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Abstract

For a smooth geometrically integral algebraic variety X over a field k of characteristic 0, we define the extended
Picard complex UPic(X). It is a complex of length 2 which combines the Picard group Pic(X) and the group
U(X) := k̄[X]×/k̄×, where k̄ is a fixed algebraic closure of k and X = X ×k k̄. For a connected linear k-group
G we compute the complex UPic(G) (up to a quasi-isomorphism) in terms of the algebraic fundamental group
π1(G). We obtain similar results for a homogeneous space X of a connected k-group G. To cite this article: M.
Borovoi, J. van Hamel, C. R. Acad. Sci. Paris, Ser. I 340 (2005).

Résumé

Complexes de Picard étendus pour des groupes algébriques et des espaces homogènes. Soient k un
corps de caractéristique zéro et X une k-variété algébrique lisse et géométriquement intègre. Nous définissons le
complexe de Picard étendu UPic(X). C’est un complexe de longueur 2 qui combine le groupe de Picard Pic(X) et
le groupe U(X) := k̄[X]×/k̄×, où k̄ est une clôture algébrique fixée de k et X = X×k k̄. Pour un k-groupe linéaire
connexe G, nous calculons le complexe UPic(G) (à quasi-isomorphisme près) en termes du groupe fondamental
algébrique π1(G). Nous obtenons des résultats similaires pour un espace homogène X d’un k-groupe connexe G.
Pour citer cet article : M. Borovoi, J. van Hamel, C. R. Acad. Sci. Paris, Ser. I 340 (2005).

Throughout the note, k denotes a field of characteristic 0 and k̄ is a fixed algebraic closure of k. By a
k-group we mean a linear algebraic group defined over k.

Let G be a connected reductive k-group. Let

ρ : Gsc ³ Gss ↪→ G
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be Deligne’s homomorphism, where Gss is the derived subgroup of G (it is semisimple) and Gsc is the
universal covering of Gss (it is simply connected). Let T ⊂ G be a maximal torus (defined over k) and let
T sc := ρ−1(T ) be the corresponding maximal torus of Gsc. The 2-term complex of tori

T sc ρ−−−→ T

(with T sc in degree −1) plays an important role in the study of the arithmetic of reductive groups. For
example, the Galois hypercohomology Hi(k, T sc → T ) of this complex is the abelian Galois cohomology
of G (cf. [1]). The corresponding Galois module

X∗(T )/ρ∗X∗(T
sc

)

(where X∗ denotes the cocharacter group of a torus) is called the algebraic fundamental group π1(G)
(loc. cit.). The related complex group with holomorphic Gal(k̄/k)-action

Hom(π1(G),C×) = ker(X∗(T )⊗C× → X∗(T sc)⊗C×)

(where X∗ denotes the character group of an algebraic group) is canonically isomorphic to the center of
the connected Langlands dual group Ĝ considered by Kottwitz [7].

Clearly, the above constructions rely on the linear algebraic group structure of G. However we show in
this note that they are related to a very natural geometric/cohomological construction that works for an
arbitrary smooth k-variety X. The proofs will be published elsewhere.

1. The extended Picard complex

By a k-variety we mean a smooth geometrically integral k-variety. If X is a k-variety, we write X for
X ×k k̄. We write k̄[X] (resp. k̄(X)) for the ring of regular functions (resp. the field of rational functions)
on X.

For a k-variety X, consider the cone UPic(X) of the morphism

Gm(k̄) → τ≤1RΓ(X,Gm)

in the derived category of discrete Galois modules. More explicitly, this cone is represented by the 2-term
complex

k̄(X)×/k̄× → Div(X)
(with k̄(X)×/k̄× in degree 0), where Div denotes the divisor group. It follows from the definitions that
the cohomology groups H i of the complex UPic(X) vanish for i 6= 0, 1, and

H 0(UPic(X)) = U(X) := k̄[X]×/k̄×, H 1(UPic(X) = Pic(X).

Hence UPic(X) can be regarded as a 2-extension of Pic(G) by U(X). We shall call this complex the
extended Picard complex of X.
Lemma 1.1 Let Xc be a smooth compactification of a k-variety X. Then there is a distinguished triangle

UPic(X) → DivXc\X(X) → Pic(Xc) → UPic(X)[1]

where DivXc\X(X) is the permutation module of divisors in the complement of X in Xc.
Now we consider Pic(X) = H1(X,Gm) and Br(X) = H2

ét(X,Gm) (over k). Let Br1(X) denote the
kernel of the map Br(X) → Br(X).
Lemma 1.2 Let X be a k-variety.

(i) There is a natural injection Pic(X) ↪→ H1(k, UPic(X)), which is an isomorphism if X(k) 6= ∅.
(ii) There is a natural injection Br1(X)/ Br(k) ↪→ H2(k, UPic(X)), which is an isomorphism if X(k) 6=

∅ or if H3(k,Gm) = 0 (e.g. when k is a number field).
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If C is a complex of Gal(k̄/k)-modules, we write Xi
ω(k, C) = ker[Hi(k, C) → ∏

γ Hi(γ,C)] where γ

runs over all closed procyclic subgroups of Gal(k̄/k).
Proposition 1.3 Let Xc be a smooth compactification of a smooth k-variety X. The triangle of Lemma 1.1
gives rise to an isomorphism

X1
ω(k, Pic(Xc))

∼→X2
ω(k, UPic(X)).

This is particularly interesting for a homogeneous variety X of a connected k-group G with connected
geometric stabilizer, for which we have X1

ω(k, Pic(Xc)) = H1(k, Pic(Xc)), see [4].

2. Algebraic groups and torsors

Let G be a connected reductive k-group. We define the dual complex π1(G)D to π1(G) by

π1(G)D = (X∗(T ) → X∗(T
sc

)) (with X∗(T ) in degree 0).

Theorem 2.1 For a connected reductive k-group G there is a canonical, functorial in G isomorphism
(in the derived category of discrete Galois modules)

UPic(G) ∼→ π1(G)D.

Let G be any connected linear k-group, not necessarily reductive. We write Gu for the unipotent radical
of G, and set Gred = G/Gu (it is reductive). We define π1(G) := π1(G

red
).

Corollary 2.2 For any connected linear k-group G we have a canonical isomorphism UPic(G) ∼→ π1(G)D.
Combining Corollary 2.2 with Lemma 1.2, we find a new proof of the following result.

Corollary 2.3 (Kottwitz [7]) For any connected linear k-group G we have canonical isomorphisms
Pic(G) ∼→ H1(k, π1(G)D) and Br1(G)/ Br(k) ∼→ H2(k, π1(G)D).

Theorem 2.1 gives a description of the complex UPic for a k-torsor as well, thanks to the following
result which is a straightforward generalization of [8, Lemme 6.7]).
Proposition 2.4 Let G be a connected linear k-group and let X be a k-torsor under G. There is a
canonical isomorphism UPic(X) ∼→ UPic(G), functorial in G and X, in the derived category of discrete
Galois modules.

Combining the fact that X1
ω(k, Pic(Xc)) = H1(k, Pic(Xc)) for any smooth compactification Xc of a

k-torsor X under G (cf. [3]) with Proposition 1.3, Proposition 2.4, and Corollary 2.2, we obtain a new
proof of the following result.
Corollary 2.5 (Borovoi–Kunyavskĭı [2]) With G and X as above, H1(k, Pic(Xc)) 'X2

ω(k, π1(G)D).

3. Homogeneous spaces

Let G be a connected k-group such that Pic(G) = 0 (i.e. (Gred)ss is simply connected). Let X be a
homogeneous space of G defined over k. Let x̄ ∈ X(k̄), and let H be the stabilizer of x̄ in G. Then
Gal(k̄/k) acts on X∗(H). We do not assume that X has a k-point or that H is connected.
Theorem 3.1 For G and X as above, there is an isomorphism

UPic(X) ∼→ (X∗(G) → X∗(H)) (with X∗(G) in degree 0)

in the derived category of discrete Galois modules. In particular, there is an exact sequence

0 → U(X) → X∗(G) → X∗(H) → Pic(X) → 0.
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The exact sequence of Theorem 3.1 generalizes an exact sequence of Fossum–Iversen [6, Prop. 3.1] and
Sansuc [8, Prop. 6.10]. Note that the requirement Pic(G) = 0 is not a serious restriction, since for any
connected k-group G we can find a surjective homomorphism G′ ³ G with Pic(G

′
) = 0.

Corollary 3.2 For G and X as above there are injections Pic(X) ↪→ H1(k,X∗(G) → X∗(H)) and
Br1(X)/ Br(k) ↪→ H2(k,X∗(G) → X∗(H)), which are isomorphisms if X(k) 6= ∅.
The corollary follows from Theorem 3.1 and Lemma 1.2.

4. The elementary obstruction

Let X be a k-variety. We have an extension of complexes of Galois modules

0 → k̄× → (k̄(X)× → Div(X)) → (k̄(X)×/k̄× → Div(X)) → 0.

It defines an element e(X) ∈ Ext1(UPic(X), k̄×). If X has a k-point, then this extension splits (in the
derived category), hence e(X) = 0. By slight abuse of terminology we call this class e(X) the elementary
obstruction to the existence of a k-point in X (cf. [5, Déf. 2.2.1 and Prop. 2.2.4]).

When X is a k-torsor under a k-group G, Proposition 2.4 and Theorem 2.1 give us that UPic(X) =
π1(G)D. We obtain

Ext1(UPic(X), k̄×) = H1(k, Hom(π1(G)D, k̄×)) = H1(k,X∗(T sc)⊗ k̄× → X∗(T )⊗ k̄×) = H1(k, T sc → T )

(where T sc is in degree −1). The abelian group H1
ab(k,G) := H1(k, T sc → T ) is called the first abelian

Galois cohomology group of G, and in [1] an abelianization map ab1 : H1(k,G) → H1
ab(k, G) was con-

structed. Here we compute the elementary obstruction e(X) ∈ H1
ab(k,G) in terms of the cohomology

class cl(X) ∈ H1(k,G).
Theorem 4.1 Let X be a k-torsor under a connected k-group G. With the above notation we have
e(X) = ab1(cl(X)) (up to sign).
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