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ABSTRACT

A new DCT-based algorithm for signal and image scaling by arbitrary factor is presented. The algorithm is virtually free
of boundary effects and implements the discrete sinc-interpolation, which preserves the spectral content of the signal,
and therefore is free from interpolation errors. Being implemented through the fast FFT-type DCT algorithm, the scaling

algorithm has computational complexity of O(Iog|_oNJ) operations per output sample, where N and |_0NJ are number
of signal input and output samples, correspondingly.
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1. INTRODUCTION

Scaling is one of basic image processing tasks with wide range of applications. Presently, for image scaling available are
spline methods™™ and discrete sinc-interpolation methods implemented as a convolution in DFT domain*®. The spline
methods work in signal domain and tend to introduce signal blurring. The discrete sinc-interpolation methods are
potentially perfectly accurate but heavily suffer from boundary effects. We propose a novel DCT-based scaling
algorithm that implements the ideal discrete sinc-interpolation and at the same time is very substantially less vulnerable
to boundary effects. The algorithm is derived and described in Section 2. The results of its experimental verification are
reported in Section 3 and conclusions are outlined in Section 4.

2. DCT-DOMAIN SCALING ALGORITHM
2.1 Inverse Scaled Discrete Cosine Transform (IScDCT)
Discrete sinc-interpolation methods are based on inverse Scaled DFT of DFT spectrum of the original signal*®:
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where a, isa o -times scaled signal, |_oJ is a rounding operator, which rounds real numbers off:
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and a, isthe DFT spectrum of the input signal a, :

N-1
a = DFT(an)=%Zan ex;{iZﬂ%). @
n=0

The resulting scaled signal is shifted with respect to the original signal. In order to correct this shift Eqg. (1) has to be
modified to map the central sample of the input signal to the central sample of the output signal. The resulting Centered
Inverse Scaled Discrete Fourier Transform is defined as follows:

a, = \/I;\l—_ﬁglarzp eXp{—iZ;r [k_(a_l)/z_o(INONJ_ON)/Z]r}. (5)

The Centered Inverse Scaled DFT (Eq. (5)) can be computed through a convolution in DFT domain using Fast Fourier
Transforms*®. This implementation, however, suffers from border artifacts caused by the periodic nature of the DFT. A
simple method to eliminate these artifacts (resulting from the mismatch between left and right borders of the input signal
a, ) is to extend the signal a, to double length by means of its mirror-reflection (guaranteeing the continuity of the

resulting signal a,'}"R at the boundary points)’ and to use this mirror-reflected signal a,':"R as input to the Centered

Inverse Scaled Discrete Fourier Transform (Eq. (5)). In this way we arrive to the following algorithm:
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where | o] is a rounding operator (Eq. (2)), &
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One can show that, under constraint that the scaled signal a, has to be real-valued, Eq. (6) is reduced to the Inverse
Scaled Discrete Cosine Transform (IScDCT) defined as follows:
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where a, is a o -times scaled signal, |_oJ is a rounding operator (Eq. (2)), &
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and e, isthe DCT spectrum of the input signal a,:

N-1
a’ =DCT(a,)= J%;a” COS|:ﬂ' %} . (12)

For o =1 the Eg. (10) coincides with the IDCT:

a, = IDCT(a,C)= %{a&j + ZNZ_larC Cos[ﬂ%i”. (13)

One can show that point spread function (PSF) of signal scaling algorithm defined by Eq. (10) is the discrete sinc
function. In order to improve the speed of convergence of the scaling PSF to zero, it is recommendable to modify the
scaling algorithm (Eg. (10)) by halving the last non-zero coefficient in Eq. (11)*. The modified in this way “Convergent”
Inverse Scaled Discrete Cosine Transform is given by the following formula:
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where a®&?7" s the zero-padded or truncated DCT spectrum o :
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and af isthe DCT spectrum of the input signal a,, given by Eq. (12).

Note that for integer o the Eq. (14) represents the DCT-domain zero-padding scaling algorithm*®.
2.2 Interpolation kernel and frequency response

In order to evaluate the resampling quality of scaling algorithm, consider the interpolation kernel (i.e., interpolation filter
PSF) and frequency response of the DFT-based and of the suggested DCT-based scaling algorithms.

DFT-based scaling. One can show that from Eq. (5) it follows that that the scaled signal a, is related to the input signal
a,, according to the following formula*®:

a, = Nz_:lansincd(NO -1, N,k+—1/2—n—1/2—M)cos[l[k+—l/2—n—l/2—Mﬂ, (16)
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where:
N° =min(N,|oN |) (17)

and the interpolation PSF is represented by the discrete sinc function sincd :

sin( x)
sincd(M, N,x)=—N. (18)
N sin(’Nr x)

Notes: For computation of Eg. (16) the coefficients «, and e, were halved. The exponential factor was discarded
from Eq. (16).



DCT-based scaling. One can show that from Eq. (14) it follows that the scaled signal a, is related to the input signal a,
according to the following formula:

a, = Nz_lan{sincd(ZN0 -2,2N ,k+—1/2— n—l/Z—W)cos[L(k-k—l/z— n—l/Z—Mﬂ
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in which the interpolation PSF is represented by the term in curly brackets.

Both PSFs are compared in Figure 1(a) for the case N =31, o =4, their DFTs (or interpolation filter frequency
responses) are presented in Figure 1(b). As one can see from the figures, the PSFs and frequency responses of DFT-
based and DCT-based interpolations are identical, so both preserve frequency content of signals.
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Figure 1. Scaling of 1D signal by DCT-domain and DFT-domain scaling algorithms. PSFs (a) and frequency responses (b).



2.3 Implementation through DCT-domain convolution
For efficient computation, Eq. (14) can be converted into four convolutions:
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In order to avoid boundary effects which are characteristic for cyclic convolution performed using FFT, one can perform
convolution in DCT domain rather than in DFT domain’. The convolutions in Eq. (20) can be computed in DCT domain

using the formula:
bk=]/|:0;\|:|{IDCT[§C o ]+ ioesTesne ]}, (21)

where &7 is the DCT (Discrete Cosine Transform) of o, :
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£° is the DcST (Discrete Sine Transform) of e, :

&5 =DesT(e, )= Etﬁla si n[ %)—p} (23)

n‘p” is the so called Discrete Cosine Transform — type | (DCT') of h, (assuming that h,;=0):
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IDCT is the Inverse Discrete Cosine Transform:

= 1DCT(g, )= LONHap cos[n%)—p}} (25)
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and IDcST is the Inverse Discrete Sine Transform:
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This convolution (Eg. (21)) can be converted into the “all-DCT” form containing only — DCT (Eq. (22)) and IDCT (Eq.

(25)):
bﬁJ@{'DCT[fC o+ oy ioetlgsng Y1) “



where

&8 =DCT(e, ), (28)

g5 ={pcT|-1) e [} oo (29)

and
ﬂﬁ' _ _ﬁ h, + COS[EI_?W_I p] DCT(hr )+ Sin[zl_;.\l—_l pJ{DCT[(— 1) rhr]}[aNJ-p . (30)

Equation (20) describes the proposed DCT based signal scaling algorithm. The flow diagram of this algorithm is shown
in Figure 2. The DCT unit implements Discrete Cosine Transform (Eq. (12)) and the ZP unit implements zero-padding or
truncation (Eq. (15)). The * unit implements DCT-domain convolution (Egs. (27)-(30)). Both r and k are vectors of
integers (O,...,|_oNJ—1); a, denotes the input signal and a, denotes the scaled signal.

From Figure 2 and Egs. (27)-(30) it is evident that the DCT-based scaling algorithm amounts to 16 DCTs of
length | oN |, one DCT of length N, 9| oN | real additions and 14 oN |+2N real multiplications. Recalling that the

DCT of length N can be implemented with 2% Nlog, N —2% N flops®, the computational complexity of the DCT-

. . . 2 1 N
based scaling algorithm is equal to 32—1log,|oN [+2= log, N flops per output sample.
galg q 5 l0g2|oN | 3o ]9 N flops per output samp

The 2D scaling is defined as separable and therefore it is implemented through two consecutive applications of
1D DCT-based scaling. At the first step the 1D vertical scaling is applied to the columns of the input image a

m,n?
resulting in the intermediate column-scaled image al(f%'). At the second step the 1D horizontal scaling is applied to the

rows of the intermediate image al(f?]'), resulting in the 2D-scaled image a,, .
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Figure 2. Flow diagram of the 1D DCT-domain scaling algorithm.




3. EXPERIMENTAL VERIFICATION

For experimental verification of the proposed algorithm we checked boundary effects of scaling and compared the
accuracy of the suggested DCT algorithm with that of conventional scaling methods using bilinear/ bicubic®/ and cubic
spline™™ interpolation and DFT-domain discrete sinc-interpolation methods*®.

As a 1D test signal, a “ramp” signal of length N =128 was used to check the boundary effects of signal scaling. Shown

in Figure 3 are results of scaling of this test signal by factor 0'=1/\/§ for zooming-out and by factor o=+2 for

zooming-in. One can clearly see that the DFT-domain scaling algorithm**® suffers from heavy boundary artifacts, while
the described DCT-domain scaling algorithm doesn’t virtually introduce any artifacts at the borders of the signal.
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Figure 3. Scaling of the 1D signal by the DCT-domain scaling algorithm. (a)-The original signal. (b)-The zoom-out signal
(o= 1/\/5 ), DCT scaling. (c)-The zoom-in signal (o = \/5 ), DCT scaling. (d)-The zoom-in signal (o = \/E ), DFT scaling.



As test images for checking 2D scaling, an image “text” and a pseudo-random image with uniform spectrum of size

256x 256 were used. The results of zoom-in by factor o = J2 and zoom-out by factor o = l/ J2 of the “text” image
and magnitudes of corresponding DFT spectra are shown in Figure 4.
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(a) Original image. (b) Magnitude of DFT spectrum of the original image.

Image recavery and, more generally, sign

-oblemns that are among the most fundam:

hey involve every known scale—from the

stermining the structure of unresolved star

ent of the tiniest molecules. Stated in 1ts |

covery problem is described like this: Given
at produced g. Unfortunately, when stated

ore can be said. Howis g related to /7 Is g«

3, can g be used to furnish an estimate f of /

' If g is corrupted by noise, does the noise pi

8, can we ameliorate the effects of the nois

1ce radical changes in f7 Even if g unigu
gorithm for computiog f from g? What abo
»m? Can it be usefully incorporated in our

These (and others) are the kinds of quest

e itralf swwith Bt ir ths mvsrmaca af thic han

(c) Zoom-inimage (o = \/E ). (d) Magnitude of DFT spectrum of zoom-in image.
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(e) Zoom-outimage (o = 1/\/5 ). (f) Magnitude of DFT spectrum of zoom-out image.
Figure 4. (a)-The original test image. (b)-Magnitude of DFT spectrum of the original image shown (centered around DC
component; (the top, bottom, left and right borders correspond to the highest signal frequency FLOOR(N/Z). (c)-The zoom-in

image (DCT method, o = \/E ). (d)-Magnitude of DFT spectrum of the zoom-in image. (¢)-The zoom-out image (DCT method,

o= l/\/E ). (f)-Magnitude of DFT spectrum of the zoom-out image. (The DFT spectra were normalized and raised to power 0.5
for display purposes.)



In order to evaluate the accuracy of image resampling by the suggested DCT-domain scaling algorithm in comparison
with conventional bilinear/ bicubic'®/ cubic spline'>-based scaling algorithms, we employed iterative zooming-in &
zooming-out sequence of operations (zooming-in of the original image by factor o followed by zooming-out by the
reciprocal factor 1/o ). For the ideal resampling procedure the resulting “zoom-back” image has to be identical to the

original image.

The results of 75-step iterative zoom-back of “text” image by factor o = J2 by bilinear/ bicubic/ DCT-based scaling
algorithms are shown in Figure 5.
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(c) Iterative scaling (bicubic algorithm).

(d) Iterative scaling (DCT algorithm).

Figure 5. Iterative zoom-in&zoom-out scaling of the “text” image (a) by the bilinear algorithm (b), by the bicubic algorithm (c) and

by the DCT-domain scaling algorithm (d) after 75 iterations.




The results of 75-step iterative zoom-back of “random” image by factor o= J2 by bilinear/ bicubic/ DCT-based
scaling algorithms are shown in Figure 6.

Iterative scaling (bilinear algorithm).

()

(c) Iterative scaling (bicubic algorithm). (d) Iterative scaling (DCT algorithm).
Figure 6. Iterative zoom-in&zoom-out scaling of the “random” image (a) by the bilinear algorithm (b), by the bicubic algorithm (c)
and by the DCT-domain scaling algorithm (d) after 75 iterations.




Evolution of image spectra in such an iterative zooming-in&zooming-out test one can evaluate from comparison of
spectra of “zoom-back”-iterated images. The magnitudes of DFT-spectra after 75-step iterative zoom-back of “random”

J2 by bilinear/ bicubic/ DCT-based scaling algorithms are shown in Figure 7.

image by factor o

(b) Magnitude of DFT spectrum after iterative scaling

(bilinear algorithm).

(d) Magnitude of DFT spectrum after iterative scaling

(DCT algorithm).

(a) Magnitude of DFT spectrum of the original image.

(c) Magnitude of DFT spectrum after iterative scaling

(bicubic algorithm).
Figure 7. Magnitude of DFT spectrum of iterative zoom-in&zoom-out scaling of the random

image (a) by the bilinear algorithm

(b), by the bicubic algorithm (c) and by the DCT-domain scaling algorithm (d) after 75 iterations.



Cubic spline is known to perform better than simple bicubic interpolation. However it is also not as perfect as discrete
sinc-interpolation. The results of 200-step iterative zoom-back of “text” image by factor o = J2 by cubic spline and by

DCT-based scaling algorithms are shown in Figure 8.
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Iterative scaling (cubic spline algorithm).

(b) Iterative scaling (DCT algorithm).

Figure 8. Iterative zoom-in&zoom-out scaling of the “text” image by the cubic spline scaling algorithm (a) and by the DCT

domain scaling algorithm (b) after 200 iterations.

Comparing the presented results one can see that the bilinear/ bicubic/ cubic spline scaling methods tend to blur scaled
images and the DFT-based scaling methods suffer from boundary artifacts. The suggested DCT-based scaling method
produces perfectly sharp images and is virtually free of boundary effects, demonstrating virtually perfect accuracy of
resampling.

4. CONCLUSION

A novel DCT-domain algorithm for signal and image scaling by arbitrary factors is presented. It was demonstrated that
the proposed algorithm is virtually free of boundary effects and ensures virtually perfect reconstruction accuracy. Thanks
to the availability of fast FFT-type algorithms for computing DCT and IDCT transforms, the algorithm has reasonably
low computational complexity and represents a valuable alternative to known scaling algorithms in image and video
processing applications.
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