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ABSTRACT  

Computing image local statistics is required in many image processing applications such as local adaptive image 
restoration, enhancement, segmentation, target location and tracking, to name a few. These computations must be carried 
out in sliding window of a certain shape and weights. Generally, it is a time consuming operation with per-pixel 
computational complexity of the order of the window size, which hampers real-time applications. For acceleration of 
computations, recursive computational algorithms are used. However, such algorithms are available only for windows of 
certain specific forms, such as rectangle and octagon, with uniform weights. We present a general framework of fast 
parallel and recursive computation of image local statistics in sliding window of almost arbitrary shape and weights with 
“per-pixel” computational complexity that is substantially of lower order than the window size. As an illustration of this 
framework, we describe methods for computing image local moments such as local mean and variance, image local 
histograms and local order statistics (in particular, minimum, maximum, median), image local ranks, image local DFT, 
DCT, DcST spectra in polygon-shaped windows as well as in windows with non-uniform weights, such as Sine lobe, 
Hann, Hamming and Blackman windows. 

 

1. INTRODUCTION  
Computing image local statistics, such as local means, variance, general local moments, local order statistics, ranks, 
histograms, spectra, etc., in sliding window is frequently required in image processing. Generally, for arbitrarily shaped 
window of WinSz  pixels, the “per-pixel” computational complexity of this process is ( )WinSzO  or even, for spectra, 

. Even for moderate window sizes, this complexity might be formidably large, especially in real-
time processing applications. Substantial reduction of the computational complexity is possible with the use of recursive 
computation methods which utilize information common to consecutive overlapping windows and compute local 
statistics for the current window position by means of an appropriate modification of the results obtained for the previous 
window position. 

( WinSz)

                                                

WinSzO log

The problem of fast computing image local statistics in sliding window has attracted much attention over all more than 
thirty years digital image processing. Quite well known are recursive algorithms for computing local statistics such as 
mean, histogram and median, order statistics, spectra, e.g. DFT, DCT, DcST in the windows of a rectangular shape. 
Recursive computing local mean in a rectangle window was described in Refs. [1,2].  Recursive algorithm for computing 
local median was introduced in Refs. [3,4]. In Ref. [5] recursive algorithm for computing local ranks was presented. 
Recursive computing of DCT in sliding window was shown in Refs. [6,7]. The recursive algorithm for local filtration 
was reported in Ref. [8]. 

However, in many cases rectangular windows are far from being optimal and windows of other shape are required. More 
recently, a number of recursive algorithms for computing image local statistics in the window of non-rectangular shape 
were suggested. Specifically, in Ref. [9] mean and variance in octagonal window, in Ref. [10] recursive algorithms for 
computing image signal moments in diamond, hexagon, general polygon windows, in Ref. [11] a method for recursive 
computing image local mean and in Ref. [12] histogram, median and order statistics in window of arbitrary shape with 
uniform weights were introduced.  
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In this paper, we suggest unification and extension of these algorithms and present a general solution for recursive 
computing local statistics in windows of virtually arbitrary shape and weights based on the general method of parallel 
and recursive digital filtering introduced in Ref. [13].  

2. IMAGE LOCAL STATISTICS 
In order to simplify formulations, we will use in what follows 1-D denotations. We will define scanning window for 
measurements of the local statistics as a window of 12 +wN  pixels with weight coefficients { }nw , 

, and define local statistics of a signal ∑
−=

=−=
w

w

N

Nn
nww wNNn 1;,,0,, KK { }ka  within the window in its -th 

position on the sampling grid as following: 

k

 , (1) (∑
−=

−=
w

w

N

Nn
nknk SwLS a )

)where  is a statistics (a statistical attribute) for the signal sample . According to this definition, computing 

local statistics is equivalent to digital filtering of signal 

( nkS −a nk−a
( )nkS −a  with a digital filter with point-spread function defined 

by the window weight coefficients { }. nw

Special cases of image local statistical parameters are local signal moments, histograms and spectra and their derivatives. 
For instance, in computing local moment  of order P

kM P  of a signal { }ka , ( ) ( )PnknkS −− = aa  and: 
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In computing the local weighted histogram, each pixel within the window contributes to the bin of the histogram, which 
corresponds to its gray levels, with weight defined by the pixel position in the window: 
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where ( ).δ  is Kronecker delta-function ( ( ) 10 =δ , ( ) 00 =≠δ ). Local histograms and closely related local variational 
rows and local order statistics are used in rank filtering for signal/image denoising, smoothing, enhancement, extraction 
of object details and their boundaries. Customary, local histograms are computed for windows with uniform weights 

, however non-uniform weights provide better flexibility to all histogram-based algorithms. { } 1=nw

The local signal spectrum ( )k
rα  with respect to the basis ( ){ }nrψ  within the window in its -th position on the 

sampling grid is defined as: 
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A variety of types of local spectra exist. Most important in applications are spectra in Discrete Fourier and Discrete 
Cosine Transforms (DFT and DCT) computed over windows with uniform weight. Other examples are Walsh and Haar 
spectra. Applications of spectral analysis in scanning window include local adaptive signal/image restoration (denoising, 
deblurring, resampling, blind restoration, image enhancement), differentiating, integrating, target location and optical 
flow (Ref. [14]). 

 



 
 

 
 

3. SCANNING MODES AND THE PRINCIPLE OF RECURSIVE COMPUTATIONS 
 
Recursive computations assume a certain arrangement of image data in computer memory and a certain method of 
scanning image data. According to a common convention, we assume that images are defined on a rectangular sampling 
grid. On this grid, the following scanning modes are possible: progressive row-wise—column-wise scanning mode, zig-
zag row-wise—column-wise mode and diagonal- —diagonal-  mode (Figure 1). o45 o135
In the progressive row-wise—column-wise scanning mode, all rows are scanned one after another from left to right, and 
pixels are accessed in the row-wise order.  

In the zig-zag row-wise—column-wise mode, all rows are scanned in a one continuous scan: even rows are scanned from 
left to right and odd rows are scanned from right to left. 

In the zig-zag diagonal- —diagonal-  mode, all pixels are accessed in the diagonal-  order.o45 o135 o45
The first two scanning modes are suited for rectangular windows, while the third scanning mode is suited for non-
rectangular windows. 

 

   
Figure 1. The progressive row-wise—column-wise scanning mode (left), the zig-zag row-wise—column-wise scanning 

mode (center) and the zig-zag diagonal- —diagonal-  scanning mode (right). o45 o135
 

In the process of image scanning with a window, the window position is associated with the position of the window 
central pixel and, in each window position, some pixels, which will be called incoming pixels, are entering the window 
and some, which will be called outcoming ones, are leaving the window; the rest of window pixels are remaining in the 
window. Incoming and outcoming pixels form what we will call “update structures”. The principle of the recursive 
computation consists in performing computations not over all window pixels but only over “update structures” and using 
the computation results for updating the result for entire window obtained on the window previous position or several 
previous positions. 

In Figure 2, examples of “update structures” for different window shapes are presented for row-wise image scanning 
mode. For instance, for a rectangular window and for the diamond window the “update structures” are pairs of window 
sides. The “update structures” lay on rows or columns of the rectangular sampling grid in the case of rectangular window 
and on diagonals of the rectangular grid in the case of diamond window. The “update structures” are mutually 
independent and therefore can be processed in parallel. 
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Figure 2. The “update structures” for windows of different geometrical shapes in the rectangular system of coordinates. 
First row: rectangle, diamond and hexagon. Second row: octagon, diamond sector and octagon sector. 

 

4. PARALLELIZATION 
As a general way to fast recursive computing of local statistics in windows of arbitrary shape and weights, parallelization 
of recursive computations can be used by means of splitting a computational task into several independent sub-tasks that 
can be performed in a recursive way, using, in each new window position, calculation results obtained in the previous 
window positions. This can be achieved by expansion of the window function over recursive bases. 

Let window function {  can be approximated, with a desired accuracy, by expanding it into a series over a system of 

basis functions 
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The local statistics  can then be approximated as kLS

 , (6) ( ) ( ) ( ) ( ) ( )∑∑ ∑∑ ∑
−

=

−

= −=
−

−=

−

=
− ==≅

1

0

1

0

1

0

~R

r
rr

R

r

N

Nn
nkrr

N

Nn

R

r
rrnkk kSaSnnaSLS

w

w

w

w

ωϕωϕω

where 

 ( ) ( ) ( )∑
−=

−=
w

w

N

Nn
nkrr aSnkS ϕ~

. (7) 



 
 

 
 

Eq. (6) describes computing local statistics  in kLS R  “parallel filtering” branches through sub-statistics ( )kSr
~

 and 

summing up the sub-statistics with weights { }rω . 

 
Let us find conditions under which sub-statistics ( )kSr

~
 can be computed recursively. In the simplest first order 

recursivity, computation result in -th window position is computed using the result obtained in the preceding k 1−k  

position. A link between ( ){ }kSr
~

 and ( ){ }1~
−kSr  can be established as following: 
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Choose basis functions ( )mrϕ  such that 

 ( ) ( ) ( )mm rrr ϕϕϕ 01 =+ . (9) 

Then obtain: 
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Eq. (10) signifies that for multiplicative basis functions ( ){ }nrϕ  that satisfy Eq. (9) sub-statistics ( )kSr
~

 can be 
computed recursively with the recursivity on one preceding step. 

Eq. (9) satisfied by the class of the recursive basis functions is that of exponential functions: 

 ( ) ( )[ ] 12;2exp 0
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where  is a free parameter. 0p

 

When the basis of Eq. (11) with  is used for each of the 10 =p R  “parallel filtering” recursive filters the Eq. (7) 

performs signal discrete Fourier analysis in the window of 12 += wNM samples at the frequency r . The resultant 
spectral coefficients are multiplied element-wise by the window function spectral coefficients and summed up in order to 
obtain the required local statistics. The basis of Eq. (11) with 2/10 =p  corresponds to local DCT/DcST analysis. Note 
that local moments in Sine lobe window: 
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 in Hann (“hanning”, raised cosine, sine squared) window: 
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in Hamming window: 
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and in Blackman window: 
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(where ) are special cases of window DFT/DCT decomposition with the use of only corresponding  
first terms of the decomposition. 
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An important special case is the linearly independent basis of rectangular functions 
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which can be obtained from Eq. (11) when 00 =p . The latter corresponds to recursive computation of signal local 
mean: 
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The basis of Eq. (16) leads to the multiple windows (composite window) method, when a given scanning window is 
decomposed onto several non-overlapping or overlapping sub-windows, or “building-blocks”, with uniform weights that 
allow recursive computations. The processing is performed in parallel on the sub-windows and then the results of sub-
window computations are combined by addition with the decomposition coefficients. A simple example of composite 
window built from overlapping “building-blocks” is a combination of overlapping square and diamond (Figure 3). This 
window is an approximation of an octagon window, it is nearly isotropic and has “soft” edges. Other examples of 
composite windows are rings and combinations of sectors (Figure 3). The rings are obtained by subtraction of small 
window (usually of rectangular or octagonal shape) from the large window of the same type circumscribing the small 
one (usually two windows share a common center). The combinations of sectors are obtained by choosing the form of a 
sector window (usually of diamond sector or octagon sector shape) and combining several sectors of the same type and 
size but different orientation together to form parts of a diamond or an octagon. 

In the section that follows we detail special cases of computing local statistics using decomposition of window into in 
multiple sub-windows. 



 
 

 
 

 

 
 

 

  

Figure 3. Examples of composite windows. First row: combination of square and diamond; rectangular ring. Second 
row: combination of diamond sectors; combination of octagon sectors. 

 

5. PARALLEL AND RECURSIVE COMPUTATION OF LOCAL STATISTICS 
THROUGH COMBINATIONS OF MULTIPLE WINDOWS WITH BINARY WEIGHTS 

In multiple window (composite window) method it is assumed that R  “building-block” windows { }rW  

 form an outlining window ( 1,,0 −= Rr K )
 U

r
rWW ≡ , (18) 

and a constant weight  is assigned to rw r -th “building-block” (sub-window) . Parallel and recursive computation of 
local moments by means of combining results of computations in multiple recursive windows is based on the following 
reasoning. 

rW

The P -th local moment over the sub-window  is given by: rW
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It can be computed over the outline window W , using the indicator function of the window  as: rW
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The weighted sum of moments over sub-windows  gives the local weighted (∑
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with weights  
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Local weighted histogram over the outline window W  can also be found as a weighted sum of local histograms over 
“building-block” sub-windows { }rW  as following. The histogram over r -th window  is given by: rW
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It can be computed from the histogram over the outline window W , using the indicator function ( rWn∈ )δ  of the 

window : rW
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The weighted sum of histograms over a combination of windows  is the weighted histogram over the 
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with weights of pixels in the window equal to the weighted sum of indicator functions over the windows: 
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Local weighted histograms can be used as bases for computing local weighted variational rows that are defined as 
cumulative sum of the weighted histogram, local ranks and local weighted order statistics, such as weighted median, and 
their derivatives, such as inter-quantile distances and alike. Some specific order statistics such as local minima and local 
maxima over composite windows can be found directly from recursively computed local minima and maxima over the 
window “building-blocks”. 



 
 

 
 

6. CONCLUSIONS 
We briefly reviewed known methods of efficient recursive computation of image local statistics, such as local moments, 
histograms and order statistics, and local spectra in uniform windows of different geometrical shapes, and presented a 
general approach to recursive computation, in different ways of scanning image data, of local statistics in windows of 
virtually arbitrary shapes and weights. The approach exploits the idea of parallelization of computations by means of 
decomposition of given arbitrary window functions to a combination of either certain standard uniform windows, such as 
rectangular, diamond, octagon, diamond and octagon sectors, or of window functions that are basis functions of 
orthogonal transforms such as DFT, DCT that allow recursive computation. Different particular implementations of the 
approach to computing local image moments and their derivatives and local histograms and their derivatives are 
outlined. We believe that this opens new opportunities for real-time implementation of many image and video processing 
algorithms that are based on image local statistics. 
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