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ABSTRACT

Results of comparative study of the computational complexity of different algorithms for numerical reconstruction of
electronically recorded holograms are presented and discussed. The following algorithms were compared: different types
of Fourier and convolutional algorithms and a new universal DCT-based algorithm, in terms of the number of operations.
Based on the comparison results, the feasibility of real-time implementation of numerical reconstruction of holograms is
evaluated.

1. INTRODUCTION

Numerical reconstruction of digital holograms is a fundamental subject in digital holography. The choice of a certain
reconstruction algorithm from a “toolbox” of available algorithms depends on the physical properties of the hologram,
on the desired level of quality of the reconstructed image and on the amount of computational power that can be
dedicated for the reconstruction process.

We review the different reconstruction algorithms, list their constituting computational units and compare their
computational complexity.

2. IMAGE RECONSTRUCTION FROM HOLOGRAMS - REVIEW OF
ALGORITHMS

2.1 Reconstruction of holograms recorded in far zone [1]

Images are reconstructed from near-zone recorded holograms using the Discrete Fourier Transform (DFT). There exist
several algorithms implementing this reconstruction method, among them Canonical Discrete Fourier Transform and
Scaled Discrete Fourier Transform. The formulae for these algorithms are listed below.

e Canonical Discrete Fourier Transform (DFT):
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e Scaled Discrete Fourier Transform (ScDFT):
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where ZP is a zero-padding operator defined as follows:
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(In case of signal reduction (o < 1) the hologram «, is truncated to size |_0'N—| )

2.2 Reconstruction of holograms recorded in near zone [1]

Images are reconstructed from near-zone recorded holograms using the Canonical Inverse Discrete Fresnel Transform

(IDFrT):
Za exp[ —k,u—r/,u) ] 4)

where g is a focusing parameter defined in terms of the wavelength A, the hologram-to-observation plane distance Z ,
the number of hologram samples N and the hologram sampling interval Af as:

u* =2z N(at) | (5)

There exist several algorithms implementing this reconstruction method, among them Fourier reconstruction algorithm,
Convolution Discrete Fresnel Transform, Convolution reconstruction algorithm, “Central Part” Convolution
reconstruction algorithm and Inverse Scaled Discrete Fresnel Transform. The formulae for these algorithms are listed
below.

e Fourier reconstruction algorithm:
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where w is the shift parameter defined as:
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This algorithm is used for g>1.

e  Convolution Discrete Fresnel Transform (ConvDFrT):
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where frincd is a discrete-frinc function defined by:
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and w is the shift parameter defined as:
W= uWw. (10)
This algorithm is used for g <1.

e  Convolution reconstruction algorithm:
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This algorithm is used for g <1.

e “Central Part” Convolutional reconstruction algorithm:
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This algorithm is used for x<1.

Now let’s present the new algorithm:
e Inverse Scaled Discrete Fresnel Transform (ISCDFrT):
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This algorithm is used for any u .

3. BASIC COMPUTATIONAL UNITS USED IN RECONSTRUCTION ALGORITHMS

We’ll assume that the signal size N is a power of 2. All reconstruction algorithms consist of the following basic
computational units:

o Complex exponent matrix generator,
e  Complex matrix multiplier,

e  DFT unit,

e  Convolution unit.

The complex matrix multiplier needs N complex multiplications, that is, 4N real multiplications and 2N real
additions, in total 6N real floating-point operations (flops).

The DFT unit operates on complex signals, producing complex result; it is implemented by the Fast Fourier Transform

(FFT) algorithm that needs SgN log, N —4%N flops [2]. For real-only input the real-data FFT algorithm with

1% Nlog, N — 3% N flops is used. The benchmark comparing execution time of different implementations of the FFT

algorithms running on different CPUs is presented in [3].

The Convolution unit can be implemented either in DFT domain by cyclic convolution or in DCT domain by the
complex “centered” “all-DCT” convolution that is the version of the DCT convolution [4-6].

The “DCT-only” form of DCT convolution is given by:
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where:
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can be computed in the following way:
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The DCT operates on real signals, producing real output, it is implemented with 2N log, N — N flops [7]. The fast
implementation of the DCT convolution algorithm uses also two modified DFT units (real input, scaled twiddle-factors)

with 1%N log, N — 32;87N flops each. The first modified DFT unit computes the spectra 7,¢(") and » (")
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and the second modified DFT unit computes the spectra 7™ ") and 7™ " :
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where Re(o) denotes the real part, Im(o) denotes the imaginary party, ZP, (o) denotes a zero-padding of its
argument to double length and PRUN (o) denotes the pruning of its argument to size N .

The computational complexity NumFIopsConv(N) of the Convolution unit for different types of convolution is listed
in Table 1.

Table 1. Comparison of computational complexities of the fast convolution algorithms.
Type of the convolution Number of flops NumFlopsConv(N)

Real cyclic convolution
y 5§NI092N—3%N

Real “centered” “all-DCT”

8 8
convolution 75 Nlog, N — 55 N

Complex cyclic convolution
P y 11%NlogzN—7%N

Complex “centered” “all-DCT” 7 11
convolution 15§ Nlog, N + ZE N

4. COMPARISON OF DIFFERENT RECONSTRUCTION ALGORITHMS IN TERMS
OF COMPUTATIONAL COMPLEXITY
The computational complexity of the reconstruction algorithms for different types of convolution is listed in Table 2.

Notably, the computational complexities of the Inverse Scaled Discrete Fresnel Transform and of the Scaled Discrete
Fourier Transform are equal.



Table 2. Comparison of computational complexities of the algorithms for image reconstruction from holograms.

Type of the reconstruction algorithm

Number of flops

Canonical Discrete Fourier Transform

SZN log, N —4EN
9 27

Scaled Discrete Fourier Transform

NumFIopsConv(|_crN -|) +6[ N |+6N

Fourier reconstruction algorithm

SZN log, N +7£N
9 27

Convolution Discrete Fresnel Transform

NumFIopsConv(N)+3%N log, N —4%N

Convolution reconstruction algorithm

5 5
7>Nlog, N-3—N
g 0% 27

“Central Part” Convolution reconstruction

algorithm

NumFlopsConv(N)+12N

Inverse Scaled Discrete Fresnel Transform

NumFIopsConv(faN —|) +6[ N |+6N

5. CONCLUSIONS

Computational complexities of different hologram reconstruction algorithms are compared. The Inverse Scaled Discrete
Fresnel Transform, performing hologram reconstruction with simultaneous scaling, presents an attractive alternative to
other reconstruction methods that perform reconstruction and scaling in two consecutive steps. Thanks to the availability
of fast FFT-type algorithms for computing DFT, DCT and IDCT transforms involved in the ISCDFrT reconstruction
algorithm, the latter represents a valuable alternative to DFT-domain no-scale hologram reconstruction algorithms in
real-time video processing applications.
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