Super-resolution multi-reference alignment

Tamir Bendory (Tel Aviv University, EE)

June 29, 2020

Joint work with:
Ariel Jaffe (Yale University, Applied math) Will Leeb (University of Minnesota, Math) Nir Sharon (Tel Aviv University, Applied math) Amit Singer (Princeton University, Math\&PACM)

Outline

(1) Motivation
(2) Problem formulation
(3) Main results
(4) Computational considerations
(5) Future work

Cryo-electron microscopy

Single particle cryo-electron microscopy (cryo-EM) is an emerging technology for structure determination of biological molecules (e.g., viruses, proteins).

Jacques Dubochet Joachim Frank Richard Henderson
"For developing ono-electron wicroscopy for the high-rsolution structure
devermination of biomolecules in solution"
devermination of biomolecules in zolution"

$4.5 \AA$

$2.9 \AA$

$2.3 \AA$

1.8 Å

Cryo-EM mathematical model

Cryo-EM mathematical model

$$
P_{i}=\operatorname{sampling}(\operatorname{projection}(\text { rotation }(X)))+\text { noise }
$$

The images of E. coli 50S ribosomal subunit were provided by Dr. Fred Sigworth, Yale Medical School.

Cryo-EM mathematical model

$$
P_{i}=\operatorname{sampling}(\operatorname{projection}(\operatorname{rotation}(X)))+\text { noise }
$$

Experimental images:

The images of E. coli 50 S ribosomal subunit were provided by Dr. Fred Sigworth, Yale Medical School.

Resolution limits of cryo-EM

"Folk Theorem": Shannon-Nyquist sampling theorem implies that the resolution of any estimate of the 3-D structure \hat{X} is limited by the resolution of the 2-D projection images (dictated by the detectors acquiring the data):

$$
\operatorname{Resolution}(\hat{X}) \leq \operatorname{Resolution}\left(P_{i}\right)
$$

Resolution limits of cryo-EM

"Folk Theorem": Shannon-Nyquist sampling theorem implies that the resolution of any estimate of the 3-D structure \hat{X} is limited by the resolution of the 2-D projection images (dictated by the detectors acquiring the data):

$$
\operatorname{Resolution}(\hat{X}) \leq \operatorname{Resolution}\left(P_{i}\right)
$$

Is this correct? Obviously not. Shannon-Nyquist concerns a single observation.

Resolution limits of cryo-EM

"Folk Theorem": Shannon-Nyquist sampling theorem implies that the resolution of any estimate of the 3-D structure \hat{X} is limited by the resolution of the 2-D projection images (dictated by the detectors acquiring the data):

$$
\operatorname{Resolution}(\hat{X}) \leq \operatorname{Resolution}\left(P_{i}\right)
$$

Is this correct? Obviously not. Shannon-Nyquist concerns a single observation.

Can the resolution of the estimated 3-D structure surpass the resolution of the 2-D projection images?

Problem formulation (toy model for cryo-EM)

Problem: Estimate a signal in $x \in \mathbb{R}^{M}$ from its circularly shifted, sampled, noisy copies

$$
\begin{aligned}
& y_{i}=S R_{t_{i}} x+\varepsilon_{i}, \quad i=1, \ldots, N \\
& t \sim \operatorname{Uni}[0, M-1], \quad \varepsilon \sim \mathcal{N}\left(0, \sigma^{2} I\right)
\end{aligned}
$$

where S is a sampling operator that selects L equally-spaced samples.

Problem formulation (toy model for cryo-EM)

Problem: Estimate a signal in $x \in \mathbb{R}^{M}$ from its circularly shifted, sampled, noisy copies

$$
\begin{aligned}
& y_{i}=S R_{t_{i}} x+\varepsilon_{i}, \quad i=1, \ldots, N \\
& t \sim \operatorname{Uni}[0, M-1], \quad \varepsilon \sim \mathcal{N}\left(0, \sigma^{2} I\right)
\end{aligned}
$$

where S is a sampling operator that selects L equally-spaced samples.

Problem formulation (toy model for cryo-EM)

Problem: Estimate a signal in $x \in \mathbb{R}^{M}$ from its circularly shifted, sampled, noisy copies

$$
\begin{aligned}
& y_{i}=S R_{t_{i}} x+\varepsilon_{i}, \quad i=1, \ldots, N, \\
& t \sim \operatorname{Uni}[0, M-1], \quad \varepsilon \sim \mathcal{N}\left(0, \sigma^{2} I\right)
\end{aligned}
$$

where S is a sampling operator that selects L equally-spaced samples.
We wish to understand how many samples L we need to collect to estimate x accurately as a function of M, N, and σ.

Problem formulation (toy model for cryo-EM)

Problem: Estimate a signal in $x \in \mathbb{R}^{M}$ from its circularly shifted, sampled, noisy copies

$$
\begin{aligned}
& y_{i}=S R_{t_{i}} x+\varepsilon_{i}, \quad i=1, \ldots, N \\
& t \sim \operatorname{Uni}[0, M-1], \quad \varepsilon \sim \mathcal{N}\left(0, \sigma^{2} I\right)
\end{aligned}
$$

where S is a sampling operator that selects L equally-spaced samples.
We wish to understand how many samples L we need to collect to estimate x accurately as a function of M, N, and σ.

Super-resolution interpretation: We refer to x as the "high-resolution" signal with bandwidth proportional to M, and to y_{1}, \ldots, y_{N} as the "low-resolution" observations.

Problem formulation (toy model for cryo-EM)

Problem: Estimate a signal in $x \in \mathbb{R}^{M}$ from its circularly shifted, sampled, noisy copies

$$
\begin{aligned}
& y_{i}=S R_{t_{i}} x+\varepsilon_{i}, \quad i=1, \ldots, N \\
& t \sim \operatorname{Uni}[0, M-1], \quad \varepsilon \sim \mathcal{N}\left(0, \sigma^{2} I\right)
\end{aligned}
$$

where S is a sampling operator that selects L equally-spaced samples.
We wish to understand how many samples L we need to collect to estimate x accurately as a function of M, N, and σ.

Super-resolution interpretation: We refer to x as the "high-resolution" signal with bandwidth proportional to M, and to y_{1}, \ldots, y_{N} as the "low-resolution" observations.

This problem is an instance of the multi-reference alignment model.

Super-resolution example

Sampling rate $=($ Nyquist rate $) / 2, \operatorname{SNR}=1, N=10^{4}$

Main result

In the low SNR regime $\sigma \rightarrow \infty$, the signal can be identified if:

Main result

In the low SNR regime $\sigma \rightarrow \infty$, the signal can be identified if:

- $N / \sigma^{6} \rightarrow \infty$ (necessary condition even if $L=M$)
- $L \geq \sqrt{6 M}$.

Main result

In the low SNR regime $\sigma \rightarrow \infty$, the signal can be identified if:

- $N / \sigma^{6} \rightarrow \infty$ (necessary condition even if $L=M$)
- $L \geq \sqrt{6 M}$.

Informally: one can square the resolution.

Proof strategy

Example: $M=12, L=4, K=M / L=3$

Proof strategy

The model

$$
y=S R_{t} x+\varepsilon \quad t \sim \operatorname{Uni}[0, M-1]
$$

is equivalent to

$$
y=R_{\ell} x_{k}+\varepsilon, \quad \ell \sim \operatorname{Uni}[0, L-1], \quad k \sim \operatorname{Uni}[0, K-1] .
$$

Proof strategy (Likelihood)

The model

$$
y=S R_{t} x+\varepsilon \quad t \sim \operatorname{Uni}[0, M-1]
$$

is equivalent to

$$
y=R_{\ell} x_{k}+\varepsilon, \quad \ell \sim \operatorname{Uni}[0, L-1], \quad k \sim \operatorname{Uni}[0, K-1] .
$$

This model is called heterogeneous multi-reference alignment.

The likelihood function (of a single observation) is then given

$$
p(y \mid x)=\frac{1}{M} \sum_{t=0}^{L-1} \sum_{k=0}^{K-1} \mathcal{N}\left(R_{\ell} x_{k}, \sigma^{2} I\right)
$$

Proof strategy (Likelihood)

Likelihood:

$$
p(y \mid x)=\frac{1}{M} \sum_{\ell=0}^{L-1} \sum_{k=0}^{K-1} \mathcal{N}\left(R_{\ell} x_{k}, \sigma^{2} l\right)
$$

All signals in the orbit $G x:=\{g x \mid g \in G\}$-where G is a subgroup of the permutation group-have the same likelihood.

Proof strategy (Likelihood)

Likelihood:

$$
p(y \mid x)=\frac{1}{M} \sum_{\ell=0}^{L-1} \sum_{k=0}^{K-1} \mathcal{N}\left(R_{\ell} x_{k}, \sigma^{2} l\right)
$$

All signals in the orbit $G x:=\{g x \mid g \in G\}$-where G is a subgroup of the permutation group-have the same likelihood.

Conclusion: The likelihood does not determine x uniquely, only the orbit Gx. We must assume a prior on the signal.

Proof strategy (Method of moments)

Likelihood:

$$
p(y \mid x)=\frac{1}{M} \sum_{k=0}^{K-1} \sum_{\ell=0}^{L-1} \mathcal{N}\left(R_{\ell} x_{k}, \sigma^{2} I\right)
$$

[^0] 2018

Proof strategy (Method of moments)

Likelihood:

$$
p(y \mid x)=\frac{1}{M} \sum_{k=0}^{K-1} \sum_{\ell=0}^{L-1} \mathcal{N}\left(R_{\ell} x_{k}, \sigma^{2} I\right)
$$

Computing the moments of y is equivalent to averaging over the moments of the sub-signals x_{0}, \ldots, x_{K-1} :

$$
M_{y}^{q}=\frac{1}{K} \sum_{k=0}^{K-1} M_{x_{k}}^{q}
$$

[^1]
Proof strategy (Method of moments)

Likelihood:

$$
p(y \mid x)=\frac{1}{M} \sum_{k=0}^{K-1} \sum_{\ell=0}^{L-1} \mathcal{N}\left(R_{\ell} x_{k}, \sigma^{2} I\right)
$$

Computing the moments of y is equivalent to averaging over the moments of the sub-signals x_{0}, \ldots, x_{K-1} :

$$
M_{y}^{q}=\frac{1}{K} \sum_{k=0}^{K-1} M_{x_{k}}^{q}
$$

It has been shown that M_{y}^{3} (having $O\left(L^{2}\right)$ entries) determines $G x$ as long as $K \leq L / 6^{1}$, implying

$$
K=\frac{M}{L} \leq L / 6 \quad \Rightarrow \quad M \leq L^{2} / 6
$$

[^2]
Proof strategy (Method of moments)

Conclusion: If the third moment can be estimated accurately, then one can recover the orbit $G x$ as long as $L \geq \sqrt{6 M}$.

Proof strategy (Method of moments)

Conclusion: If the third moment can be estimated accurately, then one can recover the orbit $G x$ as long as $L \geq \sqrt{6 M}$.

How many observations are required to estimate the third moment:

Proof strategy (Method of moments)

Conclusion: If the third moment can be estimated accurately, then one can recover the orbit $G x$ as long as $L \geq \sqrt{6 M}$.

How many observations are required to estimate the third moment:

- In the low SNR regime, $N / \sigma^{6} \rightarrow \infty$
(a necessary condition for any algorithm [Bandiera et al., '17; Abbe et al., '18])

Proof strategy (Method of moments)

Conclusion: If the third moment can be estimated accurately, then one can recover the orbit $G x$ as long as $L \geq \sqrt{6 M}$.

How many observations are required to estimate the third moment:

- In the low SNR regime, $N / \sigma^{6} \rightarrow \infty$
(a necessary condition for any algorithm [Bandiera et al., '17; Abbe et al., '18])
- In the high SNR regime, $N \approx K \log K$ (in expectation)

Proof strategy (Last stage)

So far:

- From the likelihood function, one can only recover the orbit Gx.
- Given the third moment, $G x$ can be estimated as long as $L \geq \sqrt{6 M}$.

Proof strategy (Last stage)

So far:

- From the likelihood function, one can only recover the orbit Gx.
- Given the third moment, $G x$ can be estimated as long as $L \geq \sqrt{6 M}$.

Last stage: Given almost any Gaussian prior on the signal, there is a unique signal in Gx that achieves the maximum of the posterior distribution (MAP).

Computational considerations

Our theoretical analysis suggests a two-stage procedure:

- identifying the orbit $G x$;
- identifying x from $G x$ using a prior on x.

Computational considerations

Our theoretical analysis suggests a two-stage procedure:

- identifying the orbit $G x$;
- identifying x from $G x$ using a prior on x.

We devised an expectation-maximization algorithm to maximize the posterior distribution directly (likelihood+prior)

Computational considerations

Our theoretical analysis suggests a two-stage procedure:

- identifying the orbit $G x$;
- identifying x from $G x$ using a prior on x.

We devised an expectation-maximization algorithm to maximize the posterior distribution directly (likelihood+prior)

Can we achieve the theoretical bound $L \approx M^{1 / 2}$? No.

Computational considerations

Our theoretical analysis suggests a two-stage procedure:

- identifying the orbit $G x$;
- identifying x from $G x$ using a prior on x.

We devised an expectation-maximization algorithm to maximize the posterior distribution directly (likelihood+prior)

Can we achieve the theoretical bound $L \approx M^{1 / 2}$? No.

Previous works postulated a statistical-computational gap: efficient algorithms can recover the orbit $G x$ only when $L \approx M^{2 / 3}$.

Computational considerations

Our theoretical analysis suggests a two-stage procedure:

- identifying the orbit $G x$;
- identifying x from $G x$ using a prior on x.

We devised an expectation-maximization algorithm to maximize the posterior distribution directly (likelihood+prior)

Can we achieve the theoretical bound $L \approx M^{1 / 2}$? No.

Previous works postulated a statistical-computational gap: efficient algorithms can recover the orbit $G x$ only when $L \approx M^{2 / 3}$.

Our task is significantly harder, and thus empirically we need $L>M^{2 / 3}$.

Numerical example

(a) $M=60$

(b) $M=120$

(c) $M=240$

SNR $=5, N=10^{3}$, red vertical line indicates $L=M^{2 / 3}$

Future work

(1) Super-resolution of continuous setups, multi-dimensional signals, and cryo-EM
(2) Sampling theory in low SNR environments using moments (characterizing the interplay between M, L, N, σ)
(3) Statistical-computational gaps

Thanks for your attention!

[^0]: ${ }^{1}$ Bandeira, Blum-Smith, Kileel, Perry, Weed, Wein. "Estimation under group actions: recovering orbits from invariants."

[^1]: ${ }^{1}$ Bandeira, Blum-Smith, Kileel, Perry, Weed, Wein. "Estimation under group actions: recovering orbits from invariants."

[^2]: ${ }^{1}$ Bandeira, Blum-Smith, Kileel, Perry, Weed, Wein. "Estimation under group actions: recovering orbits from invariants."

