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Abstract. We propose a unifying framework that combines smoothing approximation with
fast first order algorithms for solving nonsmooth convex minimization problems. We prove that
independently of the structure of the convex nonsmooth function involved, and of the given fast first
order iterative scheme, it is always possible to improve the complexity rate and reach an O(ε−1)
efficiency estimate by solving an adequately smoothed approximation counterpart. Our approach
relies on the combination of the notion of smoothable functions that we introduce with a natural
extension of the Moreau-infimal convolution technique along with its connection to the smoothing
mechanism via asymptotic functions. This allows for clarification and unification of several issues on
the design, analysis, and potential applications of smoothing methods when combined with fast first
order algorithms.
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1. Introduction. A well-known methodology for designing solution techniques
to nonsmooth optimization (NSO) problems is to replace the original problem by
a sequence of approximating smooth problems, which hopefully can be solved more
efficiently than by using direct and classical schemes such as subgradient and bundle
type methods [21]. The basic idea is to transform the nondifferentiable problem into
a smooth problem. Many researchers have proposed different smoothing approaches
to various classes of NSO problems. Some earlier works on the subject can be found,
for example, in [16, 11, 12, 10], and for a more recent account, see, for instance, [3]
and references therein.

This work is motivated by a paper of Nesterov [17], where a new method for
minimizing a nonsmooth convex function over a convex compact finite-dimensional
set is proposed. The characteristic feature of Nesterov’s method is that for a special
class of nonsmooth convex functions which are given as specific “max” type functions
(see section 4), adopting the smoothing methodology combined with a fast gradient
scheme for minimizing smooth convex functions also developed there, i.e., a method
that shares a rate of convergence O(1/k2) for function values, where k is the iteration
counter, an ε-optimal solution of the original nonsmooth problem can be obtained
within O(1/ε) iterations by solving its smoothed counterpart. This clearly outper-
forms usual subgradient-based schemes which when minimizing a Lipschitz continuous
nonsmooth convex function reach an ε-optimal solution within O(1/ε2) iterations. It
should be stressed that convergence rates are with respect to the objective function
values and not with respect to the iterates. The main difference which explains this
improvement relies on the fact that, as opposed to classical subgradient schemes that
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558 AMIR BECK AND MARC TEBOULLE

are black-box oriented and applicable to any convex function, in the approach de-
veloped in [17], the special structure of the function to be minimized is beneficially
exploited when combined with a peculiar fast gradient scheme.

This paper can be viewed as a natural complement and extension of Nesterov’s
framework, thus clarifying and unifying several issues on the design, analysis, and
potential applications of smoothing methods when combined with fast first order
algorithms. Our main observation is that independently of the structure of the convex
nonsmooth function involved, and of the given fast first order iterative scheme used,
it is always possible to improve the complexity rate for a broad class of NSO problems
by solving its corresponding smoothed problem via any given fast first order scheme.
Roughly speaking, first we show that the underlying and restrictive max-structure
assumption of the nonsmooth convex function [17] can be removed, and second, we
show that given any fast first order iterative method that is capable of producing an
O(1/k2) rate of convergence will then naturally induce a method capable of solving a
convex NSO model via its smoothed counterpart, with the improved complexity rate
O(1/ε), rather than the usualO(1/ε2) obtained by using standard subgradient/bundle
schemes.

In this paper we adopt a partial smoothing approach in which (possibly) only
a part of the nonsmooth component of the objective function is actually smoothed.
More precisely, we will consider minimization problems of the form

min
x

{F (x) + h1(x) + h2(x)},

where F is smooth and h1, h2 are nonsmooth. (The precise setting is given in sec-
tion 3.) In the standard smoothing methodology, or full smoothing, both h1 and h2

are replaced by approximate smoothing functions H1 and H2, respectively, giving rise
to the smoothed problem

(CS) min
x

{F (x) +H1(x) +H2(x)}.

However, here we will consider the partial smoothing approach in which only one of
the nonsmooth functions, say, h1, is smoothed while the other (h2) is kept untouched:

(PS) min
x

{F (x) +H1(x) + h2(x)}.

The motivation for such an approach is twofold. First, with respect to the design
and algorithmic analysis of the corresponding scheme, it stems from the fact that
minimization problems of composite functions of the form

(C) min
x

{F (x) + h(x)},

where F is smooth and h is nonsmooth, can be solved by fast gradient-based methods
with an O(1/k2) rate of convergence despite the apparent nonsmoothness of the ob-
jective function. That is, the presence of the nonsmooth function does not alter the
complexity bound; see the recent algorithms described in [8, 18]. In these algorithms,
in addition to gradient computations of the smooth function F , a proximal-type op-
erator of the nonsmooth function h is evaluated at each iteration. Therefore, in a
sense, these are only conceptual algorithms since evaluating a proximal-type operator
can be as difficult as solving the original problem. For a recent analysis on the effects
of approximate computation of such operators within fast gradient schemes, see [14].
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SMOOTHING AND FIRST ORDER METHODS 559

Nevertheless, there are some classes of interesting nonsmooth functions h for which
the proximal operation is simple; see, for instance, the recent work of Combettes and
Pesquet [13], which provides a thorough review of proximal-based algorithms and an
important list of computable proximity operators arising in many applications. Sec-
ond, in many of these applications [9, 13], one of the nonsmooth terms in the model
(PS), say, h2, plays a key role in describing a desirable property of the decision vari-
able x which otherwise could be destroyed by smoothing. Thus, when the nonmooth
function h2 in problem (PS) belongs to the aforementioned class and plays a cen-
tral role in modeling the problem at hand, it can and should be kept untouched; see
section 5, which illustrates such a situation.

To achieve the aforementioned goals, we introduce and characterize mathemati-
cally the broad concept of “smoothable functions” for general convex functions; see
section 2. In section 3, we begin by introducing the formulation of the nonsmooth
optimization problem of interest, which encapsulates a broad class of NSO problems.
We then formalize what we call a fast iterative method M for composite convex min-
imization problems of the form (C), and we establish that when applied to a partially
smoothed version of the original nonsmooth problem with an adequate smoothing
parameter expressed in terms of the problem’s data, we always obtain an improved
scheme with complexity O(1/ε). To apply our results, we need a smoothing procedure
for a general convex function. This is developed in section 4, where we provide a uni-
fying and general approach which naturally extends the so-called Moreau proximal
regularization of a convex function [16], and to eventually make a connection with
another well-known approach for smoothing which is based on asymptotic functions
[3], thus closing the loop of various existing smoothing procedures. This also allows
us to explain, recover, and extend the smoothing approach of [17]. Throughout, we il-
lustrate our results with a variety of examples. Finally, section 5 contains a numerical
example accompanied with a theoretical justification that illustrates the potential ad-
vantage of the proposed partial smoothing approach over the full standard smoothing
methodology.

1.1. Notation. Throughout the paper we consider finite-dimensional normed
vector spaces, denoted by E,F,V, etc. For a vector space E, the endowed norm is
denoted by ‖ · ‖E and the space of linear functionals is denoted by E

∗. The dual
norm is denoted by either ‖ · ‖∗

E
or ‖ · ‖E∗ and is defined as usual as ‖x‖∗

E
= ‖x‖E∗ =

max{〈u,x〉 : ‖u‖E ≤ 1} for any x ∈ E
∗. Here 〈u,x〉 for u ∈ E

∗ and x ∈ E denotes
the value of the functional u at x. The norm of a linear transformation A : E → V,
where E and V are finite-dimensional vector spaces with endowed norms ‖ · ‖E and
‖ · ‖V, respectively, is given by

‖A‖E,V = max{‖Ax‖V : ‖x‖E = 1}.

The subscript indicating the vector spaces will be omitted when their identity is
obvious from the context. The vector of all ones is denoted by e where the dimension
of the vector will be clear from the context. The set Δn = {z ∈ R

n : zT e = 1, z ≥ 0}
is the unit simplex set. For a set C, we denote by δC the indicator function of the
set, that is, δC(x) = 0 if x ∈ C and ∞ otherwise. For any function f and x ∈ E, we
denote the gradient of f at x to be the vector ∇f(x) ∈ E∗ for which

lim
‖d‖→0

f(x+ d)− f(x)− 〈∇f(x),d〉
‖d‖ = 0.
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560 AMIR BECK AND MARC TEBOULLE

When we say that a function f : X → R is continuously differentiable on any given
subset X ⊆ E, it should be understood that this implicity assumes that there exists
an open set containing X on which the derivatives are defined as usual. We also often
use the standard notation C1,1 for a function which is continuously differentiable with
Lipschitz gradient. Finally, further standard definitions or notations in convex analysis
which are not explicitly mentioned here can be found in the classical book [19].

2. Smoothable convex functions. We begin by defining the concept of a
smoothable function and the corresponding smooth approximation of a given non-
differentiable convex function.1

Definition 2.1 (smoothable functions). Let g : E → (−∞,∞] be a closed and
proper convex function and let X ⊆ dom g be a closed convex set. The function g is
called “(α, β,K)-smoothable” over X if there exist β1, β2 satisfying β1 + β2 = β > 0
such that for every μ > 0 there exists a continuously differentiable convex function
gμ : E → (−∞,∞) such that the following hold:

(i) g(x)− β1μ ≤ gμ(x) ≤ g(x) + β2μ for every x ∈ X.
(ii) The function gμ has a Lipschitz gradient over X with Lipschitz constant which

is less than or equal to K + α
μ . That is, there exists K ≥ 0, α > 0, such that

(2.1) ‖∇gμ(x)−∇gμ(y)‖∗ ≤
(
K +

α

μ

)
‖x− y‖ for every x,y ∈ X.

The function gμ is called a “μ-smooth approximation” of g over X with parameters
(α, β,K).

If a function is smoothable over the entire vector space E, then it will just be
called (α, β,K)-smoothable.

Remark 2.1. The choice of the decomposition of β as β1 + β2 is arbitrary. In
fact, if

g(x)− β1μ ≤ gμ(x) ≤ g(x) + β2μ for every x ∈ X,

then for every γ ∈ R,

g(x)− (β1 − γ)μ ≤ gμ(x) + γμ ≤ g(x) + (β2 + γ)μ for every x ∈ X,

which together with the fact that the Lipschitz constants of the gradients of gμ + γμ
and gμ are the same implies that gμ + γμ is also a μ-smooth approximation with
parameters (α, β,K), but with β1 − γ, β2 + γ taking the role of β1, β2 in property (i)
of the definition.

It is quite easy to see that the following algebraic rules apply for smoothable
functions.

Lemma 2.1 (sum of smoothable functions). Let γ1, γ2 be nonnegative constants
and let g1, g2 be (α1, β1,K1)- and (α2, β2,K2)-smoothable functions, respectively, over
some closed convex set X. Then γ1g1 + γ2g2 is a (γ1α1 + γ2α2, γ1β1 + γ2β2, γ1K1 +
γ2K2)-smoothable function over X.

Proof. Straightforward from the definition of smoothable functions.
It is also important to understand the effect of a linear transformation of the

variables on the parameters of a smoothable function.

1Note that the definition and properties discussed in this section remain valid for any closed
proper function.

D
ow

nl
oa

de
d 

11
/1

4/
20

 to
 1

32
.6

6.
11

.2
12

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/p

ag
e/

te
rm

s



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

SMOOTHING AND FIRST ORDER METHODS 561

Lemma 2.2 (linear transformation of a smoothable function). Let A : E → V be
a linear transformation. Let g be a (α, β,K)-smoothable function over a closed convex
set X ⊆ V, and let b ∈ V.

Then the function q : E → (−∞,∞) defined by q(x) = g(Ax+ b) is a (α‖A‖2, β,
K‖A‖2)-smoothable function over A−1(X − b), where

‖A‖ ≡ ‖A‖E,V = max {‖Ax‖V : ‖x‖E = 1}

and where A−1 is the inverse linear mapping defined by

A−1(S) ≡ {x ∈ E : Ax = s for some s ∈ S}

for every S ⊆ V.
Proof. First, let gμ be a μ-smooth approximation of g with parameters (α, β,K)

over X . Then there exists β1, β2 such that β = β1 + β2, for which it holds that

g(y)− β1μ ≤ gμ(y) ≤ g(y) + β2μ

for any y ∈ X . Making the change of variables y = Ax+ b, where x ∈ A−1(X − b),
it follows that

g(Ax+ b)− β1μ ≤ gμ(Ax + b) ≤ g(Ax+ b) + β2μ,

implying that

q(x) − β1μ ≤ gμ(Ax+ b) ≤ q(x) + β2μ

for any x ∈ A−1(X − b). Therefore, property (i) of Definition 2.1 is satisfied with
qμ(x) ≡ gμ(Ax + b). To verify property (ii) of the same definition, note that the
gradient of qμ is given by A∗∇gμ(Ax+ b) and for any x,y ∈ A−1(X − b) we have

‖∇qμ(x) −∇qμ(y)‖∗E = ‖A∗∇gμ(Ax+ b)−A∗∇gμ(Ay + b)‖∗
E

≤ ‖A‖‖∇gμ(Ax+ b)−∇gμ(Ay + b)‖∗V
≤
[(

α

μ
+K

)
‖A‖

]
‖Ax+ b−Ay − b‖V

≤
[(

α

μ
+K

)
‖A‖2

]
‖x− y‖E,

establishing the desired result.
There exist several ways to generate smooth approximations of nondifferentiable

convex functions. This issue will be addressed in section 4.4, where we present a
general framework for generating such smooth approximations. In the next section,
we present a smoothing-based general minimization scheme.

3. A smoothing-based fast first order method. We are interested in solving
the convex problem (G) given by

(3.1) (G) H∗ = min{H(x) ≡ g(x) + f(x) + h(x) : x ∈ E},

where the assumptions on the underlying functions are
• h : E → (−∞,∞] is an extended valued closed proper convex function which
is subdifferentiable over its domain which is denoted by X = domh;
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562 AMIR BECK AND MARC TEBOULLE

• f : X → (−∞,∞) is a continuously differentiable function over X whose
gradient is Lipschitz with constant Lf ;

• g : X → (∞,∞] is a (α, β,K)-smoothable function over X .
Problem (G) is rich enough to cover many interesting generic optimization models
by appropriate choices of (f, g, h). At a first glance, the use of three functions, with
two being nonsmooth, and one smooth, might appear redundant. However, it is
relevant since, as mentioned in the introduction, we will invoke what we call partial
smoothing, namely, only the function g is smoothed, while the function h remains
unchanged. Later on, in section 5, we will demonstrate the advantage of the partial
smoothing approach in comparison to the “full” smoothing methodology, i.e., in which
h would also be smoothed.

The partially smoothed problem is thus

(3.2) (Gμ) H∗
μ = min{Hμ(x) ≡ gμ(x) + f(x) + h(x) : x ∈ E},

where gμ is a μ-smooth approximation of g over X with parameters (α, β,K) for an
appropriately chosen μ. Note that (Gμ) remains a nonsmooth problem, due to the
presence of the nonsmooth function h.

The idea is now to be able to use any adequate algorithm for solving (Gμ). For
that purpose we introduce the formal definition of a fast iterative method for solving
the convex NSO problem,

(3.3) (C) min{D(x) ≡ F (x) + h(x) : x ∈ E},
which is assumed to have an optimal solution x∗ ∈ E, and D∗ := D(x∗) denotes its
optimal value.

This problem is called the input convex optimization model and is characterized
by the following data:

• h is an extended valued closed convex function which is subdifferentiable over
its domain domh.

• F is a continuously differentiable convex function over domh whose gradient
is Lipschitz with constant LF .

The input convex optimization model (C) is thus characterized by the triplet
(F, h, LF ) satisfying the above premises.

Definition 3.1 (fast iterative method). Let (F, h, LF ) be a given input convex
optimization model with an optimal solution x∗, and let x0 ∈ E be any given initial
point. An iterative method M for solving problem (C) is called a fast method with
constant 0 < Λ < ∞, which possibly depends on (x0,x

∗), if it generates a sequence
{xk}k≥0 satisfying for all k ≥ 1,

(3.4) D(xk)−D∗ ≤ LFΛ

k2
.

It is important to stress that within such a general setting, we are not preoccupied
with the specific computations that are necessary—and that can be quite involved—
to build the method M; see also the remarks and discussion at the end of this sec-
tion. Here, our interest and main observation is to establish that by applying any
fast method M on the partially smoothed problem (Gμ) with an appropriately chosen
smoothing parameter μ, an ε optimal solution can be obtained in no more than O(1/ε)
iterations, which, as mentioned in the introduction, is much better than the standard
bound O(1/ε2) that would be obtained by using a usual black-box nonsmooth subgra-
dient/bundle schemes on a nonsmooth problem (F, h, LF ) with a nontrivial function h.
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SMOOTHING AND FIRST ORDER METHODS 563

The next result shows that the important idea of Nesterov [17, Theorem 3], to
combine smoothing with a smooth optimization algorithm for specially structured
max-type problems for reducing the complexity rate, can now be extended thanks to
the concept of smoothable functions introduced in section 2 and independently of the
given smooth optimization algorithm.

Theorem 3.1. Let {xk} be the sequence generated by a fast iterative method
M when applied to problem (Gμ), that is, to the input optimization problem (f +
gμ, h, Lf+gµ). Suppose that the smoothing parameter is chosen as

(3.5) μ =

√
α

β

ε√
αβ +

√
αβ + (Lf +K)ε

.

Then for

(3.6) k ≥ 2
√
αβΛ

1

ε
+
√
(Lf +K)Λ

1√
ε
,

it holds that H(xk)−H∗ ≤ ε.
Proof. Let μ > 0 and F := f + gμ. Using Definition 2.1(ii), one has LF =

Lf +K + α
μ . Therefore, the sequence generated by the method M when applied to

(Gμ) satisfies for all k ≥ 1

(3.7) Hμ(xk)−H∗
μ ≤

(
Lf +K +

α

μ

)
Λ

k2
.

Since gμ is a μ-smooth approximation of g with parameters (α, β,K), by Defini-
tion 2.1(i) there exist β1, β2 satisfying β1 + β2 = β > 0 for which

H(x)− β1μ ≤ Hμ(x) ≤ H(x) + β2μ for any x ∈ E.

Thus, in particular, the following inequalities hold:

H∗ ≥ H∗
μ − β2μ and H(xk) ≤ Hμ(xk) + β1μ, k = 1, 2, . . . ,

and hence, together with (3.7) we obtain

(3.8) H(xk)−H∗ ≤ Hμ(xk)−H∗
μ + (β1 + β2)μ ≤ (Lf +K)

Λ

k2
+

(
αΛ

k2

)
1

μ
+ βμ.

Minimizing the right-hand side of (3.8) with respect to μ > 0 we obtain

(3.9) μ =

√
αΛ

β

1

k
.

Plugging the above expression for μ in (3.8), we obtain

H(xk)−H∗ ≤ (Lf +K)
Λ

k2
+ 2
√
αβΛ

1

k
.

Thus, given ε > 0, to obtain an ε-optimal solution satisfying H(xk) − H∗ ≤ ε, it
remains to find values of k for which

(3.10) (Lf +K)Λ
1

k2
+ 2
√
αβΛ

1

k
≤ ε.
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Denoting t :=
√
Λ 1

k , the above inequality reduces to

(Lf +K)t2 + 2
√
αβt− ε ≤ 0,

which is equivalent to (recall that t > 0)

√
Λ
1

k
= t ≤ −√

αβ +
√
αβ + (Lf +K)ε

Lf +K
=

ε√
αβ +

√
αβ + (Lf +K)ε

.

Using the value of the upper bound just established for
√
Λ 1

k in (3.9), we obtain the
desired expression of μ stated in (3.5). We have thus shown that by choosing μ as in
(3.5) and k satisfying

(3.11) k ≥
√
αβΛ +

√
αβΛ + (Lf +K)εΛ

ε
,

we have H(xk)−H∗ ≤ ε. To complete the proof and obtain the desired lower bound
for k as given in (3.6), note that for any A,B ≥ 0, the following inequality holds:

(3.12)
√
A+

√
A+B ≤ 2

√
A+

√
B.

By invoking (3.12) with

A :=
αβΛ

ε2
, B :=

(Lf +K)Λ

ε
,

together with (3.11), the desired result (3.6) follows.
Remark 3.1. Note that the “optimal” smoothing parameter (3.5) does not depend

on the constant Λ of the method. Nonetheless, this constant does appear in the
expression for the bound on the number of iterations required to obtain an ε-optimal
solution.

This paper is not concerned with the development and applications of fast iter-
ative schemes and we refer the reader to the cited references below for more details,
analysis, and applications. We end this section with a brief discussion on such schemes
within our result established in Theorem 3.1. Current prominent methods that sat-
isfy the premises of a fast iterative method M for solving problem (C) are first order
proximal gradient schemes, i.e., methods that use information on the gradient of F
and on the proximal mapping of h, or simply first order gradient schemes in the case
h ≡ 0; see [18, 8] for the former and [4, 17] for the latter. All these methods share the
same theoretical complexity rate O(1/k2) but are quite different with respect to their
analysis and computational demands. For instance, the methods in [17, 18] requires
two proximal steps based on two different proximal terms per iteration and accumu-
lated memory of previous gradients, while the methods described in [4, 8] request only
one proximal-based computation per iteration, thus providing computational saving.
Finally, note that in all these first order methods, the complexity bounds involve an
expression on some kind of distance between the initial point x0 ∈ E and an opti-
mal solution x∗, which has been quantified by the number Λ in Definition 3.1. For
example, in the Euclidean setting, one has

(3.13) Λ := ‖x∗ − x0‖2.
When domh is assumed bounded, for the aforementioned first order schemes, it can
be shown that the constant Λ is a positive finite real number. However, even when
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SMOOTHING AND FIRST ORDER METHODS 565

domh is not bounded, it is still possible to employ the smoothing-based M scheme,
since as shown in Theorem 3.1 the smoothing parameter μ given in (3.5) is in fact
independent on the constant Λ of the method M.

In order to apply a smoothing-based algorithm, it is necessary to specify the
smoothing approximation which is being used. This is done in the next section,
which provides a unified and general approach for smoothing a general nonsmooth
convex function.

4. Smoothing convex functions. Nondifferentiable convex functions can be
approximated by smooth functions by various techniques. One natural tool for gen-
erating an approximate smooth functional is through the use of the so-called proxi-
mal map introduced by Moreau [16]. One can construct a smoothed approximation
to a given nonsmooth convex function f by taking its infimal convolution with the
quadratic norm || · ||2. Another general smoothing mechanism is obtained by using
asymptotic (recession) functions [3]. Building on these fundamental tools, we propose
a natural and unifying framework to smooth a general class of nonsmooth convex
functions. This allows us to extend and connect these techniques as well as to recover
recent smoothing proposed in [17]. Before continuing onto details, for the convenience
of the reader we first recall some basic convex analysis results which will be essential
for the analysis below.

4.1. Some convex analysis preliminaries. The material in this section can
be found in the standard convex analysis literature, e.g., [19, 20]. The notion of
conjugate function is fundamental in our analysis and is recalled below.

Definition 4.1. For any extended real-valued function f : E → (−∞,∞], its
convex conjugate f∗ : E∗ → (−∞,∞] is defined by

f∗(y) = sup
x∈E

{〈x,y〉 − f(x)} = sup {〈x,y〉 − f(x) : x ∈ dom f} .

Moreover, if f is closed, proper, and convex on E, then so is f∗ and f∗∗ = f .
Recall that a proper function f : E → (−∞,+∞] is called σ-strongly convex with

respect to ‖ · ‖ if there exists a constant σ > 0 (often called the modulus of strong
convexity) such that

f((1− t)x+ ty) ≤ (1− t)f(x)+ tf(y)− σ

2
t(1− t)‖x−y‖2 for all x,y ∈ E, t ∈ (0, 1).

We will use an important equivalence between differentiability of a convex function
and strong convexity of its conjugate, which is also known as the Baillon–Haddad
theorem; see, e.g., [20, section 12H] and [5].

Lemma 4.1. Let σ > 0. The following statements are equivalent:
(a) h : E → R is convex differentiable with ∇h which is Lipschitz continuous with

respect to ‖ · ‖E with constant 1
σ .

(b) The conjugate h∗ : E∗ → (−∞,∞] is σ-strongly convex with respect to ‖ · ‖∗
E
.

4.2. The Moreau proximal smoothing. One of the most popular approaches
in the Euclidean setting (that is, when E is an Euclidean space with norm ‖ · ‖ =√〈, ·, ·〉) is the celebrated Moreau proximal approximation [16] that yields a family of
approximations {gpxμ }μ>0 via

(4.1) gpxμ (x) = inf
u∈E

{
g(u) +

1

2μ
‖u− x‖2

}
,

where g : E → (−∞,∞] is a closed and proper convex function.
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566 AMIR BECK AND MARC TEBOULLE

As proved by Moreau [16], for any μ > 0, the function gpxμ enjoys several remark-
able properties: it is convex continuous, finite-valued, and differentiable with gradient
∇gpxμ which is Lipschitz continuous with constant 1/μ.

The Moreau approximation of a convex function is the so-called infimal convolu-
tion of f with the quadratic function q(x) = 1

2μ‖x‖2, i.e.,

gpxμ (x) = inf
x1,x2

{g(x1) + q(x2) : x1 + x2 = x} = inf
u∈E

{g(u) + q(x − u)} ≡ (g�q)(x).

Smoothing techniques that share resemblance to the infimal convolution operation
where the quadratic squared distance is replaced by other distance-like functions can
be found in other works. In particular we mention the work of Attouch and Wets
[1], which was probably one of the first studies in that direction and inspired, for
instance, the variants proposed in [23]. However, all the nice properties of the Moreau
approximation alluded to above are not preserved in these generalizations.

A less popular though quite useful representation of Moreau proximal smoothing
can be obtained through its dual formulation (see, e.g., [12, Proposition 3.4, p. 171]),
which is simply derived by a direct application of the Fenchel duality theorem [19]:

(4.2) gpxμ (x) = max
y∈E∗

{
〈y,x〉 − g∗(y)− μ

2
‖y‖2

}
.

In essence, the above shows that Moreau smoothing is a natural tool to also
smooth conjugate functions. This provides the starting point of the forthcoming
results.

Here, we will consider a natural and simple extension of Moreau approximation
of a convex function. It also relies on the notion of infimal convolution and allows us
to derive a broad family of smooth approximations of convex functions that preserve
the fundamental properties established by Moreau. But first, we consider below the
smoothing approach given by Nesterov [17] developed for a class of nonsmooth func-
tions that admit a “max representation” and show its direct relation to the Moreau
proximal smoothing.

4.3. Nesterov’s smoothing. Let us briefly recall the class of nonsmooth func-
tions considered by Nesterov [17]. Let E,V be finite-dimensional vector spaces,
Q ⊆ V

∗ compact and convex, and φ some continuous convex function on Q ⊆ domφ.
The class of nonsmooth convex functions considered in [17] are given by

(4.3) q(x) = max {〈u, Ax〉 − φ(u) : u ∈ Q} , x ∈ E,

where A : E → V is a linear map.
The method suggested in [17] proposes the following smoothing methodology. A

function d is called a prox-function of a given compact set C if C ⊆ dom d and d is
a σ-strongly convex continuous function over the compact set C. The prox center is
defined by u0 = argminu∈C d(u) and it can be assumed without loss of generality that
u0 = 0. In this setting it can be shown that d(u) ≥ σ

2 ‖u− u0‖2V∗ for every u ∈ C.
The smooth approximation of q suggested in [17] is given by the convex function

(4.4) qμ(x) = max {〈u, Ax〉 − φ(u) − μd(u) : u ∈ Q} , x ∈ E,

where d(·) is a prox-function for Q. It was then proved in [17, Theorem 1] that
the convex function qμ is C1,1(E) with Lipschitz continuous gradient with constant
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Lμ = ‖A‖2/σμ and with gradient ∇qμ(x) = A∗uμ(x), where uμ(x) is the unique
minimizer of (4.4).

A close inspection of the above result indicates that the smoothing procedure of
[17] is a natural non-Euclidean extension of the dualMoreau smoothing approximation
(4.2) of a conjugate function at the point Ax, whereby the squared norm in (4.2) has
been replaced by a prox-function d(·) defined on Q ⊆ domφ.

The result obtained in [17] and within the above interpretation appears to limit
the class of convex functions that can be smoothed to be exclusively of the form of
(4.3), i.e., conjugate-like convex functions. However, as we shall see now, this is not
the case, and in the non-Euclidean setting, we will show that the infimal convolu-
tion operation of a given nonsmooth convex function with a properly defined smooth
convex function remains the key player in smoothing any convex function without
requiring any a priori special structure of the function to be smoothed.

4.4. The inf-conv smoothing technique. We are now ready to define the
inf-conv μ-smooth approximation of a proper, closed, and convex function which is
essentially an infimal convolution with a C1,1 convex function.

Definition 4.2 (inf-conv μ-smooth approximation). Let g : E → (−∞,∞] be
a closed proper convex function and let ω : E → R be a C1,1 convex function with
Lipschitz gradient constant 1/σ (σ > 0). Suppose that for any μ > 0 and any x ∈ E,
the following infimal convolution is finite:

(4.5) gicμ (x) = inf
u∈E

{
g(u) + μω

(
x− u

μ

)}
= (g�ωμ)(x),

where

(4.6) ωμ(·) ≡ μω

( ·
μ

)
.

Then gicμ is called the inf-conv μ-smooth approximation of g.
Note that the assumption that g�ωμ is a finite-valued function is satisfied, for

example, when ω has bounded level sets and g satisfies that minx∈E g(x) > −∞. It
is also satisfied when ω(·) = c‖ · ‖2

E
for any constant c > 0.

We are now ready to recall some of the main properties of the inf-conv μ-smooth
approximation of a convex function. A self-contained simple proof is given in the
appendix for the sake of completeness; see also Remark 4.1 below.

Theorem 4.1. Consider the setting of Definition 4.2. Then,
(a) the following “dual” formulation for gicμ holds:

(4.7) gicμ (x) = (g∗ + ω∗
μ)

∗(x) = max
y∈E∗

{〈y,x〉 − g∗(y)− μω∗(y)} ;

(b) gicμ is differentiable and with gradient ∇gicμ which is Lipschitz with constant
1
σμ ;

(c) let x ∈ E, and suppose that the minimum in (4.5) is attained at the point
uμ(x); then

(4.8) ∇gicμ (x) = ∇ω

(
x− uμ(x)

μ

)
= ∇ωμ(x− uμ(x)).

Proof. See Appendix A.
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568 AMIR BECK AND MARC TEBOULLE

Remark 4.1. As noted earlier, the use of infimal convolution to smooth convex
functions is very well known and originates from the seminal work of Moreau [16].
For a detailed and modern account of such results, see the recent comprehensive
monograph of Bauchke and Combettes [6] and relevant references therein. The proof
of the differentiability of gμ and part (c) of Theorem 4.1 can also be found in [6,
Proposition 18.7]. We also note that properties (a) and (b) of Theorem 4.1 were
shown in Theorem 1 of [17].

Remark 4.2. It should be noted that part (a) of the theorem, namely, the dual
formulation, is always true for any proper closed convex function g and any finite
valued convex function ω.

Remark 4.3. Note that since ω∗ is strongly convex, it follows that the maximiza-
tion problem in (4.7) has a unique maximizer. Denote this maximizer by yμ(x). Then
by [19, Corollary 23.5.1] it follows that yμ(x) = ∇gicμ (x), which combined with part
(c) of Theorem 4.1 implies that

yμ(x) = ∇ωμ(x − uμ(x)).

So far we have shown that gicμ satisfies property (ii) of Definition 2.1 of a μ-
smooth approximation, and in fact we have shown that the Lipschitz condition there
(2.1) is satisfied for all x ∈ E and not specifically on a certain closed convex subset
X ⊆ E. It remains to detect conditions under which gicμ also satisfies property (i) of
Definition 2.1.

Lemma 4.2. Consider the setting of Definition 4.2 and let X ⊆ E be a closed
convex set. Suppose that g is subdifferentiable over X. Then for any μ > 0 and x ∈ X
the following holds:

g(x)− μω∗(γx) ≤ gicμ (x) ≤ g(x) + μω(0),

where γx ∈ ∂g(x) is a subgradient of g at x.
Proof. By the definition of gicμ one has

gicμ (x) = inf
u∈E

{
g(u) + μω

(
x− u

μ

)}

≤ g(x) + μω

(
x− x

μ

)
= g(x) + μω(0).

For the opposite inequality, we can use the subgradient inequality for g to obtain that
for every x ∈ X

gicμ (x) − g(x) = min
u∈E

{
g(u)− g(x) + μω

(
x− u

μ

)}

≥ min
u∈E

{
〈γx,u− x〉+ μω

(
x− u

μ

)}
= min

z∈E

{−〈γx, z〉+ ωμ(z)}
= −max

z∈E

{〈γx, z〉 − ωμ(z)}
= −μω∗(γx).

The above result readily implies that if maxx∈X ω∗(γx) < ∞, then property (i) of
a smooth approximation as given in Definition 2.1 will be satisfied. This is recorded
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in Corollary 4.1, which states essentially that any convex function is smoothable over
closed convex sets on which its subgradients are bounded.

Corollary 4.1. Consider the setting of Definition 4.2 and let X ⊆ E be a closed
convex set. Suppose that

(4.9) D[g, ω∗] = sup
x∈X

sup
d∈∂g(x)

ω∗(d) < ∞.

Then for any μ > 0, gicμ is a μ-smooth approximation of g over X with parameters(
1

σ
,D[g, ω∗] + ω(0), 0

)
.

Remark 4.4. Note that (4.9) could also be defined by replacing the supremum
over d ∈ ∂g(x) by an infimum.

Going back to the special form of nonsmooth functions q considered by [17] and
given in (4.3), let us show how the smoothing (4.4) can be recovered. First, note that
the function to be smoothed can be written as q(x) = g(Ax), where

g := (φ̃)∗ and φ̃ := φ+ δQ.

Now, let d̃ := d+ δQ. Since d is given σ-strongly convex, so is d̃, and by Lemma 4.1

it follows that (d̃)∗ ∈ C1,1(E). Defining ω = (d̃)∗, we can invoke Theorem 4.1 to get
the corresponding inf-conv μ-smooth approximation:
(4.10)

gicμ (x)
(4.7)
= (g∗ + ω∗

μ)
∗(x) = (φ̃+ μd̃)∗(x) = max

u
{〈u,x〉 − φ(u)− μd(u) : u ∈ Q} .

By Corollary 4.1 (and the identity (4.9)), it follows that gicμ is a μ-smooth approxi-

mation of g with parameters ( 1σ , D, 0), where D = max{d(u) : u ∈ Q}. (Note that

here ω(0) = (d̃)∗(0) = 0, by definition of the prox center for d.) Now clearly, the
formulation (4.10) implies that qμ given in (4.4) is nothing else but qμ(x) = gicμ (Ax),
and hence by Lemma 2.2 it follows that qμ is a μ-smooth approximation of q with

parameters (‖A‖2

σ , D, 0), where ‖A‖ = max{‖Ax‖V : ‖x‖E = 1}, thus recovering the
result of [17].

The following two examples illustrate well-known instances of smooth approxi-
mation.

Example 4.1 (Euclidean norm function). Let E = R
n endowed with the l2 norm

‖ · ‖ = ‖ · ‖2. Consider the setting

g(x) = ‖x‖, X = E, ω(x) =
1

2
‖x‖2.

Then

ω(0) = 0, D[g, ω] =
1

2

and ω is 1-strongly convex, which implies by Corollary 4.1 that gicμ , which in this
case is the same as gpxμ , is a μ-smooth approximation of g (over Rn) with parameters(
1, 12 , 0

)
. It is easy to see that for every μ > 0 the smooth approximation is given by

(4.11) gpxμ (x) = min
u

{
‖u‖+ 1

2μ
‖u− x‖2

}
=

{
‖x‖2

2μ , ‖x‖ ≤ μ,

‖x‖ − μ
2 else,

which is the so-called Huber function in R
n [15].
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Example 4.2 (l1 norm function). Consider the same vector space E and un-
derlying function ω as in the previous example and let g(x) = ‖x‖1. Then ω(0) =
0, D[g, ω] = n

2 , and hence gpxμ , which in this case is the sum of Huber functions on
each of the components

gpxμ (x) =
n∑

i=1

Hμ(xi),

(
Hμ(y) ≡

{
y2

2μ |y| ≤ μ,

|y| − μ
2 else,

)
,

is a μ-smooth approximation of g (over Rn) with parameters (1, n
2 , 0).

The next example describes a function which is smoothable (via the prox opera-
tion) only over bounded sets of the space.

Example 4.3. Consider the setting E = R, ‖ · ‖ = | · | and let g(x) = max{|x|, x2}.
The subdifferential set of the function is given by

∂g(x) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

[−1, 1], x = 0,
{sign(x)}, 0 < |x| < 1,
[1, 2], x = 1,
[−2,−1], x = −1,
{2x}, |x| > 1.

Clearly, the subgradients of g are not bounded over the entire real line R. We will
consider the prox-based smooth approximation over X = [−2, 2] which is now com-
puted:

gpxμ (x) = min
u

{
max{|u|, u2}+ 1

2μ
(u − x)2

}

= min
α≥0

min
u:|u|=α

{
max{α, α2}+ 1

2μ
(α2 − 2xu+ x2)

}

= min
α≥0

{
max{α, α2}+ 1

2μ
(α2 − 2α|x|+ x2)

}

=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

x2

2μ , |x| < μ,

|x| − μ
2 , μ ≤ |x| < μ+ 1,

1 + 1
2μ (1− |x|)2, μ+ 1 ≤ |x| < 2μ+ 1,

x2

2μ+1 , |x| ≥ 2μ+ 1.

By Corollary 4.1, the above function is a μ-smooth approximation of g over X with
parameters (1, 2, 0). The function and its approximations gpx0.5, g

px
0.1 are shown in Fig-

ure 1.
More examples in the non-Euclidean setting are given in the next section.

4.5. Smoothing via asymptotic functions. Another general approach to
smooth nondifferentiable functions is via the concept of recession or asymptotic func-
tions. This approach was introduced in [10], where it was observed that many opti-
mization problems may be formulated in the form

(K) inf{u∞(f1(x), . . . , fm(x)) : x ∈ E},

where u∞ is the asymptotic function of some given function u. This was broadly
extended with more general results in [2]; see also [3, Chapter 3] for an overview and
more references.
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Fig. 1. The function g(x) = max{|x|, x2} and its smooth approximations gpx0.5, g
px
0.1.

Here, we will show that there exists an interesting close relation between the
asymptotic function-based smoothing and the inf-conv μ-smooth approximation of a
convex function discussed in the previous section.

First, we briefly recall the notion of an asymptotic function; see, e.g., [19, 3]. For
u : E → (−∞,+∞] proper, closed, and convex, its asymptotic function u∞ is a closed
proper convex function on E which is given by

(4.12) u∞(d) = lim
μ→0+

{
uμ(d) := μu

(
d

μ

)}
for every d ∈ domu.

The asymptotic function u∞ is positively homogeneous2 with u∞(0) = 0.
Relation (4.12) was the basis used in [10] to naturally suggest approximating the

problem (K) whereby u∞ is replaced by uμ.
We will now show that the inf-conv μ-smooth approximation of a convex func-

tion has a simple and special structure when the function g to be smoothed is the
asymptotic function of the finite-valued convex function ω : E → (∞,+∞) satisfying
the premises of Definition 4.2.

Before stating our result, we record in the next lemma the following fundamental
property of the conjugate of an asymptotic function; see, e.g., [3, Theorem 2.5.4(b),
p. 55] for a proof.

Lemma 4.3. Let u : E → (−∞,+∞] be a closed proper convex function, and let
u∗ be its convex conjugate. Then (u∞)∗ = δcl domu∗ , where cl stands for the closure
operation.

Following [10], we make the following assumption.
Assumption 1. For any μ > 0

μω

(
x

μ

)
≥ ω∞(x) for all x.

We are ready to state our result.

2A function p is positively homogeneous on E if 0 ∈ dom p and p(tu) = tp(u) for all u ∈ E and
all t > 0.
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Theorem 4.2. Let ω : E → R be a C1,1 convex function with Lipschitz gradi-
ent constant 1/σ, and let g be a convex finite-valued function over E. Suppose that
Assumption 1 holds and let g = ω∞. Then for any μ > 0,

gicμ (x) = μω

(
x

μ

)
for every x ∈ E.

Moreover, the function gicμ is a μ-smooth approximation of g with parameters ( 1
σμ , ω(0),

0).
Proof. With g = ω∞, using Theorem 4.1(a) we have

gicμ (x) = (g∗ + ω∗
μ)

∗(x) = ((ω∞)∗ + ω∗
μ)

∗(x),
= (δcl dom ω∗ + ω∗

μ)
∗ [by Lemma 4.3],

= (ω∗
μ)

∗(x) [since domω∗
μ = domω∗],

= ωμ(x) = μω

(
x

μ

)
[since ωμ is continuous convex],

proving the claimed formula for gicμ in the theorem. Now, by Theorem 4.1 it follows

that∇gicμ is Lipschitz with constant 1
σμ . Invoking Lemma 4.2 and using Assumption 1,

it follows that for any x ∈ E,

g(x) = ω∞(x) ≤ gicμ (x) ≤ g(x) + μω(0),

and the desired result is proved.

4.6. Examples. We now illustrate our results within some interesting examples
which have been commonly used and are well known in the smoothing literature; see
[12, 10, 2, 3] and references therein. The last example, Example 4.9, illustrates a
situation where Nesterov’s smoothing framework is not applicable, since the function
to be smoothed cannot be represented in the max-formulation of (4.3) through a linear
map A.

Example 4.4 (smoothing of the max function). Consider the space E = R
n with

the endowed norm ‖·‖ = ‖·‖∞. The function g(x) = max{x1, . . . , xn} is an asymptotic
function of ω(x) = log (

∑n
i=1 e

xi). The gradient of ω, ∇ω, is Lipschitz with constant
1. To show this, simply notice that ω∗(y) ≡∑n

i=1 yi log yi with domω∗ = Δn, which
is a 1-strongly convex function with respect to the l1 norm (see, e.g., [7]) and therefore
ω = ω∗∗ has a gradient which is Lipschitz with respect to the l∞ norm with constant
1. In addition, ω(0) = log(n) and it is easy to see [10] that for any μ > 0 and x ∈ E

g(x) ≤ μω

(
x

μ

)
,

and thus, invoking Theorem 4.2, we have that μω(xμ ) = μ log(
∑n

i=1 e
xi/μ) is a μ-

smooth approximation of max{x1, . . . , xn} with parameters (1, logn, 0).
Example 4.5 (max of linear functions). Recall that by Lemma 2.2 smoothability

is preserved under linear transformations of the variables. For instance, if we consider
a function which is the maximum of affine functions g(x) = max{aT1 x+b1, . . . , a

T
mx+

bm} over the space R
n with the endowed norm ‖ · ‖1, then by Example 4.4 and

Lemma 2.2, a μ-smooth approximation of this function will be

gμ(x) = μ log

(
m∑
i=1

e(a
T
i x+bi)/μ

)
.
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SMOOTHING AND FIRST ORDER METHODS 573

The parameters of the above μ-smooth approximation (computed with respect to the
l∞ norm) are (‖A‖2, logm, 0), where A is the m× n matrix whose rows are aTi and

‖A‖ = max{‖Ax‖∞ : ‖x‖1 = 1} = max
i,j

|Ai,j |.

The above smoothing of the max function gives rise to a smoothing of the abso-
lute value function which can be also rewritten as the max function g(x) = |x| =
max{x,−x}, that is, g(x) = q(Ax), where q(x1, x2) := max{x1, x2} and A =

( 1
−1

)
.

The corresponding μ-smooth approximation is gμ(x) = qμ(Ax) = μ log(12 (e
x/μ +

e−x/μ)) with parameters (1, log 2, 0) since ‖A‖ = 1.
Example 4.6 (smoothing of the l1 norm). Consider the space E = R

n with the

endowed norm ‖ · ‖2. Let g(x) = ‖x‖1 and ω(x) =
∑n

i=1

√
1 + x2

j . Then g is an

asymptotic function of ω. The gradient ∇ω is Lipschitz with constant 1, ω(0) = n,
and again (cf. [10]) we have for any μ > 0 and x ∈ E that

g(x) ≤ μω

(
x

μ

)
,

which, invoking Theorem 4.2, implies that the function
∑n

i=1

√
μ2 + x2

j is a μ-smooth

approximation of ‖x‖1 with parameters (1, n, 0).
Example 4.7. Consider the setting E = R, ‖ · ‖E = | · |. By the previous example,√

y2 + μ2 is a μ-smooth approximation of the absolute values with parameters (1, 1, 0).
Overall, we have encountered three μ-smooth approximations of the absolute value

function:
√
y2 + μ2, μ log

(
1
2

(
ey/μ + e−y/μ

))
, and Huber’s function

{
y2

2µ , |y| ≤ μ,

|y| − µ
2 else

with parameters

(1, 1, 0), (1, log 2, 0), (1, 0.5, 0),

respectively. Therefore, it is not surprising that, as can be seen in Figure 2, Huber’s
function is the best approximation and the square-root-based approximation is the
worst (has the largest β).

Example 4.8. Let g(x) = ‖x‖ and ω(x) =
√
1 + ‖x‖2 over the space E = R

n with

the endowed l2 norm. Then ω∗(y) = −√1− ‖y‖2 with domω∗ = {y : ‖y‖ ≤ 1} and
g is of course the asymptotic function of ω. In addition, ω satisfies Assumption 1 and
thus by Theorem 4.2 it follows that μω(xμ ) =

√
μ+ ‖x‖2 is a μ-smooth approximation

of ‖x‖ with parameters (1, 1, 0), which is a slightly worse approximation than Huber’s
function recalled in Example 4.1.

Example 4.9 (maximum of convex functions). For a given integerm > 1, consider
the convex function

g(x) = max {f1(x), . . . , fm(x)} ,
where f1, . . . , fm are m continuously differentiable convex functions over a compact
convex set X ⊆ E with Lipschitz gradients over X with constants Lf1 , . . . , Lfm ,
respectively. The vector space E has a norm denoted by ‖ · ‖E. Clearly, the function
g can also be rewritten as

g(x) = max
λ∈Δm

m∑
i=1

λifi(x);
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Fig. 2. The function |y| and its smooth approximations with μ = 0.2. “Huber” stands for the
Huber function given in (4.11), “log-exp” is the function μ log( 1

2
(ey/µ+e−y/µ)), and “squared-based”

is the function
√

y2 + μ2 − μ.

however, since fi(·) are nonlinear, the smoothing framework of [17] (cf. (4.3)) cannot
be applied.

Denoting the max function by

h(z) ≡ max{z1, . . . , zm}, (z ∈ R
m),

the function g can be rewritten as g(x) = h(f1(x), . . . , fm(x)). Recall that by Exam-
ple 4.4,

hμ(z) = μ log

(
m∑
i=1

ezi/μ

)

is a μ-smooth convex approximation of the max function h with parameters (1, log(m),
0) over the space V which is defined as Rm endowed with the norm ‖ · ‖∞.

The next result shows that a μ-smooth convex approximation of the function g
over X is given by3

gμ(x) = hμ(f1(x), . . . , fm(x)) = μ log

(
m∑
i=1

efi(x)/μ

)
.

Proposition 4.1 below computes the parameters (α, β,K) for which this approximation
gμ will satisfy the premises of Definition 2.1. The proof of the proposition, which is
rather technical, is given in Appendix B.

Proposition 4.1. Let f1, . . . , fm be m continuously differentiable convex func-
tions over a compact convex set X ⊆ E whose gradients are Lipschitz over X with
constants Lf1 , . . . , Lfm , respectively. Let

g(x) = max{f1(x), . . . , fm(x)}.
3Recall that the convexity of a composite function h(f1, . . . , fm) is preserved when fi are convex

and h is convex and isotone, i.e., ui ≤ vi, i = 1, . . . , m, implies h(u) ≤ h(v).
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SMOOTHING AND FIRST ORDER METHODS 575

Then for every μ > 0 the function

gμ(x) = μ log

(
m∑
i=1

efi(x)/μ

)

is a μ-smooth approximation of g with parameters(
max

i=1,...,m
M2

fi , log(m), max
i=1,...,m

Lfi

)
,

where Mfi := max{‖∇fi(x)‖∗E : x ∈ X}, i = 1, . . . ,m.

5. To smooth or not to smooth? In this section we will demonstrate through
a numerical example the advantage of partial smoothing in comparison to full smooth-
ing. Consider the following l1−l1 least fitting problem on the vector space Rn endowed
with the norm ‖ · ‖1:
(5.1) min

x∈Rn
{M(x) ≡ ‖Ax− b‖1 + ‖x‖1} ,

where A ∈ R
m×n,b ∈ R

m. This problem does not possess any smooth component, so
that f ≡ 0 in the model (G) given in (3.1). Note that the objective function is a sum
of two l1 norms, namely, the componentwise sum of absolute value functions which
will be smoothed using Huber’s function defined by

Hμ(y) ≡
{

y2

2μ , |y| ≤ μ,

|y| − μ
2 else.

The function Hμ is a μ-smooth approximation of the absolute value function |y| with
parameters (1, 0.5, 0); see Example 4.7. There are (at least) two possible smoothing
approaches for this problem within our model (G):

A. Full smoothing. Take g(x) ≡ ‖Ax− b‖1 + ‖x‖1 and h ≡ 0.
B. Partial smoothing. Take g(x) ≡ ‖Ax− b‖1, h(x) = ‖x‖1.

In the partial smoothing setting, the problem to be solved is

(PSμ) min
x

{
m∑
i=1

Hμ(Aix− bi) + ‖x‖1 ≡ gμ(x) + ‖x‖1
}
,

where Ai is the ith row of the matrix A. Since
∑m

i=1 Hμ(yi) is a μ-smooth ap-
proximation of the l1 norm function ‖y‖1 =

∑m
i=1 |yi| with parameters (1, m

2 , 0) (see
Example 4.2), it follows by Lemma 2.2 that here gμ is a μ-smooth approximation of
g with parameters (‖A‖2, m2 , 0). In the full smoothing setting, the smooth problem
to be solved is

(FSμ) min
x

⎧⎨
⎩

m∑
i=1

Hμ(Aix− bi) +

n∑
j=1

Hμ(xj) ≡ hμ(x)

⎫⎬
⎭ .

By Lemma 2.1 it follows that here hμ is a μ-smooth approximation of h with pa-
rameters (‖A‖2 + 1, m+n

2 , 0). Note that this is a worse approximation than the one
given in the partial smoothing setting since both parameters α, β (corresponding to
the proximity between the function and its approximation and the Lipschitz constant
of the gradient) are larger.
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What is important here is that there is really no need to smooth the l1 part
‖x‖1, since in that case one can directly invoke a fast proximal gradient method, like
FISTA devised in [8], and still achieve the O(1/k2) rate of convergence. The proximal
mapping of the h part is trivial in both settings: in the partial smoothing setting
(h(x) ≡ ‖x‖1) it is equal to the soft thresholding operation, and in the full smoothing
setting (h ≡ 0) it is simply the identity mapping; see [8] for the detailed algorithms.
Note also that it would not be advisable to consider the partial smoothing approach
in the opposite way, that is, to smooth the l1 norm function ‖x‖1 and keep the l1
fitting term ‖Ax− b‖1 untouched. The reason for this is that computing a proximal
mapping of the l1 fitting term seems to be as difficult as solving the original problem.

To compare the two approaches, we performed Monte Carlo runs, where in each
run the components of the matrix A and the vector b were randomly and indepen-
dently generated from a standard normal distribution. The dimensions are set to
m = 15, n = 30. For each realization of A and b, we ran FISTA for N = 100, 200,
400 iterations on both (PSμ) and (FSμ), where the parameter μ was chosen according
to Theorem 3.1 with ε = 0.1. Note that the choice of μ according to (3.5) is different
for the two problems (PSμ) and (FSμ). To compare the errors obtained by the two
methods, we also found for each realization of A and b the optimal value of problem
(5.1) using SeDuMi [22]. The results are summarized in the table below. The second
and third columns (Err-FS and Err-PS, respectively) contain the average over the 100
realizations of the errors in function values M(xN ) − M∗ (M∗ is the optimal value
of the problem computed using SeDuMi and xN is the output of the corresponding
method) when using the full and partial smoothing methodologies, respectively. The
fourth column contains the average over the 100 realizations of the ratio of errors
(M(xFS) −M∗)/(M(xPS) −M∗)), where xFS and xPS are the outputs of FISTA in
the full and partial smoothing settings, respectively.

N Err-FS Err-PS Err-FS/Err-PS
100 3.2951 1.3722 2.7152
200 1.0009 0.2740 5.0633
400 0.1741 0.0284 22.4585

Clearly, the partial smoothing approach is superior to the full smoothing ap-
proach, as it reaches better accuracies for a given number of iterations. Furthermore,
the error in function values of the full smoothing setting is more than 22 times the
error obtained by the partial smoothing setting when 400 iterations of FISTA are
performed.

The above empirical observation has a theoretical justification which is now ex-
plained. Suppose that we wish to solve a problem of the form

min
x

{g(x) + q(x)},

where both g and q are convex and nonsmooth functions and where as usual we assume
that the optimal set of this problem is nonempty and bounded. Assume that gμ is
a μ-smooth approximation of g with parameters (αg, βg,Kg) and qμ is a μ-smooth
approximation of q with parameters (αq, βq,Kq). In the full smoothing approach, the
problem to be solved via the fast method is

(5.2) min
x

{gμ(x) + qμ(x)},
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while in the partial smoothing approach the relevant problem is

(5.3) min
x

{gμ(x) + q(x)}.

Let (x∗
ps,x

∗
fs) be the corresponding optimal solutions of problems (5.3)–(5.2), respec-

tively. Applying a fast iterative method M on both problems with initial x0 = 0 and
setting Λ = max{‖x∗

ps‖2, ‖x∗
fs‖2} (cf., for example, (3.13)), it follows that by Theo-

rem 3.1, a lower bound on the number of iterations required to obtain an ε-optimal
solution via the fast method M to problem (5.2) is

N1 ≡ 2
√
(αg + αq)(βg + βq)Λ

1

ε
+
√
(Kg +Kq)Λ

1√
ε
,

while the lower bound on the number of iterations required to obtain an ε-optimal
solution of problem (5.3) via the same fast method is given by

N2 ≡ 2
√
αgβgΛ

1

ε
+
√
KgΛ

1√
ε
.

Obviously, N1 > N2, meaning that at least with respect to the lower bound on the
number of iterations, finding an optimal solution of the partially smooth problem
(5.3) is easier than finding an optimal solution of the fully smooth problem (5.2).

To conclude from this example, the answer to the question in the title of this
section is the following: smoothing is a valuable approach for tackling nonsmooth
problems, but it should be used “moderately” and only when truly necessary!

Appendix A. Proof of Theorem 4.1. (a) Let x ∈ E and μ > 0. Define
s1(u) ≡ g(u) and s2(u) ≡ μω((x− u)/μ) = ωμ(x − u). Then by definition we have

(A.1) gicμ (x) = inf
u∈E

{s1(u) + s2(u)}.

Since here domω = E, it follows that dom s2 = domωμ = E and hence that ri(dom s1)∩
ri(dom s2) �= ∅. Therefore, by Fenchel’s duality theorem [19, Theorem 31.1], the ex-
pression (A.1) also reads as

(A.2) gicμ (x) = max
y∈E∗

{−s∗1(y) − s∗2(−y)} = max
y∈E∗

{−g∗(y)− s∗2(−y)}.

Finally, by the definition of s2 and ωμ it follows that s∗2(−y) = ω∗
μ(y) − 〈y,x〉 and

ω∗
μ(y) = μω∗(y), which after substitution in (A.2) proves formula (4.7).

(b) Since∇ω is Lipschitz with constant 1
σ , and since by definition, ωμ(x) = μω(xμ ),

it follows that ∇ωμ is Lipschitz with constant 1
σμ . Therefore, by Lemma 4.1, it follows

that ω∗
μ, and hence also g∗+ω∗

μ, is strongly convex with parameter σμ. Invoking again

Lemma 4.1, we conclude that gicμ = (g∗+ω∗
μ)

∗ is differentiable with a Lipschitz gradient

with constant 1
σμ .

(c) Let x ∈ E be such that there exists a minimizer uμ(x) of (4.5), namely,

(A.3) gicμ (x) = g(uμ(x)) + ωμ(x− uμ(x)).

For convenience, define z ≡ ∇ωμ(x−uμ(x)). Our objective is to show that ∇gicμ (x) =
z. By standard calculus this means that we have to show that for any ξ ∈ E,
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578 AMIR BECK AND MARC TEBOULLE

lim‖ξ‖→0 |φ(ξ)|/‖ξ‖ = 0, where φ(ξ) ≡ gicμ (x + ξ) − gicμ (x) − 〈ξ, z〉. Using the defi-

nition of gicμ we obtain

gicμ (x+ ξ) ≤ g(uμ(x)) + ωμ(x+ ξ − uμ(x)),

and combining the latter inequality with (A.3) we get

φ(ξ) ≤ ωμ(x+ ξ − uμ(x))− ωμ(x − uμ(x)) − 〈ξ, z〉,
≤ 〈ξ,∇ωμ(x+ ξ − uμ(x))〉 − 〈ξ, z〉 [by the gradient inequality for ωμ],

= 〈ξ,∇ωμ(x+ ξ − uμ(x)) −∇ωμ(x− uμ(x))〉 [substitution of z],

≤ ‖ξ‖‖∇ωμ(x+ ξ − uμ(x)) −∇ωμ(x− uμ(x))‖∗ [Cauchy–Schwarz inequality],

≤ 1

μσ
‖ξ‖2 [Lipschitz constant of ∇ωμ is 1/μσ].

To complete the proof, it remains to show that we also have φ(ξ) ≥ − 1
μσ ‖ξ‖2. Since

gicμ is convex, so is φ, which along the fact that φ(0) = 0 implies that φ(ξ) ≥ −φ(−ξ),
and hence the desired result follows.

Appendix B. Proof of Proposition 4.1. Since hμ is a (1, log(m), 0)-smooth
approximation of h over V, then by property (i) of Definition 2.1, it follows that there
exists a decomposition log(m) = β1 + β2 for which

h(z)− β1μ ≤ hμ(z) ≤ h(z) + β2μ for every z ∈ V.

Making the change of variables z = (f1(x), . . . , fm(x))T and within the restriction
x ∈ X , we obtain that

g(x)− β1μ ≤ gμ(x) ≤ g(x) + β2μ for every x ∈ X,

thus proving property (i) with β = log(m). To find the other parameters α and K, we
introduce some further notation. Let f := (f1, . . . , fm)T , so that g(x) = h(f(x)) and
gμ(x) = hμ(f(x)). The matrix Jf (x) denotes the transpose of the Jacobian matrix f
given by

Jf (x) = (∇f1(x),∇f2(x), . . . ,∇fm(x)),

and by the chain rule it follows that

∇gμ = Jf (x)∇hμ(f(x)).

Now, for every x,y ∈ X we have

‖∇gμ(x) −∇gμ(y)‖∗E
= ‖Jf (x)∇hμ(f(x)) − Jf (y)∇hμ(f(y))‖∗E
= ‖Jf (x) (∇hμ(f(x)) −∇hμ(f(y))) + (Jf (x)− Jf (y))∇hμ(f(y))‖∗E
≤ ‖Jf (x) (∇hμ(f(x)) −∇hμ(f(y))) ‖∗E + ‖ (Jf (x) − Jf (y))∇hμ(f(y))‖∗E
≤ ‖Jf (x)‖V∗,E∗ · ‖∇hμ(f(x)) −∇hμ(f(y))‖∗V
+ ‖Jf (x) − Jf (y)‖V∗,E∗ · ‖∇hμ(f(y))‖∗V

≤ 1

μ
‖Jf (x)‖V∗,E∗ · ‖f(x)− f(y)‖V + ‖Jf (x)− Jf (y)‖V∗,E∗ · ‖∇hμ(f(y))‖∗V,(B.1)
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where the last inequality follows by the fact that ∇hμ is Lipschitz with constant 1
μ .

In addition, note that for every z ∈ R
m

(B.2) ‖∇hμ(z)‖∗V = ‖∇hμ(z)‖1 =

∥∥∥∥∥∥∥
1∑m

j=1 e
zj/μ

⎛
⎜⎝

ez1/μ

...
ezm/μ

⎞
⎟⎠
∥∥∥∥∥∥∥
1

= 1

and that Mfi = max {‖∇fi(x)‖∗E : x ∈ X} , i = 1, . . . ,m. Thus,

‖f(x)− f(y)‖V = ‖f(x)− f(y)‖∞
= max

i=1,...,m
{|fi(x)− fi(y)|} ≤

(
max

i=1,...,m
Mfi

)
‖x− y‖E,(B.3)

‖Jf (x)‖V∗,E∗ = max

{∥∥∥∥∥
m∑
i=1

vi∇fi(x)

∥∥∥∥∥
∗

E

:

m∑
i=1

|vi| ≤ 1

}
≤ max

i=1,...,m
Mfi ,(B.4)

‖Jf (x) − Jf (y)‖V∗,E∗ = max
i=1,...,m

‖∇fi(x)−∇fi(y)‖∗E ≤
(

max
i=1,...,m

Lfi

)
‖x− y‖E.(B.5)

To conclude, plugging (B.2)–(B.5) into (B.1) we get

‖∇gμ(x) −∇gμ(y)‖∗E ≤
[
1

μ

(
max

i=1,...,m
M2

fi

)
+ max

i=1,...,m
Lfi

]
‖x− y‖E,

showing that gμ(·) = hμ(f(·)) is a μ-smooth approximation of g(·) = h(f(·)) over X
with parameters (

max
i=1,...,m

M2
fi , log(m), max

i=1,...,m
Lfi

)
.
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