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The Fermat-Weber problem of optimally locating a service facility in the Euclidean continuous
two-dimensional space is usually solved by the iterative process first suggested by Weiszfeld or
by later versions thereof. The methods are usually rather efficient, but exceptional problems are
described in the literature in which the iterative solution is exceedingly long. These problems
are such that the solution either coincides with one of the demand points or nearly coincides
with it. We describe a noniterative direct alternative, based on the insight that the gradient
components of the individual demand points can be considered as pooling forces with respect
to the solution point. It is demonstrated that symmetrical problems can thus be optimally solved
with no iterations, in analogy to finding the equilibrium point in statics. These include a well-
known ill-conditioned problem and its variants, which can now be easily solved to optimality
using geometrical considerations.

1. Introduction

The modern problem of finding the optimal location of a service facility with respect to
a given set of demand points has emerged from an old geometrical problem. According
to Kuhn [1], it was first posed by Fermat early in the 17th century. Torriceli was the first
to suggest a geometrical construction for the solution (see Krarup and Vajda [2]), and
apparently Steiner solved it again in the 19th century. The problem states: given three
noncollinear points, find a point such that the sum of distances to the given points is minimal.
The solution is that if all the angles in the triangle formed by the three given points are
smaller than 120◦, the optimal location is the point from which lines, drawn radially to each
demand point, form three 120◦ angles. Geometrical methods for finding this point were given
in the literature (see e.g., the Georg Pick Mathematical Appendix to the book by Weber [3],
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Wesolowsky [4], and Martini [5]). If the triangle contains an angle greater than or equal
to 120◦, then the optimal location is at that vertex. When more than 3 demand points are
involved and when different demand points may have different weights, the problem is to
minimize the cost function
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where m is the number of given points, wi is the weight of the ith point, and ri(x, y) =

[(x − xi)
2 + (y − yi)

2]
1/2

, the Euclidean distance between the ith point with coordinates
(xi, yi) and the point to be located (x, y). The problem is often termed the Weber problem,
following an important work by Weber [3].

In order to study the properties of the solution, one can write the first derivatives of
(1.1), namely,
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A necessary condition for a point (x, y) to be a solution is that the sums in (1.2) be equal to
zero. Moreover, since the cost function (1.1) is known to be convex (see, e.g., [6]), if there
is a local minimum, it must be a global one. Thus, the main aim is to find a point in which
∂f/dx = ∂f/dy = 0, which will be the optimal solution of the problem.

Setting (1.2) to zero yields
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(1.3)

These equations cannot be solved in closed form, and Weiszfeld [7] suggested an iterative
process based on (1.3) (see also the English translation, Weiszfeld and Plastria [8]). Weiszfeld
described the iteration scheme as
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(1.4)

Different suggestions for the first guess for (x0, y0) have been given, the “center of gravity”
being quite popular. Ostresh [9] and others (see, e.g., [10, 11]) have pointed out that, in
fact, Weiszfeld’s method is a steepest descent method, namely, going in the direction given
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by (1.2), when the step size is determined by the denominator in (1.4). Ostresh has also shown
that in many cases, doubling the step size expedites the iterative procedure. Special cases in
which the Weiszfeld method does not converge efficiently to the optimal solution have been
reported [1, 12–16]). These included cases in which the solution coincided or nearly coincided
with one of the demand points. Katz [13] has shown that in cases where the optimal solution
coincides with a demand point, the convergence may be sublinear; in some cases, this may
result in an extremely slow convergence of the Weiszfeld process, as described in the third
example below. Some remedies have been suggested to improve the convergence (e.g., [17–
19]).

In some cases, the iterative procedure lands on a demand point which is not the
optimum, and since the function is not differentiable at such point, the process cannot
proceed. It should be pointed out that Ostresh [9] showed that this problem can be solved
in most cases by identifying that the demand point where the solution point is stuck is not
the optimal solution, moving away from it and continuing the Weiszfeld iterations. In this
context, let us mention a conjecture by Chandrasekaran and Tamir [20] stating that “if the
convex hull of the set of vertices is of full dimension, then the set of initial points for which the
sequence generated by the Weiszfeld algorithm lands in a vertex is denumerable.” Brimberg
[21] has attempted to resolve the open question of Chandrasekaran and Tamir by an analysis
of the Jacobian matrix of the iteration function. He concludes that having a convex hull of full
dimension is both a necessary and sufficient condition for the set to be denumerable. Cánovas
et al. [16] refuted this result by providing counter examples. In a later work, Brimberg [22]
resolves the problem. He shows that when the convex hull of the fixed points is contained
in an affine subspace of Rn, the set of starting points that terminate the Weiszfeld algorithm
prematurely at a fixed point is nondenumerable under these general conditions. However,
when the convex hull has full dimension n, this set is guaranteed to be denumerable. Thus,
the open question posed by Chandrasekaran and Tamir [20] is reclosed.

Note that several authors (e.g., [7]) showed that a demand point k is the optimal
minimum location if and only if its weight is larger than the norm of the vector sum of the
individual gradient elements of the other demand points at the location of point k,
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As pointed out by Chen [23], one may consider the mechanical analog in which f(x, y) in
(1.1) is looked upon as a scalar field analogous to the potential in a gravitational or an electric
field. The first derivatives in (1.2) can be regarded as the x and y components of the resultant
force acting on the service point which is to be located optimally. From the “physical” point
of view, an object is placed in a force field having m attracting points distributed in the two-
dimensional space. The object is attracted to each of the given points, the attraction toward
the ith point being proportional to the weight of the point wi. The direction of the force
component is along the line connecting the particle and the i-th point. As mentioned by Chen
[23] and Wesolowsky [4], the strength of this force element is not dependent on the distance
between the particle and the demand point. The problem is that of finding a stationary point
for the particle in this field. As opposed to the cases of electrical and gravitational fields
where no such stationary point exists, a minimum point always exists under the present
circumstances.
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It has been mentioned that one of the possibilities is that the solution coincides with
one of the demand points. Since the cost function is not differentiable at a demand point, this
may cause difficulty if the iterative process steps into a demand point, be it the optimum or
not. The possibility of a coincidence of the solution with a demand point has been discussed
by Katz [12], Kuhn [1], and others. Katz suggested to first check each demand point for
optimality using (1.5) before proceeding with the iterations, and only if none of the demand
points is found to be the optimum, should the iterative process be started.

In the next section, we briefly describe the mechanical analog to the Weber problem
and then proceed to the class of problems which can be solved noniteratively, using the
concept of the attractive force and a specific symmetry of the problem.

2. The Mechanical Analog

In the Mathematical Appendix to the book by Weber [3], Pick describes an analog device
previously invented by Varignon to solve the Weber problem (see also Wesolowsky [4]). His
approach was mainly intuitive, but the rationale behind it was practically the same as that
mentioned above of the potential field and the force concepts. A map of the area in question
is placed on a board, and holes are drilled in the points where the demand locations are.
Strings are passed through the holes, and weights proportional to the economic “weights”
are hung on them. The other edges of the strings are tied together. It is quite obvious that the
stationary situation reached after possibly a few oscillations is the equilibrium point, namely,
the solution of the minimization problem. Obviously, the accuracy of the method is limited by
the friction of the strings in the holes, and, in fact, it looks quite primitive when the alternative
of an efficient numerical procedure is available. However, the mechanical analog gives an
insight to the properties of the solution.

As explained, the force elements due to each of the demand points are radial in
direction, but independent of the distance between the demand point and the location of
the service facility. An interesting implication of this fact is that once the location of the
solution is known, it is in fact also the solution of other problems in which each demand
point can be anywhere along the ray connecting the service facility point and the demand
point, and without changing its weight (see [4, 23]). Of course, this does not help in solving
the problem, but it does give some understanding of the sensitivity of the solution to changes
in the location of the demand point.

3. Noniterative Solution of Some Weber Problems

As pointed out above, one kind of Weber problem that can be solved noniteratively is the
scenario where the solution coincides with a demand point. In the present context, this takes
place when the weight wk of a demand point at (xk, yk) is larger than the resultant of all
the other forces (for all i /= k) at (xk, yk) (see, e.g., [10, 23–25]). In the present work, we
concentrate on direct solutions in which the service point does not coincide with a demand
point. Obviously, this is an equilibrium point where the sum of the pulling forces is nil. The
considerations made are very similar to those made in mechanical statics.

The first example is a problem given by Kuhn [1] to demonstrate the possibility that
the Weiszfeld method does not converge at all to the optimal solution. The problemwith four
vertices in the plane is shown in Figure 1. Two demand points with weights w1 = w2 = 5 are
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Figure 1

on the x-axis at A1(20, 0) and A2(59, 0), and two other demand points with w3 = w4 = 13 are
at A3(−20,−48) and A4(−20, 48). Kuhn [1] shows that if the starting point for the iterations
is (x0, y0) = (44, 0), the Weiszfeld step takes us to the demand point A1, which is not the
optimum, and gets “stuck” there. As pointed out by Kuhn, the optimal solution is at the
origin, (0, 0). Let us show that by the use of the force concept, this result can be easily reached.
From the symmetry of the problem, it is quite obvious that the solution is on the x-axis. It is
also obvious that it cannot be to the right of A2 since all the weights are pulling it to the left.
Considering points between A1 and A2, we can readily see that the forces of these demand
points counterbalance each other, but A3 and A4 have force components that pull to the left.
It is thus obvious that the solution must be between −20 and 20, at a point denoted (X, 0). The
force exerted by A3 is of 13 units along the line connecting it to (X, 0), and it has a horizontal
component of 13 cosα to the left, and the same is true for A4. The solution point should be,
as stated above, an equilibrium point where the resultant force is nil. With the given weights
the components of the forces along the x-axis must be balanced, namely,

2 · 13 · cosα = 2 · 5, (3.1)

which yields cosα = 5/13. From the lower triangle, it is clear that tanα = 48/(X +
20). From a basic trigonometric identity, tanα = sinα/ cosα =

√
1 − cos2α/ cosα =√

1 − (5/13)2/(5/13) = 12/5. Thus, we get 48/(X + 20) = 12/5, which immediately yields
X = 0, namely, the solution is at the origin.

The second example has a similar symmetry, but it seems to give a deeper insight into
the possibilities of getting the solution noniteratively for symmetric problems. As shown in
Figure 2, two equal-weight (w) demand points are located at A1(0, a) and A2(0,−a). Two
other demand points are located on the x-axis, at A3(a, 0) and A4(−a, 0), with weights of w3

and w4, respectively. Without loss of generality, we can assume that w4 > w3. Due to the
symmetry, the optimal solution is expected to be on the positive side of the x-axis, and we are
looking for the solution (X, 0), the location of the solution on the x-axis. The pulling force of
A1 is w, and its component along the x-axis is w · cosα to the left.
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The same is true for A2, so together, they exert a force of 2w · cosα to the left whereas
the two y-components cancel each other. The resultant force of the two weights on the x-axis
is w4 −w3. Therefore, the equilibrium condition is

2w cosα = w4 −w3. (3.2)

From the lower triangle, it is evident that

cosα =
X√

X2 + a2
, (3.3)

and from (3.2) and (3.3), we can write by eliminating cosα

X√
X2 + a2

=
w4 −w3

2w
. (3.4)

By simple algebra,

X = a

√√√
√ (w4 −w3)2/4w2

1 − (w4 −w3)2/4w2
. (3.5)

Obviously, ifw andw3 are kept constant andw4 is increased, the solution point moves to the
right. The value of X = a is reached when the expression under the square root equals one,
which occurs when

w =
w4 −w3√

2
. (3.6)

According to the previous discussion, for larger values of w4, the solution point remains at
A4(a, 0).
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Similar considerations apply for other problems, where, for example, A1 and A2 are
on the y-axis in a symmetric manner. Also for given values ofw3 andw4, the demand points
A3 and A4 can be moved along the x-axis (provided A3 is still on the negative side and A4

on the positive side), and the solution does not change. The only difference may relate to the
end point associated with (3.6). When w4 −w3 gets larger, the solution point “gets stuck” at
A4. If A4 is located farther to the right, using (3.5), we can see, for example, that the condition
for the solution to coincide with A4 located at (2a, 0) is

w =
√
5
4

(w4 −w3). (3.7)

Since
√
5/4 is smaller than 1/

√
2, w4 −w3 should get larger for a given w before the solution

lands at w4.
Similar considerations can be made for problems with more demand points along the

x-axis and more pairs of points placed symmetrically with respect to the x-axis.
We turn now to a problem presented by Drezner [14, 17] which is extremely difficult

for theWeiszfeld algorithm. This is shown (not to scale) in Figure 3. It consists of five demand
points, four located at the four corners of a unit square, (0, 0), (0, 1), (1, 0), and (1, 1) with
weight of 1 each and a fifth point located at (100, 100)with weight of 4. The solution is known
to coincide with the latter demand point, but the Weiszfeld procedure requires millions
of iterations to get within 0.001 of the optimum. Methods for improving this have been
suggested, but we would like to show here that using the forces concept and the symmetry,
for this problem and some interesting variants, the solution can be found noniteratively.

From the symmetry, it is evident that the solution should be along the diagonal. If
we consider points on the diagonal close to the point at (100, 100), the latter exerts a force
of 4 units upward along the diagonal. The weights at (0, 0) and (1, 1) exert a unity force
downwards along the diagonal. Each of the other points, at (0, 1) and (1, 0), exerts a force
of unity along the line connecting it with (100, 100), and its component along the diagonal
is slightly smaller than unity. Thus, no matter how close we are to (100, 100), the total force
downwards along the diagonal is slightly smaller than 4, and the solution point is pulled
towards (100, 100) and it ends up at this point.

Let us consider now what happens in cases where the weight at (100, 100) is slightly
smaller than 4. One can imagine that from a certain weight down, the solution will be
somewhere along the diagonal, between (1, 1) and (100, 100). Let us denote any point along
the diagonal by (a, a) where 1 < a < 100. Consider the angle θ shown in Figure 3. It is easily
seen that

tan θ =
√
2/2

a
√
2 − √

2/2
=

1
2a − 1

. (3.8)

Using the trigonometric identity

1
cos2θ

= 1 + tan2θ, (3.9)
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we get

cos θ =
2a − 1√

4a2 − 4a + 2
. (3.10)

The components of the weights at (1, 0) and (0, 1) along the diagonal are (1 + 1) cos θ, and
therefore, we can write their contribution to the force downward along the diagonal as

F(a) = 2 cos θ =
2(2a − 1)√
4a2 − 4a + 2

. (3.11)

For a = 100, we get F(100) = 1.99997475 (the angle here is denoted by θ100 in Figure 3).
Note that the total pulling force downward along the diagonal is 3.9999475 due to the
additional unity weights at (0, 0) and (1, 1). Since θ gets larger for decreasing a, F(a) is a
slowly increasing function (for larger a, θ gets smaller and 2 cos θ gets larger). If w(100, 100)
is less than 3.99997475, there will be a point of equilibrium on the diagonal for a < 100. In
order to find this point for a given value of the weight w(100, 100), let us invert the function
F(a). For F(a) = k, where k = w(100, 100), let us find a(k). This will be the point (a, a) along
the diagonal where the forces of all the demand points balance. Starting from

k =
2(2a − 1)√
4a2 − 4a + 2

, (3.12)

we readily get

a =
1 + k

√
1/(4 − k2)
2

. (3.13)
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By insertion, we get, for example, a(1.999) = 16.3; a(1.9999) = 50.5; a(1.9999747) = 99.9.
These, of course, are related to weights of 3.999, 3.9999, and 3.9999747, respectively at
(100, 100). To conclude this example, if the weight of the demand point at (100, 100) is larger
than 3.99997475, this point is the optimum. If the weight at (100, 100) is slightly less than
3.99997475 (k slightly less than 1.99997475), the solution is on the diagonal, between (1, 1)
and (100, 100), a can be determined by (3.13), and no iterations are required. Note that for
the solution to be at (1, 1), that is, a = 1, one gets k =

√
2; therefore, for a weight of

√
2 + 2 or

lower, down to
√
2 at (100, 100), the solution coincides with the demand point at (1, 1). For

a weight smaller than
√
2 at (100, 100), the solution point is pulled further down along the

diagonal. For a weight of zero at (100, 100), the solution will be at (0.5, 0.5).

4. Conclusion

By the use of the concept of virtual forces, the components of the gradient of the objective
function in the Fermat-Weber problem, some problems of this kind can be solved directly,
with no iterations. A number of examples in which the demand points are distributed sym-
metrically with respect to some axis are shown. This includes problems for which the known
iterative procedures perform poorly. In particular, the problem given in Figure 3 is of interest.
Here, due to the special geometry of the problem, very minute changes in the weight of
the demand point at (100, 100) cause large changes in the optimal location on the diagonal.
This special property seems to be associated with the exceedingly large number of iterations
needed to reach the minimum by using the Weiszfeld method.
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