
</thead>
<tbody>
<tr>
<td>Depth (km)</td>
<td>U (ppm)</td>
<td>Th (ppm)</td>
<td>K (wt.%)</td>
</tr>
<tr>
<td>0.146</td>
<td>0.5</td>
<td>1.6</td>
<td>0.90</td>
</tr>
<tr>
<td>0.334</td>
<td>1.3</td>
<td>1.7</td>
<td>0.38</td>
</tr>
<tr>
<td>0.566</td>
<td>2.2</td>
<td>9.3</td>
<td>1.49</td>
</tr>
<tr>
<td>0.726</td>
<td>3.2</td>
<td>7.3</td>
<td>1.24</td>
</tr>
<tr>
<td>0.911</td>
<td>2.4</td>
<td>9.0</td>
<td>1.83</td>
</tr>
<tr>
<td>1.175</td>
<td>0.8</td>
<td>2.1</td>
<td>1.25</td>
</tr>
<tr>
<td>1.300</td>
<td>1.4</td>
<td>3.3</td>
<td>0.48</td>
</tr>
<tr>
<td>1.499</td>
<td>1.3</td>
<td>4.2</td>
<td>0.44</td>
</tr>
<tr>
<td>1.730</td>
<td>2.5</td>
<td>7.7</td>
<td>1.72</td>
</tr>
<tr>
<td>1.892</td>
<td>2.6</td>
<td>8.9</td>
<td>2.42</td>
</tr>
<tr>
<td>2.097</td>
<td>2.7</td>
<td>8.7</td>
<td>2.34</td>
</tr>
<tr>
<td>2.329</td>
<td>2.5</td>
<td>7.8</td>
<td>2.38</td>
</tr>
</tbody>
</table>

a Samples were obtained at the borehole location (49.83°N, 12.12°E, 513 masl), through GEO-Zentrum an der KTB (Am Bohrturm 2, D-92670 Windischeschenbach, Germany). Samples 19B through 383C are from core subsection VB1, and 428B through 564A from VB1a. Depth corresponds to ‘true vertical depth’ (±0.5 m accuracy). Sample lithology is from on-site drilling logs, further confirmed by thin-section study under a polarising microscope.

b Whole-rock elemental concentrations as measured on a Perkin Elmer Scien EXEL 6100/9000 ICP-MS, with an estimated analytical precision of 3.9% (U and Th) and 1.3% (K). See Supplementary Figures and Tables S2–S3 for full geochemical report.

c Aliquot-specific mineralogy (Qz = SiO₂, Ab = NaAlSi₃O₈, An = CaAl₂Si₂O₈, Or = KAlSi₃O₈) as measured using an XRF attachment to the Riso TL/OSL reader, with an estimated analytical precision of 7%. See Supplementary Figure and Table S4 for full XRF report.

d Natural dose rates of feldspars were calculated using the standard conversion factors of Guérin et al. (2012), and include whole-rock radioactivity due to U, Th and K, alongside the internal radioactivity of feldspar due to $k_{int} = D(\text{Al} + \text{An} + \text{Or}) 	imes 145$. Water content was estimated for all samples as ±2%, while contributions from alpha and cosmic radiation were considered negligible. The reported dose rates are assigned a conservative uncertainty of 15% (see text).

Luminescence was detected by a photomultiplier tube (EMI QA 9235) situated behind a combination of a 2-mm Schott BG39 and a 4-mm Corning 7-59 filters.
2.3. Sample chemistry and natural dose rates

Whole-rock chemistry of the twelve samples was determined using inductively-coupled plasma mass spectrometry (Supplementary Figures and Tables S2–S3), of which the dominant radionuclides are listed in Table 1 (U, Th and K). aliquot-specific mineralogy was further assessed by an X-ray fluorescence (XRF) attachment to the Risø TL/OSL reader (Supplementary Figure and Table S4), with mineralogical breakdown to end-members also listed in Table 1 (Qz, Ab, An, and Or). Despite a considerable contamination by any red wt. on average), further purification of feldspar was deemed unnecessary as the contribution of quartz to luminescence signals used in feldspar IRSLS dating is negligible (Sohbati et al., 2013 and references therein). Since K-feldspar is extremely rare in the KTB borehole (e.g. Warnock and Zeitler, 1998), and was further uncommon in our analysed thin-sections, we interpret that the analysed feldspars (~Ab70An20Or10 on average) were predominantly a solid-solution Na-feldspar spanning between anorthoclase and oligoclase, and not a mixture of discrete phase end-members. However, rare occurrences of K-feldspar veins and inclusions, as noted in thin-section analysis, were also taken into our dosimetric consideration as described next.

Whole-rock radionuclide concentrations U, Th, K, and the internal potassium Kint from within feldspar itself (as estimated from the Or/(Ab + An + Or) ratio) were converted into sample-specific environmental dose rates using standard conversion factors (Guérin et al., 2012) as follows. In general, the natural dose rates at the KTB fall on the lower end of natural radioactivity in crystalline bedrock, enabling a standard dating range of ~0.3 Ma as in common sedimentary environments (e.g. Buylaert et al., 2011 and references therein). For each KTB sample, the natural dose rate D (last column in Table 1) has been calculated as an arithmetic average over four extreme dose rate scenarios D1−D4 (Supplementary Figure and Table S5), where D1 is a solid-solution AbxAnyOrz (with x, y, and z from Table 1) with grain diameter φ = 0.1 mm, D2 as above with φ = 2.5 mm, D3 a pure K-feldspar phase (Or100) with φ = 1 μm, and D4 as above with φ = 100 μm. Such scenario diversity arises from a combination of two factors: (i) the uncertainty in the grain size preferentially by crushing a crystalline rock (compared to a more sorted grain-size in sedimentary environments), and (ii) the uncertainty regarding which feldspar phase is the actual IRSLS emitter (e.g. Sohbati et al., 2013). While our thermochronometric inference remains virtually unchanged for any of the above scenarios (Supplementary Figure and Table S9), we believe that the average-scenario dose rate D, further assigned a generous error of 15% (corresponding to the average scatter in the Or/(Ab + An + Or) ratio as determined by XRF), is a guiding representative value which firmly encompasses all of the envisaged dosimetric possibilities.

3. Luminescence response to radiation and heat

3.1. The principle of luminescence dating

Luminescence dating utilises the natural capacity of some lattice defects and impurities to cumulatively store free electrical charge as continuously produced by environmental radiation. Application of heat or light to a crystal with trapped charge results in the emission of TL or OSL, respectively. An atomic-scale description of luminescence may be illustrated by considering two simple defects in an alkali halide lattice (blue and red spheres in Fig. 2), corresponding to two oppositely charged ‘traps’. A quantum of ionising energy (incident black wave in Fig. 2a) may displace an electron from its valence bond, setting the electron and its counterpart ‘hole’ in motion until they are decelerated by the electromagnetic fields of oppositely-charged defects encountered on their way. While trapped holes remain generally immobile (Chen and Pagonis, 2011), trapped electrons can often be remobilised again, either by application of external energy such as heat (depicted in Fig. 2b), light, or through a purely spontaneous process of quantum-mechanical tunnelling (Huntley, 2006), the latter typically occurring in low-order crystallographies including feldspar. Fig. 2b illustrates the detrapping of an electron due to lattice vibrations at an elevated temperature, which remobilises the electron and sets it in motion until it either re-traps or recombines with a trapped hole, while in the latter case emitting a luminescent photon (black wavelet in Fig. 2b). Assuming negligible re-trapping of electrons once optically excited from their traps, the luminescence light sum L may be regarded as a proxy for the number of trapped electrons n, i.e. L ∝ n (Chen and Pagonis, 2011), and hence for the duration of the mineral’s exposure to ionising radiation since the trap was last emptied (Aitken, 1998).

3.2. Characterisation of luminescence behaviour in the laboratory

The slow accumulation and emptying of electron traps in a mineral in nature can be studied under laboratory-accelerated conditions using artificial sources of radioactivity and heat, relying...
Table 2

<table>
<thead>
<tr>
<th>Radiation response (SAR methoda)</th>
<th>Isothermal response (Short-shine methodb)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Give dose Ds1</td>
<td>1. IRLS at 290 °C for 200 s</td>
</tr>
<tr>
<td>2. Preheat (5 °C s⁻¹) to 250 °C, hold for 60 s</td>
<td>2. Give test dose Dtest</td>
</tr>
<tr>
<td>3. IRLS at 50 °C for 200 s t₁</td>
<td>3. Preheat (5 °C s⁻¹) to 250 °C, hold for 60 s</td>
</tr>
<tr>
<td>4. Give test dose Dtest</td>
<td>4. Hold at 7 °C for t₂ s</td>
</tr>
<tr>
<td>5. Preheat (5 °C s⁻¹) to 250 °C, hold for 60 s</td>
<td>5. IRLS at 50 °C for 0.1 s t₃</td>
</tr>
<tr>
<td>6. IRLS at 50 °C for 200 s t₄</td>
<td>6. Return to step 4</td>
</tr>
<tr>
<td>7. IRLS at 290 °C for 200 s t₅</td>
<td>7. IRLS at 290 °C for 200 s</td>
</tr>
<tr>
<td>8. Return to step 1</td>
<td>8. Give test dose Dtest</td>
</tr>
<tr>
<td></td>
<td>9. Preheat (5 °C s⁻¹) to 250 °C, hold for 60 s</td>
</tr>
<tr>
<td></td>
<td>10. IRLS at 50 °C for 0.1 s t₆</td>
</tr>
<tr>
<td></td>
<td>11. Return to step 10</td>
</tr>
</tbody>
</table>

a Adapted from Wallinga et al. (2000). The target irradiation doses were D = [0.002, 0.04, 0.08, 0.16, 0.32, 0.64, 1.28, 2.56, 0.004] kGy, and the test dose was Dtest = 0.04 kGy; corresponding irradiation times were calculated via tᵢ = Dᵢ/D, where D is the laboratory dose rate (instrument-specific). For samples near saturation, ~5 and ~10 kGy doses were further administered to better characterise Lapp/ΔQapp. The first and the penultimate zero-doses (no irradiation) extract the natural dose (stars in Fig. 3a) and signal recuperation, respectively. Lₐ and Lₜ are derived by integrating the first 100 s (signal) and the following 100 s (background) of the stimulation curve.

b Adapted from Auclair et al. (2003). For high-temperature experiments (T = 170, 190 and 210 °C), the test dose was Dtest = 0.03 kGy, and the holding times were tᵢ = 10 × 2ⁿ⁻¹, where n = [−∞, 0, 1, 2, …, 10]. For the room-temperature experiments (T = 15 °C), Dtest = 0.05 kGy, and tᵢ = tₛ in 10⁻⁴⁻⁵⁻¹, where n = [1, 2, 3, 4, 5, 6, 7]. Lₐ and Tₛ are derived by integrating the entire stimulation period of 0.1 s minus a background of 20 ms immediately following LED turn-off.

Note: The normalised luminescence f in the vertical axis of Figs. 3a and 3b corresponds to arbitrarily scaled Lₐ/Tₛ data (for presentational purposes).

on the fundamental geochronometric assumption that the system behaviour is governed by the same physical laws across many orders of magnitude of kinetic rates (e.g. Reiners and Ehlers, 2005; Chen and Pagonis, 2011). To determine the growth of feldspar IRLS₅₀ as a function of cumulative irradiation, we used a common modification of the Wallinga et al.’s (2000) Single Aliquot Regenerative-dose (SAR) protocol for feldspar IRLS₅₀ (Table 2, left column). In the scope of this study, the minor systematic effect of irradiation temperature on the ionisation cross section of feldspar IRLS₅₀ (<10% effect in the 0–80 °C range; Wallinga et al., 2002) was not considered significant due to the logarithmic relationship between dose rate and apparent palaeotemperature (Hoyt et al., 1971; Guralnik et al., 2013). Thus, all samples were irradiated at room temperature as in standard feldspar IRLS dating, leaving the assessment of minor effects due to elevated-temperature irradiation for more technical studies in the future. To determine the decrease of luminescence as a function of cumulative isothermal storage, we replaced the SAR fading protocol of Murray et al. (2009) with the short-shine isothermal decay experiment of Auclair et al. (2003), favouring the latter time-saving procedure (Table 2, right column) in light of indistinguishable data obtained by both methods during preliminary testing. Aiming to constrain the mirroring effects of electron trapping and detrapping across the widest experimentally-feasible time domain, both protocols in Table 2 were adjusted to sample the luminescence response evenly across 3–4 orders of magnitude of time. Standard quality criteria included rejection of a few self-inconsistent measurements, in which dose recycling and/or dose recovery deviated from unity by more than 10% (e.g. Buylaert et al., 2011, and references therein).

Representative Na-feldspar IRLS₅₀ response to radiation and isothermal storage is shown for sample 481B in Fig. 3a–b. The assessment of the radiation-response (Fig. 3a) begins with the measurement of the sample’s natural luminescence L₀ (stars in Fig. 3a), after which a series of laboratory-regenerated luminescence intensities f is measured for increasing doses (circles in Fig. 3a). Figure 3a contains SAR data for three different aliquots of the same sample, each measured on a different luminescence reader (hence the different laboratory dose rates quoted in the figure). The demonstrated accuracy of ~5% of the SAR protocol in recovering known dose from all samples (Supplementary Figure and Table S7) increased our confidence, that the natural luminescence light-sums (stars in Fig. 3a) may be trusted to obtain radiometric ages and/or palaeotemperatures. The mirroring process of isothermal response (Fig. 3b) was measured only on one aliquot per sample (due to excellent reproducibility across aliquots), monitoring the decay of laboratory-regenerated luminescence as a function of cumulative storage times at 15 °C, 190 °C, 210 °C and 230 °C, respectively.

3.3. Kinetic model of luminescence response

To quantitatively describe luminescence response in the laboratory (Figs. 3a–b, and Supplementary Figures and Tables S6-1 through S6-12), we consider the trapping of n electrons in N available traps (Hoyt et al., 1971); the traps have the characteristic dose D₀ [Gy], the Arhenius parameters E [eV] and s [s⁻¹], and are binned by their separation distance r’ [dimensionless] to their nearest-neighbouring hole (Huntley, 2006). Denoting n(r’)/N(r’) as the fraction of occupied traps at a given electron-hole separation distance, we can express the current electron trapping and detrapping via:

$$\frac{\partial n(r’)}{\partial t} = \frac{\hat{D}}{D_0} \left[1 - n(r’) \right] α - se^{−E/k₆T} [n(r’)] β - se^{−\rho’⁻¹/3r’} [n(r’)]$$

(1)

where t [s] and T [K] are time and temperature, \hat{D} [Gy/s⁻¹] the ionising dose rate, $\rho’$ [dimensionless] the scaled density of the hole centres, α and β [dimensionless, ≥1] the kinetic orders of trapping and detrapping (Guralnik et al., 2015b), and k₆ [eV K⁻¹] is Boltzmann’s constant. The first right-hand side (RHS) term in Eq. (1) links the trap filling rate to the fraction of unoccupied traps, 1–n(r’); the second and third RHS terms link the rates of the thermal and athermal trap emptying to the relative trap occupancy itself, n(r’). All model constants governing electron trapping and detrapping are further listed and explained in Table 3, alongside their representative averages across all KTB samples studied here.

To obtain the instantaneous total trap filling n(t) in the entire crystal, the solution of Eq. (1) is typically summed over ~100 equally-spaced separation distances 0 < r’ < 2 (cf. Kars et al., 2008):

$$\hat{n}(t) = \sum_{r’} n(r’, t) × 3(r’)^2 \exp\left[−(r’)^3\right]$$

(2)
Table 3
Kinetic model parameters of the Na-feldspar IRSL$_{50}$ thermochronometer.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>KTB average ±1σ</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>\dot{D}</td>
<td>Ionising dose rate</td>
<td>2.4 ± 1.0 Gy ka$^{-1}$</td>
<td>Gy ka$^{-1}$ (nature) or Gy s$^{-1}$ (laboratory)</td>
</tr>
<tr>
<td>D_0</td>
<td>Characteristic ('saturation') dose</td>
<td>213 ± 54</td>
<td>Gy</td>
</tr>
<tr>
<td>α</td>
<td>Kinetic order of electron trapping</td>
<td>1.7 ± 0.1</td>
<td>eV</td>
</tr>
<tr>
<td>s</td>
<td>Thermal activation energy</td>
<td>1.7 ± 0.1</td>
<td>eV</td>
</tr>
<tr>
<td>β</td>
<td>Attempt-to-escape frequency</td>
<td>$10^{14}±5×10^{6}$</td>
<td>s$^{-1}$</td>
</tr>
<tr>
<td>ρ'</td>
<td>Kinetic order of thermal electron detrapping</td>
<td>2.6 ± 0.3</td>
<td>–</td>
</tr>
<tr>
<td>ρ'</td>
<td>Scaled hole density</td>
<td>$10^{-6}±10^{9}$</td>
<td>–</td>
</tr>
</tbody>
</table>

Reported values summarise the KTB best-fit parameters (columns 4–9 of Table 4).

Fig. 3. Representative laboratory luminescence measurements collected by protocols listed in Table 2, here illustrated for sample 4R1B: (a) The normalised IRSL$_{50}$ response of the crystal due to increasing exposure to ionising irradiation shown for three different laboratory dose rates (circles represent regenerated dose points, stars correspond to the natural signal). (b) The normalised decay of IRSL$_{50}$ of a single aliquot following its exposure to isothermal heat at 15, 190, 210, and 230°C. All the >100 experimental data points (solid circles in a and b) can be fitted with Eqs. (1)–(2) (thin lines and shaded 95% confidence interval contours) using only six model parameters (listed in Tables 3–4). (c) Projection of the measured natural trap filling (n/N)$_{nat}$ (vertical distribution in hollow blue) onto the joint distribution of modelled age-concentration pairs (t, n/N) (grey-scale probability field, corresponding to $\sim 10^9$ Monte Carlo randomised instances) produces the apparent age t_{app} (horizontal distribution in filled blue). (d) Observed values $T_{in-situ}$ and (n/N)$_{nat}$ (top and left hollow distributions, respectively) are projected onto the modelled temperature–concentration pairs (T, n/N) (grey-scale probability field) to obtain model prediction for the trap filling at thermal steady-state (n/N)$_{ss}$ (red filled distribution on the right), and the model inversion of the apparent storage temperature T_{app} (blue filled distribution at the bottom). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Eq. (1) with $\alpha = \beta = 1$, $\rho' \to 0$; conversely, solving Eqs. (1)–(2) with $\alpha = 1$, $E \to \infty$ replicates the fading model of Kars et al. (2008). While a similar treatment to Eqs. (1)–(2) has previously only been found in Durrani et al. (1977), we believe that the adopted rate equations are a generalised formulation of a long-accepted theory.

Sample-specific kinetic parameters were obtained by non-linear least square fitting of the laboratory-regenerated IRSL$_{50}$ signals in which $3(r')^2\exp[-(r')^3]$ is the probability of r' to occur in the crystal (Huntley, 2006). Eqs. (1)–(2) represent a straightforward combination of (i) the general-order reformulation (Guralnik et al., 2015b) of the classical first-order luminescence kinetics (Hoyt et al., 1971), and (ii) the athermal loss model of Huntley (2006). Note that under simplifying assumptions, Eqs. (1)–(2) reduce to familiar cases: the first-order kinetic model shared by all trapped charge methods (Guralnik et al., 2013) may be obtained by solving
<table>
<thead>
<tr>
<th>Depth (km)</th>
<th>0.146</th>
<th>0.334</th>
<th>0.566</th>
<th>0.726</th>
<th>0.911</th>
<th>1.175</th>
<th>1.300</th>
<th>1.499</th>
<th>1.730</th>
<th>1.892</th>
<th>2.097</th>
<th>2.329</th>
</tr>
</thead>
<tbody>
<tr>
<td>ID</td>
<td>19B</td>
<td>48B</td>
<td>105B</td>
<td>146A</td>
<td>218A</td>
<td>253F</td>
<td>273G</td>
<td>314B</td>
<td>383C</td>
<td>428B</td>
<td>481B</td>
<td>564A</td>
</tr>
<tr>
<td>L_{Nat}/L_{Labmax}</td>
<td>0.80 ± 0.04</td>
<td>1.00 ± 0.05</td>
<td>0.87 ± 0.04</td>
<td>0.54 ± 0.03</td>
<td>0.63 ± 0.03</td>
<td>0.42 ± 0.03</td>
<td>0.38 ± 0.04</td>
<td>0.19 ± 0.03</td>
<td>0.36 ± 0.06</td>
<td>0.34 ± 0.02</td>
<td>0.22 ± 0.04</td>
<td>0.13 ± 0.01</td>
</tr>
<tr>
<td>D_0 (Gy)</td>
<td>171</td>
<td>82</td>
<td>179</td>
<td>259</td>
<td>241</td>
<td>235</td>
<td>201</td>
<td>298</td>
<td>200</td>
<td>225</td>
<td>229</td>
<td>236</td>
</tr>
<tr>
<td>α</td>
<td>1.81</td>
<td>1.79</td>
<td>1.83</td>
<td>2.10</td>
<td>1.74</td>
<td>1.72</td>
<td>1.72</td>
<td>1.58</td>
<td>1.73</td>
<td>1.73</td>
<td>1.73</td>
<td>1.74</td>
</tr>
<tr>
<td>log_{10}s (s in s⁻¹)</td>
<td>3.28</td>
<td>3.06</td>
<td>2.37</td>
<td>2.72</td>
<td>2.54</td>
<td>2.44</td>
<td>2.42</td>
<td>2.90</td>
<td>2.35</td>
<td>2.39</td>
<td>2.51</td>
<td>2.49</td>
</tr>
<tr>
<td>β</td>
<td>0.89</td>
<td>0.58</td>
<td>-0.17</td>
<td>-0.55</td>
<td>-0.68</td>
<td>-0.57</td>
<td>-0.54</td>
<td>-0.30</td>
<td>-0.87</td>
<td>-0.86</td>
<td>-0.82</td>
<td>-0.76</td>
</tr>
</tbody>
</table>
| Data for Table 4: Natural luminescence levels, best-fit kinetic parameters, and apparent ages of feldspar IRSLS₅₀.

(iii) negligible trapping and thermal detrapping (\(\tilde{D} = 0, \, E \to \infty \)) during the room-temperature isothermal holding (fading).

The above standard assumptions enable us to simultaneously fit all the SAR data using Eq. (10) in Guralnik et al. (2015b), all the high-temperature isothermal holding experiments using Eq. (11) in Guralnik et al. (2015b), and all the room-temperature fading using Eq. (7) in Huntley (2006), with s taken from the high-temperature best-fit.

The best-fit parameters for sample 481B are quoted in Fig. 3a and 3b. The obtained characteristic dose of \(D_0 = 229 \pm 9 \) Gy, and the Arrenius parameters \(E = 1.73 \pm 0.04 \) eV and \(s = 10^{14.52 \pm 0.47} \) s⁻¹ fall within their familiar ranges for feldspar IRSLS₅₀ (e.g., Murray et al., 2009; Sohbati et al., 2013; Guralnik et al., 2015b, and references therein). Both kinetic orders \(\alpha = 1.65 \pm 0.16 \) and \(\beta = 2.51 \pm 0.09 \) fall within familiar ranges, indicating an appreciable departure from first-order behaviour when the electron traps are nearly empty or nearly full (Guralnik et al., 2015b). Finally, the electron-hole density of \(\rho' = 10^{-5.82 \pm 0.09} \) is comparable to that reported by Kars et al. (2008) and studies cited it. The combined coefficient of determination for the entire fit (\(R^2 = 0.99 \)) increases our confidence in further extrapolating these experimental kinetic parameters to natural conditions (where electron trapping and detrapping occur \~10 orders of magnitude slower than in the laboratory). The natural luminescence and best-fit kinetic parameters for all twelve depth samples are listed in Table 4, suggesting a rather universal kinetic behaviour of Na-feldspar IRSLS₅₀ signals regardless of their depth, parent lithology, or feldspar mineralogy (see also Supplementary Figure and Table S10).
Eq. (3)), our obtained \(t_{\text{app}} \) are conceptually identical to the fading-corrected ages derived from the Kars et al. (2008) model: correspondingly, our inverted storage temperatures \(T_{\text{app}} \) are similarly ‘fading-corrected’ (cf. Durrani et al., 1977).

To propagate all the uncertainties in \(\hat{D}, \hat{D}_0, \alpha, E, s, \beta, \rho \) and \(\rho' \) of a particular sample into the numerical solution of its \(t_{\text{app}} \) and \(T_{\text{app}} \), we used Monte Carlo simulations with randomised input. Generating \(\sim 10^6 \) randomised realisations of the natural dose rate \(\hat{D} \), and the best-fit kinetic parameters \(D_0, \alpha, E, s, \beta, \rho \) and \(\rho' \) of a particular sample (fitting covariances preserved after Iman and Conover, 1982), we subject each randomised input to (i) an athermal \((E \rightarrow \infty)\) instance of Eqs. (1)–(2) for a random time of \(1 \) ka \(\leq t \leq 10 \) Ma, and (ii) a thermal steady state \((t \rightarrow \infty)\) instance of Eqs. (1)–(2) for a random temperature of \(0^\circ \text{C} \leq T \leq 120^\circ \text{C} \).

The \(\sim 10^6 \) simulations of \((t, n/N)\) and \((T, n/N)\) for sample 481B are visualised as two probability density fields in Figs. 3c and 3d, respectively, the darkest shades corresponding to the highest occurrence of simulated values. To obtain the apparent age, we project the natural trap filling \((n/N)_{\text{nat}}\) onto the joint distribution of simulated \((t, n/N)\) values to obtain an estimate of \(t_{\text{app}} \) (blue arrow in Fig. 3c). The apparent storage temperature is similarly derived by projecting \((n/N)_{\text{nat}}\) onto \((T, n/N)\) to obtain an estimate of \(T_{\text{app}} \) (blue arrow in Fig. 3d). Finally, by projecting a known storage temperature \(T_{\text{in-situ}}\) onto \((T, n/N)\), the expected trap filling level at a thermal field steady-state \((n/N)_{\text{ss}}\) is obtained (red arrow in Fig. 3d). All estimated distributions \((t_{\text{app}}, T_{\text{app}}, (n/N)_{\text{ss}})\) were fitted with asymmetrical Gaussian peaks and are reported accordingly in Table 4.

The top five samples appear to be in field-saturation (see Supplementary Figure and Table S8), and for those we obtained conservative minimum ages \(t_{\text{min}} \) (the so-called ‘2D0 ages’: thin crosses in Fig. 4a) and maximum storage temperatures \(T_{\text{max}} \) (thin crosses in Fig. 4b) by projecting \(0.85 \times n(t \rightarrow \infty)/N \) values instead of \((n/N)_{\text{nat}}\) onto the respective probability density fields (Guralnik et
al., 2015a and references therein). Note that although such minimum ages and maximum temperatures (thin crosses in Fig. 4, and “>” or “<” values in Table 4) do yield useful limiting values, these boundary estimates cannot be directly compared to the rest of the finite age/temperature dataset, thus justifying the different notation and the different graphical symbols for the two groups.

4. Validation of the feldspar IRSL50-themochronometer at the KTB

The apparent \(t_{\text{app}} \) and minimum \(t_{\text{min}} \) ages (solid squares and thin crosses in Fig. 4a), and the apparent \(T_{\text{app}} \) and maximum \(T_{\text{max}} \) storage temperatures (solid squares and thin crosses in Fig. 4b) for the twelve borehole samples may be evaluated against other available data to derive key observations as follows:

(i) Na-feldspar IRSL50 apparent \(t_{\text{app}} \) and minimum \(t_{\text{min}} \) ages are 2–4 orders of magnitude younger than the finite ages from the apatite (U–Th)/He and fission-track systems (red, green and blue symbols in Fig. 4a).

(ii) The shallowest five samples (the top \(\sim 1 \) km) appear in field saturation (Huntley and Lian, 2006; also see Supplementary Figure and Table S8), giving rise to only \(t_{\text{min}} \) and \(T_{\text{max}} \) estimates. These set useful limiting values but cannot be directly compared to the other finite ages/temperatures. The limiting age and temperature are \(t_{\text{min}} = 0.28 \pm 0.06 \) Ma and \(T_{\text{max}} = 42 \pm 3 \) °C (top 1 km average), comparing well with the conservative dating limit of feldspar IRSL (e.g. \(\sim 0.3 \) Ma in Bulyaert et al., 2011), and with the thermal sensitivity threshold of quartz OSL themochronometry (e.g. \(\sim 50 \) °C for the fast component; see Fig. 3b in Guralnik et al., 2015a).

(iii) The seven deepest samples (>1.1 km depth) are characterised by apparent ages dropping from \(t_{\text{app}} \approx 200 \) ka at 1.1–1.5 km to \(t_{\text{app}} \approx 10 \) ka at 2.3 km, and by a mirroring trend in the apparent temperatures increasing from \(T_{\text{app}} \approx 40 \) °C at 1.1–1.5 km to \(T_{\text{app}} \approx 75 \) °C at 2.3 km. Linear regressions through these data place the partial retention zone (PRZ) of Na-feldspar IRSL50 at \(\sim 40–65 \) °C (Fig. 4a), and recover a geothermal palaeogradients of \(dt/dz = 29 \pm 2 \) °Ckm\(^{-1}\) with an apparent surface temperature of \(T_0 = 5 \pm 4 \) °C (Fig. 4b). This inverted palaeogradients agrees well with direct long-term temperature monitoring (\(dt/dz = 27.5 \pm 1.5 \) °C and \(T_0 = 7.5 \pm 1.2 \) °C in Clauser et al., 1997) as well as with other themochronometric data (e.g. Coyle et al., 1997), but raises the question over what timescale the inverted palaeogradients is valid. To make a conservative estimate across samples with different equilibration times (roughly proportional to \(t_{\text{app}} \)), we report the log-average of their corresponding IRSL50 ages as the minimal period (the last \(\sim 65 \) ka), over which the inverted palaeogradients is believed to be representative.

The extrapolation of laboratory kinetics to natural conditions is further examined and verified in Figs. 4c–d. Figure 4c shows that if we assume that the present-day geothermal gradient remained unchanged in the last \(\sim 1 \) Ma, the observed natural trap filling levels (\(n/N \)nat) in all twelve depths are within analytical error of their model predictions at thermal steady state (\(n/N \)SS). Conversely, but still assuming thermal steady-state conditions at the borehole, all the successfully inverted apparent temperatures \(T_{\text{app}} \) are shown to overlap with their present day temperature, \(T_{\text{in-situ}} \) (Fig. 4d). The top five samples categorised as in field saturation (Supplementary Fig. and Table S8), correctly yield \(T_{\text{max}} \) which within uncertainties are all higher than the modern in-situ temperatures, rendering these conservative estimates as correct.

5. Applicability in diverse geological environments

Following the demonstrated validity of extrapolating the laboratory kinetics of Na-feldspar IRSL50 to natural conditions, we proceed to explore the temperatures, timescales and rates on which Na-feldspar IRSL50 can resolve ambient or transient thermal histories. For all subsequent simulations, we consider a representative Na-feldspar IRSL50 behaviour by using the KTB-average kinetic parameters as reported in Table 3.

We begin by approximating thermal equilibrium conditions by simulating a 1 Ma isothermal storage in a synthetic borehole, and compare Na-feldspar IRSL50 ages to equivalent predictions for apatite (U–Th)/He and fission-track systems (Fig. 5a). The thin segment of IRSL50 ages is conservatively considered beyond the reliable dating limit (due to field saturation; Huntley and Lian, 2006). The transition between a dateable and field-saturated Na-feldspar IRSL50 system (right annotated corner in Fig. 5a) corresponds to a storage temperature of \(32 \) °C and an apparent age of \(0.33 \) Ma. This implies that theoretically, feldspar IRSL50 apparent ages and storage temperatures may be extracted from conditions where ambient temperature exceeds \(32 \) °C, i.e. typically \(>1 \) km depth, which is in broad agreement with the experimental results in Fig. 4a–b.

The response of the Na-feldspar IRSL50 themochronometer to monotonic cooling is studied next through the ‘closure temperature’ concept (Dodson, 1973; Guralnik et al., 2013). Closure temperatures \(T_C \) of the Na-feldspar IRSL50 system (numerically evaluated using Eq. (5) in Guralnik et al., 2013 for \(T_F = 0 \) °C) are shown in Fig. 5b alongside the conservative estimates of \(T_C \) in apatite (U–Th)/He and fission-track systems (calculated using representative Archronus parameters; see caption to Fig. 5). The threshold between a dateable and field-saturated Na-feldspar IRSL50 system (right annotated corner in Fig. 5b) is a cooling rate of \(190 \) °C Ma\(^{-1}\), corresponding to a closure temperature of \(T_{C, 190} = 53 \) °C. Na-feldspar IRSL50 systems cooling faster would be dateable when emerged at a surface of \(T_F = 0 \) °C; those cooling slower will provide only limiting values (\(t_{\text{min}} \approx 0.33 \) Ma or \(T_{\text{max}} \approx 32 \) °C). Note that since the cooling rate threshold is a function of the final cooling temperature, \(T_F \) (Guralnik et al., 2013), an elevated \(T_F \) of 40 °C would theoretically shift the detectability threshold down to \(\sim 100 \) °C Ma\(^{-1}\). Note, that although for the baseline cooling rate of \(10 \) °C Ma\(^{-1}\), the closure temperature of Na-feldspar IRSL50 is \(T_{C, 10} = 23 \) °C (left annotated corner in Fig. 5b), this metric is potentially misleading (Guralnik et al., 2013) since a feldspar IRSL50 system cooling at this rate is expected to be in field-saturation by the time that it reaches the surface of Earth.

Several examples of representative thermal histories and the associated build-up of Na-feldspar IRSL50 trap occupancy are studied in Fig. 5c and 5d, respectively (note matching indexing i–vi in both figures for clarity). Three scenarios (i–iii) result in a final trap occupancy of \(n/N = 0.75 \) and a minimum age of \(t_{\text{min}} = 0.27 \) Ma. Conversely, scenarios (iv–vi) result in a final trap occupancy of \(n/N = 0.50 \) with possible interpretations of \(t_{\text{app}} = 125 \) ka and \(T_{\text{app}} = 42 \) °C; however, further discrimination between these scenarios (iv–vi) is impossible without independent constraints. The notion that feldspar IRSL50 systems are overprinted by the last thermal event occurring in the most recent \(\sim 0.3 \) Ma may be appreciated from a side-by-side comparison of pathways (ii) and (vi). Both involve a cooling rate of \(\sim 500 \) °C Ma\(^{-1}\) which ceases at 0.8 Ma ago for pathway (ii), and at present-day for pathway (vi). While a sample following pathway (ii) experiences \(10 \) °C Ma\(^{-1}\) in the last 0.8 Ma and leads to a field-saturated trap filling, a sample following pathway (vi) experiences \(\sim 500 \) °C Ma\(^{-1}\) in the past 0.2 Ma and is thus dateable. Non-saturated IRSL50 systems may therefore be regarded as good indicators of either prolonged storage at high ambient temperatures (>32 °C), or young and rapid
cooling events (>190°C Ma⁻¹ in the past <0.33 Ma), or a combination thereof.

6. Discussion

In this work, the natural and non-saturated intensities of Na-feldspar IRSL₅₀ from seven depth samples (1.1–2.3 km depth) have been successfully inverted into a geothermal palaeogradient of 29 ± 2°C km⁻¹, representing a time-averaged estimate over the last ~65 ka, and confirmed by its independent present-day in-situ measurements. This result is methodologically akin to the inference of a 2 ± 2°C km⁻¹ palaeogradient in lunar regolith (Hoyt et al., 1971), or of a 15–20°C km⁻¹ palaeogradient in meteoric fusion crusts (Sears, 1975), but is probably the first successful application of the same methodology to infer a known thermal gradient in the shallow crust of Earth. The successful validation of Na-feldspar IRSL₅₀ thermochronometer in a well-constrained thermal setting (KTB) makes us enthusiastic regarding this method as promising for unravelling the thermal structure and history of less thermally-constrained environments, where the estimation of a long-term and artificially-undisturbed thermal structure may be critical, as in the case of correct evaluation of hydrothermal energy resources (e.g. Danis, 2014 and references therein).

The shortfall of Na-feldspar IRSL₅₀ to reconstruct palaeotemperatures in thermal environments colder than ~40°C is due to the fact, that trapped charge systems are governed by two characteristic lifetimes: meaningful palaeotemperature can be recovered only when the lifetime of thermal loss (s⁻¹eE/aT) in Eq. (1) is, or has recently been, significantly shorter than the lifetime of trap repopulation (Dν/D); the violation of this condition inevitably leads to field-saturation (see Eq. A.9b in Guralnik et al., 2013) and the consequent loss of any thermal information. For average kinetic parameters and environmental dose rates of Na-feldspar IRSL₅₀ at the KTB (Table 3), the relative importance of these lifetimes over at ~30°C, suggesting that hydrothermally-active regions or deserts with extreme surface temperatures might open interesting possibilities for feldspar IRSL₅₀ thermochronometry. However, even in ‘cold’ environmental settings, Na-feldspar IRSL₅₀ from underground rocks has the potential to provide critical information on young (<0.3 Ma) thermal histories of hydrocarbon reservoirs, nuclear waste repositories, and hydrothermal energy fields. Furthermore, non-saturated IRSL₅₀ ages in surface bedrock should be regarded as substantial evidence of either extraordinarily rapid erosion (e.g. Herman et al., 2010), or of recent hydrothermal anomalies (e.g. Takashima, 1979), and can therefore be used in

Fig. 5. Upper panels: methodological comparison of Na-feldspar IRSL₅₀ (kinetic parameters from Table 3) with apatite (U-Th)/He (AHe), with Arrhenius parameters Eₕ = 138 kJ mol⁻¹ and Ω = 7.64 × 10⁶ s⁻¹ (after Remers and Brandon, 2006) and apatite fission track (AFT), with Eₕ = 147 kJ mol⁻¹ and Ω = 2.05 × 10⁶ s⁻¹ (after Remers and Brandon, 2006). (a) Downhole apparent ages resulting after 1 Ma of isothermal holding (starting from n₀ = 0); (b) Closure temperatures TC for a final temperature of cooling T₀ = 0°C (Guralnik et al., 2013); the thin line segment of the IRSL₅₀ TC curve corresponds to field-saturated signals beyond dating (Guralnik et al., 2013). Lower panels: arbitrary thermal scenarios (c) and their simulated evolution of trap filling (d), leading to three field-saturated (thin lines marked i-iii) and three dateable (thick lines marked iv-vi) IRSL₅₀ signals.
geothermal prospecting alongside noble-gas and fission track thermochronometers (Reiners and Ehlers, 2005).

Feldspar IRSL$_{50}$ signals presented in this study are characterised by athermal fading (Huntley, 2006), whose lifetime ($s^{-1}e^{-t_{a}/3.7}$) further narrows the thermal sensitivity of feldspar IRSL$_{50}$ at low temperatures due to purely athermal losses (competing with the thermal depletion pathway). Although weakly- or non-fading IRSL signals (Li and Li, 2011; Buylaert et al., 2012; Jain et al., 2015) present an interesting alternative, the higher-stimulation temperature protocols typically extract signals with higher thermal activation energies (Sohbati et al., 2013; Guralnik et al., 2015b) and thus might eventually be unsuitable for low-temperature thermochronometry. The fact, that Na-feldspar post-IR IRSL$_{290}$ in our top (0.1 km) and bottom (2.3 km) samples were indistinguishable from each other, attests to an unfortunate entanglement: although the post-IR IRSL$_{290}$ signals may not require a fading correction, their thermal sensitivity appears to lie at higher temperatures. While intermediate-stability post-IRSL signals (Li and Li, 2011), thermally-transferred IRSL (Reimann et al., 2015) or pulsed IRSL$_{50}$ (Jain et al., 2015) may offer a better compromise between thermal and athermal stabilities than those of the veteran IRSL$_{50}$ protocol used here, such signal optimisation remains to be tested in future works.

7. Conclusions

This study explored the potential of OSL-thermochronometry in a natural and well-constrained thermal setting (the KTB borehole, Germany). The luminescence behaviour of different minerals from twelve metamorphic bedrock samples (0.1–2.3 km depth) suggests that quartz OSL is dim and insensitive, while feldspar IRSL$_{50}$ signals are bright and comparable to those found in sedimentary environments, promoting their further use. Through extensive mineralogical investigation, the extracted feldspar was characterised as predominantly Na-feldspar, although we accounted also for the possibility that K-feldspar veins and/or inclusions contributed to the IRSL$_{50}$ signal. Fading-corrected ages in the borehole vary between field saturated ages of >0.3 Ma in the top ~1 km, decreasing to ~14 ka at 2.3 km depth, revealing a partial retention zone of ~40–65 °C.

The inversion of Na-feldspar IRSL$_{50}$ intensities into apparent environmental temperatures required an in-depth laboratory characterisation of electron trapping and of thermal and athermal (fading) electron detrapping across 3–4 orders of magnitude of time, extending typical luminescence measurements carried out in standard dating applications. The laboratory IRSL$_{50}$ behaviour could be well described by a combination of a general-order trapping-detrapping formulation with an athermal fading model, whose joint extrapolation to natural conditions (~10 orders of magnitude beyond laboratory observations) recovered sensible palaeotemperatures, further confirmed by independent measurements. However, the presented kinetic model should be seen only as an initial step towards a more elaborate physical formulation incorporating additional dosimetric variables and second-order effects.

Although the applicability of feldspars IRSL$_{50}$ to resolve exhumation rates appears to be limited only to exceptionally rapid cooling environments (~200 °C Ma$^{-1}$), the combination of thermal sensitivity at low temperatures >35 °C with rapid equilibration times <0.3 Ma suggests an unprecedented tool for reconstructing the palaeotemperature of shallow subsurface environments, such as utility tunnels, medium enthalpy geothermal resources, young hydrocarbon reservoirs, and nuclear waste repositories. We believe that despite the limitations of the presented feldspar IRSL$_{50}$ signal, our work will stimulate further exploration of other signals, that may extend the usable range of luminescence thermochronometry.

Acknowledgements

This work is the product of Swiss National Foundation grant 200021-127127 to FH, and constitutes the central chapter of BG’s doctoral dissertation at ETH-Zürich. PGV was funded by SNF PZ002-148191/1, and CA by NWO-VENI-863.13.023. F. Holzflüster and U. Lauterbach helped with sample acquisition, R. Sohbat and J.-P. Buylaert assisted in the laboratory, and Y. Guralnik contributed statistical expertise. We thank M.T. Brandon, D.J. Huntley, D.C.W. Sanderson, and K. Gallagher for insightful feedback on work in progress, and all HAZARD participants for fruitful discussions on feldspar luminescence. D.L. Shuster, R. Grün, anonymous reviewers, and the Editor provided thoughtful comments that greatly improved the manuscript. This paper is dedicated to the dear memory of Lea Honigstein, whose legacy supported the first geological excursion of BG to Germany in 2005.

Appendix A. Supplementary material

Supplementary material related to this article can be found online at http://dx.doi.org/10.1016/j.epsl.2015.04.032.

References

