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Orbit recovery problems

We observe i.i.d. realizations of the model:

yi = P(gi ◦ x) + εi, i = 1, . . . , n,

where
x is a fixed but unknown element of a vector space X
g1, . . . , gn are unknown elements of a (compact) group G
P : X 7→ Y is a linear operator
Y is a finite dimensional measurement space
εi ∼ N (0, σ2)

Goal: Estimate/recover/reconstruct/learn the orbit

{g ◦ x : g ∈ G}

from y1, . . . , yn.
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First example: multi-reference alignment

Goal: Estimate x ∈ RL, up to cyclic shift, from

yi = gi ◦ x + εi, i = 1, . . . , n,

where gi ∈ G is the group of cyclic shifts.

σ = 0 σ = 0.1 σ = 1.2
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Single particle reconstruction using cryo-electron
microscopy

 

 

The images of E. coli 50S ribosomal subunit were provided by Dr. Fred Sigworth, Yale Medical School.
Tamir Bendory (Tel Aviv University) Orbit recovery December 29, 2019 4 / 20



Single particle reconstruction using cryo-electron
microscopy

 

 

The images of E. coli 50S ribosomal subunit were provided by Dr. Fred Sigworth, Yale Medical School.
Tamir Bendory (Tel Aviv University) Orbit recovery December 29, 2019 4 / 20



The cryo-EM inverse problem

micrographs
(data)

particle
picking

reconstruction
algorithm
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The cryo-EM inverse problem (perfect particle picking)

Projection yi

Molecule

E    lectron 
source

Image formation model
yi = P(gi ◦ x) + noise, gi ∈ SO(3)

The cryo–EM problem
Estimate (the orbit of) x from
y1, . . . , yN

Can we accurately estimate the rotations?

Can we accurately estimate the volume x?

And how?

What is the optimal estimation rate?
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Reconstruction of T20S proteasome

(a) (b)

Taken from: Zhou, Moscovich, Bendory, and Bartesaghi. “Unsupervised particle sorting for high-resolution single-particle

cryo-EM.” Inverse Problems, (2019).
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More examples

Heterogeneous multi-reference alignment [Boumal, Bendory, Lederman,
Singer, ‘18]

Linear models with permuted data [Pananjady, Wainwright, Courtade, ‘17]

Rotations and reflections (the orthogonal group) of a point cloud
[Pumir, Singer, Boumal, ‘19]

Boolean multi-reference alignment [Abbe, Pereira, Singer, ‘17]

Low-rank covariance estimation under unknown translations [Aizenbud,
Landa, Shkolnisky, ’19; Landa, Shkolnisky, ’19]

Similar algebraic structures [Bendory, Boumal, Leeb, Levin, Singer, ’19]
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How to solve the problem?

yi = P(gi ◦ x) + εi, i = 1, . . . , n.

High SNR regime: Synchronization! Estimate g1, . . . , gn from y1, . . . , yn.
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How to solve the problem?

yi = P(gi ◦ x) + εi, i = 1, . . . , n.

High SNR regime: Synchronization! Estimate g1, . . . , gn from y1, . . . , yn.
Beautiful theory, near-optimal provable algorithms.
Literature:

Singer. “Angular synchronization by eigenvectors and semidefinite programming.” ACHA, ’11.

Singer, Shkolnisky. “Three-dimensional structure determination from common lines in cryo-EM by eigenvectors and
semidefinite programming.” SIIMS, ’11.

Boumal. “Nonconvex phase synchronization.” SIPOT, ‘16.

Perry, Wein, Bandeira, Moitra. “Message‐Passing Algorithms for Synchronization Problems over Compact Groups.”
CPAM, ’18.

Zhong, Boumal. “Near-optimal bounds for phase synchronization.” SIPOT, ‘18.

Chen, Candes. “The projected power method: An efficient algorithm for joint alignment from pairwise differences”
CPAM, ’18.

Bandeira, Chen, Singer. “Non-unique games over compact groups and orientation estimation in cryo-EM.”
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How to solve the problem?

yi = P(gi ◦ x) + εi, i = 1, . . . , n.

Low SNR regime: Accurate estimation of g1, . . . , gn is impossible.
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How to solve the problem?

yi = P(gi ◦ x) + εi, i = 1, . . . , n.

Low SNR regime: Accurate estimation of g1, . . . , gn is impossible.

Solution: Estimate x directly from y1, . . . , yn.
Option 1: Optimize/sample the marginalized likelihood/posterior
distribution (EM, MCMC, etc.)

L(x; y1, . . . , yn) = p(x) ·
∏

i
EgN (yi − P(g ◦ x), σ2)

Remark: The MLE of

L(x, g1, . . . , gn; y1, . . . , yn) =
∏

i
N (yi − P(gi ◦ x), σ2)

might be inconsistent as n → ∞ (Neyman-Scott “paradox”).
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How to solve the problem?

yi = P(gi ◦ x) + εi, i = 1, . . . , n.

Low SNR regime: Accurate estimation of g1, . . . , gn is impossible.
Solution: Estimate x directly from y1, . . . , yn.
Option 2: Method of moments/group invariants

1
n

n∑
i=1

yi ≈ Eg,ε{y} = p1(x)

1
n

n∑
i=1

yiyT
i ≈ Eg,ε{yyT} = p2(x)

...
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How to solve the problem?

yi = P(gi ◦ x) + εi, i = 1, . . . , n.

Low SNR regime: Accurate estimation of g1, . . . , gn is impossible.
Solution: Estimate x directly from y1, . . . , yn.
Option 2: Method of moments/group invariants

One pass over the data

Consistent

Amenable to theoretical analysis
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1-D multi-reference alignment

Goal: Estimate x ∈ RL, up to cyclic shift, from

yi = gi ◦ x + εi, i = 1, . . . , n,

where gi ∈ G is the group of cyclic shifts.
σ = 0 σ = 0.1 σ = 1.2
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Group invariants

For any x ∈ X and g ∈ G, invariants are functions (polynomials) that
satisfy

h(x) = h(g ◦ x)

and determine (the orbit of) x uniquely.

Example: Let x ∈ RL, G = Z2 with the action x 7→ zx, where z = ±1.

A trivial candidate: |x|

H.W: Is |x| an invariant representation? If not, find an invariant
representation h.
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Invariants for 1-D MRA

Goal: Estimate x ∈ RL, up to cyclic shift, from

yi = gi ◦ x + εi, i = 1, . . . , n,

where gi ∈ G is the group of cyclic shifts.
In Fourier space, shifting a signal by α entries is equivalent to

x̂[k] 7→ x̂[k]e2πikα/L.

Thus, it is very easy to construct invariants:

x̂[0] mean
x̂[k]x̂[−k] power spectrum
x̂[k1]x̂[k2]x̂[−k1 − k2] bispectrum
x̂[k1]x̂[k2], . . . x̂[kq]x̂[−k1 − k2 − . . .] higher-order

Question: What are the invariants of an image under SO(2)?
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Estimating invariants

Goal: Estimate x ∈ RL, up to cyclic shift, from
yi = gi ◦ x + εi, i = 1, . . . , n,

where gi ∈ G is the group of cyclic shifts.
Estimating the invariants:

1
n

n∑
i=1

ŷ[0] → x̂[0] var(σ2/n)

1
n

n∑
i=1

Py[k] → Px[k] var(σ4/n)

1
n

n∑
i=1

By[k1, k2] → Bx[k1, k2] var(σ6/n)

Many efficient algorithms to recover a signal from its bispectrum [Bendory et al., ’17]

Tamir Bendory (Tel Aviv University) Orbit recovery December 29, 2019 16 / 20



Phase retrieval

Phase retrieval is the problem of recovering a signal from its Fourier
magnitudes.

Uncovering the double helix structure of the DNA with X-ray crystallography in 1951. Nobel
Prize for Watson, Crick, and Wilkins in 1962 based on work by Rosalind Franklin.
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Phase retrieval is also an orbit recovery problem

Let us consider the X-ray crystallography problem: Recover the k-sparse
signal x ∈ RL from

b = |Fx|,

where F is the DFT matrix.

We search for a signal in the intersection of two non-convex sets

x ∈ S ∩ B,

where B := {x ∈ Cn : b = |Ax|}, and S is the set of all k-sparse signals.

One cannot recover x, but only its orbit. In particular, recovery is possible
up to a cyclic shift ZL, reflection through the origin Z2 (together, they
form the dihedral group D2L), and global sign Z2 (global phase S1 in the
complex case).

Intricate geometry!
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Single particle reconstruction using
X-ray free-electron laser (XFEL)

XFEL ≈ cryo-EM + phase retrieval

Picture credit: (Gaffney and Chapman, ’07)
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Thanks for your attention!
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