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Introduction

How to measure the shortest pulse?

The power spectrum of the signal can be measured with spectrometer.

But we cannot recover a 1D signal from its power spectrum

The Frequency-Resolved Optical Gating techniques were introduced
in 1991 by Daniel J. Kane and Rick Trebino

Nowadays, FROG is a commonly–used method for full
characterization of ultra-short optical pulses due to its simplicity and
good experimental performance
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Introduction

The FROG technique

The FROG trace is the Fourier magnitude of product of the signal with a
translated version of itself, for several different translations.

|ŷk,m|2 =
∣∣∣∣∣
N−1∑
n=0

xnxn+mLe−2πikn/N
∣∣∣∣∣
2

, m = 0, . . . , dN/Le − 1

It is a quartic intensity map CN 7→ RN×N/L.
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Introduction

The FROG technique

All the information about FROG can be found in Rick Trebino’s book:
Frequency-resolved optical gating: the measurement of ultrashort
laser pulses

In Chapter 5, page 108, he writes:

Goal: Conditions on the number of samples required to determine a
signal uniquely, up to trivial ambiguities, from its FROG trace
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STFT Phase retrieval and XFROG

STFT phase retrieval and XFROG

In some cases, one can use a known reference pulse g :

|ŷk,m|2 =
∣∣∣∣∣
N−1∑
n=0

xngn+mLe−2πikn/N
∣∣∣∣∣
2

, m = 0, . . . , dN/Le − 1

This technique is called XFROG.
For L < N/2, unique mapping for almost all 1D signals, up to global
rotation [Jaganathan, Eldar and Hassibi, 2015]
We examined two non-convex algorithms: least-squares minimization
and optimization over the manifold of phases [B., Eldar and Boumal,
2017]).

Empirically, the basin of attraction of the non-convex programs is
quite large. We derived some theoretical insights.
Data–driven initialization based on approximating xx∗ with theoretical
analysis
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FROG

FROG symmetries

Similarly to phase retrieval, FROG has three symmetries or trivial
ambiguities:

Claim
The following signals have the same FROG trace as x ∈ CN :

1 the rotated signal xeiψ for some ψ ∈ R;
2 the translated signal x `n = xn−` for some ` ∈ Z;
3 the reflected signal x̃n = x−n.
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FROG

FROG symmetries for bandlimited signals

The translation symmetry implies that signal with Fourier transfrom
x̂ke−2πi`k/N for some ` ∈ Z has the same FROG trace as x

For bandlimited signals, the translation symmetry is continuous.
Namely, signals with Fourier transform x̂keiψk has the same FROG
trace as x

Example for signal with Fourier transform [1, i ,−i , 0, 0, 0, 0, 0, 0, i ,−i ]:

1 2 3 4 5 6 7 8 9 10 11

-0.2

-0.1

0

0.1

0.2

0.3

0.4

signal
shifted by 3 entries
shifted by 1.5 entries
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FROG

Uniqueness

Theorem
Let x ∈ CN be a B–bandlimited signal for some B ≤ N/2.

If L ≤ N/4, then almost all signals are determined uniquely from their
FROG trace, modulo the trivial ambiguities, from 3B measurements.

If in addition we have access to the signal’s power spectrum and L ≤ N/3,
then 2B measurements are sufficient.

FROG setup requires 3B measurements for B–bandlimited signal
STFT phase retrieval requires more than 2N measurements
Random phase retrieval requires 4N − 4 measurements (to recover all
signals)
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FROG

Few words on the proof

The challenge: system of phaseless quartic equations (in contrast to
quadratic system of equations in phase retrieval)

One can formulate the FROG measurements as

ŷk,m = 1
N

N−1∑
`=0

x̂`x̂k−`ω
`m, ω = e2πiL/N ,

Because of the bandlimited assumption, one can form a pyramid
structure of x̂`x̂k−`

x̂2
0 , 0, . . . , 0

x̂0x̂1, x̂1x̂0, 0, . . . , 0
x̂0x̂2, x̂2

1 , x̂2x̂0, . . . , 0 . . .
...

x̂N/2−1x̂0, x̂N/2−2x̂1, . . . , x̂N/2−1x̂0, 0, . . . , 0
0, x̂1x̂N/2−1, x̂2x̂N/2−2, . . . , x̂N/2−1x̂1, 0, . . . , 0

...
0, 0, . . . x̂N/2−1x̂N/2−1, . . . , 0, . . . , 0.

Because of the bandlimited assumption, one can form a pyramid
structure
Because of the two continuous symmetries, we can fix x̂0 and x̂1 to be
real and =x̂2 ≥ 0
The rest of the coefficients are determined recursively. Given the first
(k − 1) Fourier coefficients, we get a quadratic system for the kth
coefficient
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Blind FROG

Blind FROG

In some experimental setups, two pulses are necessary: one to excite a
medium and the other to probe it.

Estimating two pulses simultaneously from the blind FROG trace

|ŷk,m|2 =
∣∣∣∣∣
N−1∑
n=0

unvn+mLe−2πikn/N
∣∣∣∣∣
2

, m = 0, . . . , dN/Le − 1.

Additional continuous symmetry: the pair (uneinφ, vne−inφ) has the
same blind FROG trace as (u, v) for any φ ∈ R.
When L = 1, the two signals are determined uniquely, up to
symmetries [B., Sidorenko and Eldar, 2017].

How many measurements do we need to determine a generic pair of
signals from their blind FROG trace?
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Open questions

Additional open questions

Many FROG non-linearities to consider. For example, a setup for
characterization of Attosecond pulses, called FROG for Complete
Reconstruction of Attosecond Bursts (FROG CRAB), is modeled as:

|ŷk,m|2 =
∣∣∣∣∣
N−1∑
n=0

uneivn+mLe−2πikn/N
∣∣∣∣∣
2

, m = 0, . . . , dN/Le − 1

Analysis of FROG algorithms. Currently, the most popular algorithm
is the Principal Component Generalized Projections which alternates
between the known intensities and the form of the non-linear
interaction.
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Open questions

New benchmark for crystallography problems
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Thanks for your attention!
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