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Cryo-electron microscopy

Single particle cryo-electron microscopy (cryo-EM) is an emerging
technology for structure determination of biological molecules (e.g.,
viruses, proteins).
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Cryo-EM mathematical model
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Cryo-EM mathematical model

Pi = STRiX + noise, Ri ∈ SO(3)

Pi = sampling(projection(rotation(X ))) + noise

Experimental images:

 

 

The images of E. coli 50S ribosomal subunit were provided by Dr. Fred Sigworth, Yale Medical School.
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Resolution limits of cryo-EM

“Folk Theorem”: Shannon-Nyquist sampling theorem implies that the
resolution of any estimate of the 3-D structure X̂ is limited by the
resolution of the 2-D projection images (dictated by the detectors
acquiring the data):

Resolution(X̂ ) ≤ Resolution(Pi )

Is this correct? Obviously not. Shannon-Nyquist concerns a single
observation.

Can the resolution of the estimated 3-D structure surpass the
resolution of the 2-D projection images?
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Problem formulation (toy model for cryo-EM)

Problem: Estimate a signal in x ∈ RM from its circularly shifted, sampled,
noisy copies

yi = SRti x + εi , i = 1, . . . ,N,

t ∼ Uni[0,M − 1], ε ∼ N (0, σ2I ),

where S is a sampling operator that selects L equally-spaced samples.
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where S is a sampling operator that selects L equally-spaced samples.

We wish to understand how many samples L we need to collect to
estimate x accurately as a function of M,N, and σ.

Super-resolution interpretation: We refer to x as the “high-resolution”
signal with bandwidth proportional to M, and to y1, . . . , yN as the
“low-resolution” observations.

This problem is an instance of the multi-reference alignment model.
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Super-resolution example

true
low-passed
estimated

Sampling rate = (Nyquist rate)/2, SNR = 1,N = 104
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Main result

In the low SNR regime σ →∞, the signal can be identified if:

N/σ6 →∞ (necessary condition even if L = M)

L ≥
√

6M.

Informally: one can square the resolution.

Tamir Bendory (Tel Aviv University) Super-resolution June 29, 2020 9 / 20



Main result

In the low SNR regime σ →∞, the signal can be identified if:

N/σ6 →∞ (necessary condition even if L = M)

L ≥
√

6M.

Informally: one can square the resolution.

Tamir Bendory (Tel Aviv University) Super-resolution June 29, 2020 9 / 20



Main result

In the low SNR regime σ →∞, the signal can be identified if:

N/σ6 →∞ (necessary condition even if L = M)

L ≥
√

6M.

Informally: one can square the resolution.

Tamir Bendory (Tel Aviv University) Super-resolution June 29, 2020 9 / 20



Proof strategy

Example: M = 12, L = 4,K = M/L = 3

0 2 4 6 8 10 12
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Proof strategy

The model
y = SRtx + ε t ∼ Uni[0,M − 1],

is equivalent to

y = R`xk + ε, ` ∼ Uni[0, L− 1], k ∼ Uni[0,K − 1].

0 2 4 6 8 10 12
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Proof strategy (Likelihood)

The model
y = SRtx + ε t ∼ Uni[0,M − 1],

is equivalent to

y = R`xk + ε, ` ∼ Uni[0, L− 1], k ∼ Uni[0,K − 1].

This model is called heterogeneous multi-reference alignment.

The likelihood function (of a single observation) is then given

p(y |x) =
1

M

L−1∑
t=0

K−1∑
k=0

N (R`xk , σ
2I )
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Proof strategy (Likelihood)

Likelihood:

p(y |x) =
1

M

L−1∑
`=0

K−1∑
k=0

N (R`xk , σ
2I )
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All signals in the orbit Gx := {gx |g ∈ G}—where G is a subgroup of the
permutation group—have the same likelihood.

Conclusion: The likelihood does not determine x uniquely, only the
orbit Gx . We must assume a prior on the signal.

Tamir Bendory (Tel Aviv University) Super-resolution June 29, 2020 13 / 20



Proof strategy (Likelihood)

Likelihood:

p(y |x) =
1

M

L−1∑
`=0

K−1∑
k=0

N (R`xk , σ
2I )

0 2 4 6 8 10 12 0 2 4 6 8 10 12 0 2 4 6 8 10 12 0 2 4 6 8 10 12

All signals in the orbit Gx := {gx |g ∈ G}—where G is a subgroup of the
permutation group—have the same likelihood.

Conclusion: The likelihood does not determine x uniquely, only the
orbit Gx . We must assume a prior on the signal.

Tamir Bendory (Tel Aviv University) Super-resolution June 29, 2020 13 / 20



Proof strategy (Method of moments)

Likelihood:

p(y |x) =
1

M

K−1∑
k=0

L−1∑
`=0

N (R`xk , σ
2I )

Computing the moments of y is equivalent to averaging over the moments
of the sub-signals x0, . . . , xK−1:

Mq
y =

1

K

K−1∑
k=0

Mq
xk

It has been shown that M3
y (having O(L2) entries) determines Gx as long

as K ≤ L/61, implying

K =
M

L
≤ L/6 ⇒ M ≤ L2/6

1
Bandeira, Blum-Smith, Kileel, Perry, Weed, Wein. “Estimation under group actions: recovering orbits from invariants.”

2018
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Proof strategy (Method of moments)

Conclusion: If the third moment can be estimated accurately, then one
can recover the orbit Gx as long as L ≥

√
6M.

How many observations are required to estimate the third moment:

In the low SNR regime, N/σ6 →∞
(a necessary condition for any algorithm [Bandiera et al., ‘17; Abbe et
al., ‘18])

In the high SNR regime, N ≈ K logK (in expectation)

Tamir Bendory (Tel Aviv University) Super-resolution June 29, 2020 15 / 20



Proof strategy (Method of moments)

Conclusion: If the third moment can be estimated accurately, then one
can recover the orbit Gx as long as L ≥

√
6M.

How many observations are required to estimate the third moment:

In the low SNR regime, N/σ6 →∞
(a necessary condition for any algorithm [Bandiera et al., ‘17; Abbe et
al., ‘18])

In the high SNR regime, N ≈ K logK (in expectation)

Tamir Bendory (Tel Aviv University) Super-resolution June 29, 2020 15 / 20



Proof strategy (Method of moments)

Conclusion: If the third moment can be estimated accurately, then one
can recover the orbit Gx as long as L ≥

√
6M.

How many observations are required to estimate the third moment:

In the low SNR regime, N/σ6 →∞
(a necessary condition for any algorithm [Bandiera et al., ‘17; Abbe et
al., ‘18])

In the high SNR regime, N ≈ K logK (in expectation)

Tamir Bendory (Tel Aviv University) Super-resolution June 29, 2020 15 / 20



Proof strategy (Method of moments)

Conclusion: If the third moment can be estimated accurately, then one
can recover the orbit Gx as long as L ≥

√
6M.

How many observations are required to estimate the third moment:

In the low SNR regime, N/σ6 →∞
(a necessary condition for any algorithm [Bandiera et al., ‘17; Abbe et
al., ‘18])

In the high SNR regime, N ≈ K logK (in expectation)

Tamir Bendory (Tel Aviv University) Super-resolution June 29, 2020 15 / 20



Proof strategy (Last stage)

So far:

From the likelihood function, one can only recover the orbit Gx .

Given the third moment, Gx can be estimated as long as L ≥
√

6M.

Last stage: Given almost any Gaussian prior on the signal, there is a
unique signal in Gx that achieves the maximum of the posterior
distribution (MAP).
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Computational considerations

Our theoretical analysis suggests a two-stage procedure:

identifying the orbit Gx ;

identifying x from Gx using a prior on x .

We devised an expectation-maximization algorithm to maximize the
posterior distribution directly (likelihood+prior)

Can we achieve the theoretical bound L ≈ M1/2? No.

Previous works postulated a statistical-computational gap: efficient
algorithms can recover the orbit Gx only when L ≈ M2/3.

Our task is significantly harder, and thus empirically we need L > M2/3.
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Numerical example
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(c) M = 240

SNR = 5,N = 103, red vertical line indicates L = M2/3
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Future work

1 Super-resolution of continuous setups, multi-dimensional signals, and
cryo-EM

2 Sampling theory in low SNR environments using moments
(characterizing the interplay between M, L,N, σ )

3 Statistical-computational gaps
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Thanks for your attention!

Tamir Bendory (Tel Aviv University) Super-resolution June 29, 2020 20 / 20


	Motivation
	Problem formulation
	Main results
	Computational considerations
	Future work

