
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

SIAM J. OPTIM. c© 2013 Society for Industrial and Applied Mathematics
Vol. 23, No. 3, pp. 1480–1509

SPARSITY CONSTRAINED NONLINEAR OPTIMIZATION:
OPTIMALITY CONDITIONS AND ALGORITHMS∗

AMIR BECK† AND YONINA C. ELDAR‡

Abstract. This paper treats the problem of minimizing a general continuously differentiable
function subject to sparsity constraints. We present and analyze several different optimality criteria
which are based on the notions of stationarity and coordinatewise optimality. These conditions
are then used to derive three numerical algorithms aimed at finding points satisfying the resulting
optimality criteria: the iterative hard thresholding method and the greedy and partial sparse-simplex
methods. The first algorithm is essentially a gradient projection method, while the remaining two
algorithms are of a coordinate descent type. The theoretical convergence of these techniques and
their relations to the derived optimality conditions are studied. The algorithms and results are
illustrated by several numerical examples.
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1. Introduction. Sparsity has long been exploited in signal processing, applied
mathematics, statistics, and computer science for tasks such as compression, denois-
ing, model selection, image processing, and more [10, 11, 17, 20, 22, 25, 26]. Recent
years have witnessed a growing interest in sparsity-based processing methods and
algorithms for sparse recovery [3, 2, 1, 28]. Despite the great interest in exploiting
sparsity in various applications, most of the work to date has focused on recovering
sparse data represented by a vector x ∈ Rn from linear measurements of the form
b = Ax. For example, the rapidly growing field of compressed sensing [12, 8, 19]
considers recovery of a sparse x from a small set of linear measurements b ∈ Rm,
where m is usually much smaller than n. Since in practice the measurements are
contaminated by noise, a typical approach to recover x is to seek a sparse vector x
that minimizes the quadratic function ‖Ax− b‖22.

In this paper we study the more general problem of minimizing a continuously
differentiable objective function subject to a sparsity constraint. More specifically, we
consider the problem

(P):
min f(x)
s.t. ‖x‖0 ≤ s,

where f : Rn → R is a continuously differentiable function, s > 0 is an integer smaller
than n, and ‖x‖0 is the �0 norm of x, which counts the number of nonzero components
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SPARSITY CONSTRAINED NONLINEAR OPTIMIZATION 1481

in x. We do not assume that f is a convex function. This, together with the fact
that the constraint function is nonconvex, and in fact is not even continuous, renders
the problem quite difficult. Our goal in this paper is to study necessary optimality
conditions for problem (P) and to develop algorithms that find points satisying these
conditions for general choices of f .

Two instances of problem (P) that have been considered in previous literature and
will serve as prototype models throughout the paper are described in the following
two examples.

Example 1.1 (compressive sensing). As mentioned above, compressed sensing is
concerned with recovery of a sparse vector x from linear measurementsAx = b, where
A ∈ Rm×n,b ∈ Rm, and m is usually much smaller than n. It is well known that
under suitable conditions on A, only the order of s logn measurements are needed to
recover x [29]. When noise is present in the measurements, it is natural to consider
the corresponding optimization problem (P) with the objective function given by

fLI(x) ≡ ‖Ax− b‖2.

A variety of algorithms have been proposed in order to approximate the solution
to this problem [27, 28]. One popular approach is to replace the �0 norm with the
convex �1 norm, which results in a convex problem when the objective function f is
convex. A variety of different greedy methods have also been proposed, such as the
matching pursuit (MP) [21] and orthogonal MP (OMP) [9] algorithms. We will relate
our methods to these approaches in section 3.2.1. Another method that was proposed
recently and is related to our approach below is the iterative hard thresholding (IHT)
algorithm [6], also referred to as the M-sparse method. In [6] the authors consider
a majorization-minimization approach to solve (P) with f = fLI and show that the
resulting method converges to a local minimum of (P) as long as the spectral norm
of A satisfies ‖A‖ < 1. This algorithm is essentially a gradient projection method
with stepsize 1. In section 3.1 we will revisit the IHT method and show how it can
be applied to the general formulation (P ) as well as discuss the quality of the limit
points of the sequence generated by the algorithm.

Although linear measurements are the most popular in the literature, recently,
attention has been given to quadratic measurements. Sparse recovery problems from
quadratic measurements arise in a variety of problems in optics, as we discuss in the
next example.

Example 1.2. Recovery of sparse vectors from quadratic measurements has been
treated recently in the context of subwavelength optical imaging [14, 24]. In these
problems the goal is to recover a sparse image from its far-field measurements, where
due to the laws of physics the relationship between the (clean) measurement and
the unknown image is quadratic. In [24] the quadratic relationship is a result of
using partially incoherent light. The quadratic behavior of the measurements in [14]
is a result of coherent diffractive imaging in which the image is recovered from its
intensity pattern. Under an appropriate experimental setup, this problem amounts
to reconstruction of a sparse signal from the magnitude of its Fourier transform.

Mathematically, both problems can be described as follows. Given m symmetric
matrices A1, . . . ,Am ∈ Rn×n, find a vector x satisfying

xTAix ≈ ci, i = 1, . . . ,m,

‖x‖0 ≤ s.
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1482 AMIR BECK AND YONINA C. ELDAR

This problem can be written in the form of problem (P) with

fQU(x) ≡
m∑
i=1

(
xTAix− ci

)2
.

In this case, the objective function is nonconvex and quartic.

Quadratic measurements appear more generally in phase retrieval problems, in
which a signal x is to be recovered from the magnitude of its measurements yi = |d∗

ix|,
where each measurement is a linear transform of the input x ∈ Rn. Note that di are
complex-valued, that is, di ∈ Cn. Denoting by bi the corresponding noisy measure-
ments, and assuming a sparse input, our goal is to minimize

∑m
i=1(b

2
i − |d∗

ix|2)2
subject to the constraint that ‖x‖0 ≤ s for some s, where m is the number of
measurements. The objective function has the same structure as fQU with Ai =
�(di)�(di)

T +	(di)	(di)
T . In [24], an algorithm was developed to treat such prob-

lems based on a semidefinite relaxation and low-rank matrix recovery. However, for
large-scale problems, the method is not efficient and is difficult to implement. An
alternative algorithm was designed in [14] based on a greedy search. This approach
requires solving a nonconvex optimization program in each internal iteration.

To conclude this example, we note that the problem of recovering a signal from
the magnitude of its Fourier transform has been studied extensively in the literature.
Many methods have been developed for phase recovery [18] which often rely on prior
information about the signal, such as positivity or support constraints. One of the
most popular techniques is based on alternating projections, where the current signal
estimate is transformed back and forth between the object and the Fourier domains.
The prior information and observations are used in each domain in order to form the
next estimate. Two of the main approaches of this type are those of Gerchberg and
Saxton [16] and Fienup [15]. In general, these methods are not guaranteed to converge
and often require careful parameter selection and sufficient signal constraints in order
to provide a reasonable result.

In this paper we present a uniform approach to treating problems of the form
(P). Necessary optimality conditions for problems consisting of minimizing differen-
tiable (possibly nonconvex) objective functions over convex feasibility sets are well
known [4]. These conditions are also very often the basis for efficient algorithms
for solving the respective optimization problems. However, classical results on non-
convex optimization do not cover the case of sparsity constraints, which are neither
convex nor continuous. In section 2 we derive three classes of necessary optimal-
ity conditions for problem (P): basic feasibility, L-stationarity, and coordinatewise
(CW) optimality. We then show that CW optimality implies L-stationarity for suit-
able values of L, and they both imply the basic feasibility property. In section 3 we
present two classes of algorithms for solving (P). The first technique is a general-
ization of the IHT method and is based on the notion of L-stationarity. Under ap-
propriate conditions we show that the limit points of the algorithm are L-stationary
points. The second class of methods are based on the concept of CW optimality.
These are basically coordinate descent type algorithms which update the support
at each iteration by one or two variables. Due to their resemblance to the cele-
brated simplex method for linear programming, we refer to these methods as “sparse-
simplex” algorithms. As we show, these techniques are as simple as the IHT method
while obtaining stronger optimality guarantees. We prove the convergence results
of the various algorithms, establishing that the limit points of each of the methods
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SPARSITY CONSTRAINED NONLINEAR OPTIMIZATION 1483

satisfy the respective necessary optimality conditions. A MATLAB implementation of
the sparse-simplex approaches, as well as documentation, can be found at http://iew3.
technion.ac.il/∼becka/papers/sparse simplex package.zip.

2. Necessary optimality conditions.

2.1. Notation and assumptions. For a given vector x ∈ R
n and an index set

R ⊆ {1, . . . , n}, we denote by xR the subvector of x corresponding to the indices in
R. For example, if x = (4, 5, 2, 1)T and R = {1, 3}, then xR = (4, 2)T . The support
set of x is defined by

I1(x) ≡ {i : xi �= 0} ,
and its complement is

I0(x) ≡ {i : xi = 0} .
We denote by Cs the set of vectors x that are at most s-sparse:

Cs = {x : ‖x‖0 ≤ s}.
For a vector x ∈ Rn and i ∈ {1, 2, . . . , n}, the ith largest absolute value component
in x is denoted by Mi(x), so that in particular

M1(x) ≥ M2(x) ≥ · · · ≥ Mn(x).

Also, M1(x) = maxi=1,...,n |xi| and Mn(x) = mini=1,...,n |xi|.
Throughout the paper we make the following assumption. The vector ei ∈ Rn is

the n-length column vector whose ith component is one while all the others are zeros.
Assumption 1. The objective function f is lower bounded. That is, there exists

γ ∈ R such that f(x) ≥ γ for all x ∈ Rn.

2.2. Basic feasibility. Optimality conditions have an important theoretical role
in the study of optimization problems. From a practical point of view, they are the
basis for most numerical solution methods. Therefore, as a first step in studying
problem (P), we would like to consider its optimality conditions and then use them
to generate algorithms. However, since (P) is nonconvex, it does not seem to possess
necessary and sufficient conditions for optimality. Therefore, below we derive several
necessary conditions and analyze the relationship between them. We will then show
in section 3 how these conditions lead to algorithms that are guaranteed to generate
a point satisfying the respective conditions.

For unconstrained differentiable problems, a necessary optimality condition is
that the gradient is zero. It is therefore natural to expect that a similar necessary
condition will be true over the support I1(x

∗) of an optimal point x∗. Inspired by
linear programming terminology, we will call a vector satisfying this property a basic
feasible (BF) vector.

Definition 2.1. A vector x∗ ∈ Cs is a BF vector of (P) if
1. when ‖x∗‖0 < s, ∇f(x∗) = 0;
2. when ‖x∗‖0 = s, ∇if(x

∗) = 0 for all i ∈ I1(x
∗).

We will also say that a vector satisfies the “basic feasibility property” if it is a
BF vector. Theorem 2.1 establishes the fact that any optimal solution of (P) is also
a BF vector.

Theorem 2.1. Let x∗ be an optimal solution of (P). Then x∗ is a BF vector.
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1484 AMIR BECK AND YONINA C. ELDAR

Proof. If ‖x∗‖0 < s, then for any i ∈ {1, 2, . . . , n}
0 ∈ argmin{g(t) ≡ f(x∗ + tei)}.

Otherwise there would exist a t0 for which f(x∗+ t0ei) < f(x∗), which is a contradic-
tion to the optimality of x∗. Therefore, we have ∇if(x

∗) = g′(0) = 0. If ‖x∗‖0 = s,
then the same argument holds for any i ∈ I1(x

∗).
We conclude that a necessary condition for optimality is basic feasibility. It turns

out that this condition is quite weak, namely, there are many BF points that are not
optimal points. In the following two subsections we will consider stricter necessary
optimality conditions.

Before concluding this section we consider in more detail the special case of f(x) ≡
fLI(x) ≡ ‖Ax − b‖2. We now show that under a suitable condition on A, which we
refer to as s-regularity, there are only a finite number of BF points. This implies that
there are only a finite number of points suspected to be optimal solutions.

Definition 2.2 (s-regularity). A matrix A ∈ Rm×n is called s-regular if for
every index set I ⊆ {1, 2, . . . , n} with |I| = s, the columns of A associated with the
index set I are linearly independent.

Remark 2.1. s-regularity can also be expressed in terms of the Kruskal rank of
A. The Kruskal rank of a matrix A is equal to the largest s satisfying the property
that every s columns of A are linearly independent. Another way to express this
property is via the spark—spark(A) is the minimum number of linearly dependent
columns (see [13]). Thus, A is s-regular if and only if spark(A) ≥ s + 1.

When s ≤ m, the s-regularity property is rather mild in the sense that if the com-
ponents of A are independently randomly generated from a continuous distribution,
then the s-regularity property will be satisfied with probability one.

It is interesting to note that in the compressed sensing literature, it is typically
assumed that A is 2s-regular. This condition is necessary in order to ensure unique-
ness of the solution to b = Ax for any x satisfying ‖x‖0 ≤ s. Here we are only
requiring s-regularity, which is a milder requirement.

The next lemma shows that when the s-regularity property holds, the number of
BF points is finite.

Lemma 2.1. Let f(x) ≡ fLI(x) = ‖Ax − b‖2, where A ∈ R
m×n is an s-regular

matrix and b ∈ Rm. Then the number of BF points of problem (P) is finite.
Proof. Any BF vector x satisfies

‖x‖0 ≤ s and ∇ifLI(x) = 0, i ∈ I1(x).

Denote the support set of x by S = I1(x). Then |S| ≤ s and from the derivative
condition,

AT
S (ASxS − b) = 0,

where AS is the submatrix of A made up of the columns corresponding to the set S.
Here we used the fact that Ax = ASxS for any x with support S. By the s-regularity
assumption it follows that the matrix AT

SAS is nonsingular. Thus,

xS = (AT
SAS)

−1AT
Sb.

To summarize, for each set of indices S satisfying |S| ≤ s, there is at most one
candidate for a BF vector with support S. Since the number of subsets of {1, 2, . . . , n}
is finite, the result follows.
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2.3. L-stationarity. As we will see in the examples below, the basic feasibil-
ity property is a rather weak necessary optimality condition. Therefore, stronger
necessary conditions are needed in order to obtain higher quality solutions. In this
section we consider the L-stationarity property which is an extension of the concept
of stationarity for convex constrained problems. In the next section we discuss CW
optimality, which leads to stronger optimality results.

We begin by recalling some well-known elementary concepts on optimality condi-
tions for convex constrained differentiable problems. (For more details see, e.g., [4].)
Consider a problem of the form

(2.1) (C): min{g(x) : x ∈ C},
where C is a closed convex set and g is a continuously differentiable function, which
is possibly nonconvex. A vector x∗ ∈ C is called stationary if

(2.2) 〈∇g(x∗),x− x∗〉 ≥ 0 for all x ∈ C.

If x∗ is an optimal solution of (P), then it is also stationary. Therefore, stationarity is
a necessary condition for optimality. Many optimization methods devised for solving
nonconvex problems of the form (C) are only guaranteed to converge to stationary
points. (Occasionally it is only shown that all limit points of the generated sequence
are stationary.)

It is often useful to use the property that for any L > 0, a vector x∗ is a stationary
point if and only if

(2.3) x∗ = PC

(
x∗ − 1

L
∇g(x∗)

)
,

where for a closed subsetD ⊆ Rn the operator PD(·) denotes the orthogonal projection
onto D, that is,

PD(y) ≡ argmin
x∈D

‖x− y‖2.

It is interesting to note that condition (2.3)—although expressed in terms of the
parameter L—does not actually depend on L by its equivalence to (2.2).

It is natural to try to extend (2.2) or (2.3) to the nonconvex (feasible set) set-
ting. Condition (2.2) with g = f and C = Cs is actually not a necessary optimality
condition so we do not pursue it further. To extend (2.3) to the sparsity constrained
problem (P), we introduce the notion of L-stationarity.

Definition 2.3. A vector x∗ ∈ Cs is called an L-stationary point of (P) if it
satisfies the relation

(2.4) [NCL] x∗ ∈ PCs

(
x∗ − 1

L
∇f(x∗)

)
.

Note that since Cs is not a convex set, the orthogonal projection operator PCs(·) is
not single-valued. Specifically, the orthogonal projection PCs(x) is an n-length vector
consisting of the s components of x with the largest absolute value. In general, there
could be more than one choice to the s largest components. For example,

PC2((2, 1, 1)
T ) =

{
(2, 1, 0)T , (2, 0, 1)T

}
.

Our results below do not depend on the specific choice.

D
ow

nl
oa

de
d 

11
/1

4/
20

 to
 1

32
.6

6.
11

.2
12

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/p

ag
e/

te
rm

s



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

1486 AMIR BECK AND YONINA C. ELDAR

Remark 2.2. It is interesting to note that a different notion of “stationarity” for
problems with nonconvex feasibility sets was discussed in [23]. This work considers
optimization problems over locally star-shaped feasible sets, of which the feasible set
of (P) is a special case. The definition of stationarity in [23] is different from the one
that will be described in what follows. More precisely, for problem (P) the condition
reads as follows: ‖x∗‖0 ≤ s and d = 0 is a local minimizer of the problem

min
d

{∇f(x∗)Td : ‖x∗ + d‖0 ≤ s}.

A simple argument shows that this condition is in fact equivalent to the notion of
basic feasibility.

Below we will show that under an appropriate Lipschitz condition, L-stationarity
is a necessary condition for optimality. Before proving this result, we describe a more
explicit representation of [NCL].

Lemma 2.2. For any L > 0, x∗ satisfies [NCL] if and only if ‖x∗‖0 ≤ s and

(2.5) |∇if(x
∗)|

{≤ LMs(x
∗) if i ∈ I0(x

∗),
= 0 if i ∈ I1(x

∗).

Proof. [NCL] ⇒ (2.5). Suppose that x∗ satisfies [NCL]. Note that for any
index j ∈ {1, 2, . . . , n}, the jth component of PCs(x

∗ − 1
L∇f(x∗)) is either zero or

equal to x∗
j − 1

L∇jf(x
∗). Now, since x∗ ∈ PCs(x

∗ − 1
L∇f(x∗)), it follows that if

i ∈ I1(x
∗), then x∗

i = x∗
i − 1

L∇if(x
∗), so that ∇if(x

∗) = 0. If i ∈ I0(x
∗), then∣∣x∗

i − 1
L∇if(x

∗)
∣∣ ≤ Ms(x

∗), which combined with the fact that x∗
i = 0 implies that

|∇if(x
∗)| ≤ LMs(x

∗), and consequently (2.5) holds true.
(2.5) ⇒ [NCL]. Suppose that x∗ satisfies (2.5). If ‖x∗‖0 < s, then Ms(x

∗) = 0
and by (2.5) it follows that∇f(x∗) = 0; therefore, in this case, PCs

(
x∗ − 1

L∇f(x∗)
)
=

PCs(x
∗) is the set {x∗}. If ‖x∗‖0 = s, then Ms(x

∗) �= 0 and |I1(x∗)| = s. By (2.5)

|x∗
i − 1/L∇if(x

∗)|
{
= |x∗

i | i ∈ I1(x
∗),

≤ Ms(x
∗) i ∈ I0(x

∗).

Therefore, the vector x∗− 1
L∇f(x∗) contains the s components of x∗ with the largest

absolute value and all other components are smaller or equal to them, so that [NCL]
holds.

A direct result of Lemma 2.2 is that any L-stationary point is a BF point.
Corollary 2.1. Suppose that x∗ is an L-stationary point for some L > 0. Then

x∗ is a BF point.
Remark 2.3. By Lemma 2.2 it follows that the condition for L-stationarity de-

pends on L. In particular, [NCL] is stronger/more restrictive as L gets smaller. That
is, if x∗ is an L1 stationary point, then it is also an L2-stationary point for any
L2 ≥ L1. This is a different situation than the one described for problems with con-
vex feasible sets where stationarity does not depend on any parameter. Based on this
observation, it is natural to define the stationarity level of a BF vector x∗ ∈ Cs as
the smallest nonnegative L for which condition (2.5) holds. If a BF vector x∗ satisfies
‖x∗‖0 < s, then the stationarity level is zero. If ‖x∗‖0 = s, then the stationarity level,
denoted by SL(x∗), is given by

SL(x∗) ≡ max
i∈I0(x∗)

|∇if(x
∗)|

Ms(x∗)
.

The role of stationarity level will become apparent when we discuss the proposed
algorithms.
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In general, L-stationarity is not a necessary optimality condition for problem (P).
To establish such a result, we need to assume a Lipschitz continuity property of ∇f .

Assumption 2. The gradient of the objective function ∇f is Lipschitz with con-
stant L(f) over Rn:

‖∇f(x)−∇f(y)‖ ≤ L(f)‖x− y‖ for every x,y ∈ R
n.

This assumption holds for f = fLI with L(f) = 2λmax(A
TA) but not for f = fQU.

Assumption 2 will not be made throughout the paper and it will be stated explicitly
when needed.

It is well known that a function satisfying Assumption 2 can be upper bounded
by a quadratic function whose associated matrix is a multiple of the identity matrix.
This result is known as the descent lemma.

Lemma 2.3 (the descent lemma [4]). Let f be a continuously differentiable func-
tion satisfying Assumption 2. Then for every L ≥ L(f)

f(x) ≤ hL(x,y) for any x,y ∈ R
n,

where

(2.6) hL(x,y) ≡ f(y) + 〈∇f(y),x − y〉+ L

2
‖x− y‖2, x,y ∈ R

n.

Based on the descent lemma, we can prove the following technical and useful result.
Lemma 2.4. Suppose that Assumption 2 holds and that L > L(f). Then for any

x ∈ Cs and y ∈ Rn satisfying

(2.7) y ∈ PCs

(
x− 1

L
∇f(x)

)
,

we have

(2.8) f(x)− f(y) ≥ L− L(f)

2
‖x− y‖2.

Proof. Note that (2.7) can be written as

(2.9) y ∈ argmin
z∈Cs

∥∥∥∥z−
(
x− 1

L
∇f(x)

)∥∥∥∥
2

.

Since

hL(z,x) = f(x) + 〈∇f(x), z− x〉 + L

2
‖z− x‖2

=
L

2

∥∥∥∥z−
(
x− 1

L
∇f(x)

)∥∥∥∥
2

+ f(x)− 1

2L
‖∇f(x)‖2︸ ︷︷ ︸

constant w.r.t. z

,

it follows that the minimization problem (2.9) is equivalent to

y ∈ argmin
z∈Cs

hL(z,x).

This implies that

(2.10) hL(y,x) ≤ hL(x,x) = f(x).
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1488 AMIR BECK AND YONINA C. ELDAR

Now, by the descent lemma we have

f(x)− f(y) ≥ f(x)− hL(f)(y,x),

which combined with (2.10) and the identity

hL(f)(x,y) = hL(x,y) − L− L(f)

2
‖x− y‖2

yields (2.8).
Under Assumption 2 we now show that an optimal solution of (P) is an L-

stationary point for any L > L(f).
Theorem 2.2. Suppose that Assumption 2 holds, L > L(f), and let x∗ be an

optimal solution of (P). Then
(i) x∗ is an L-stationary point;
(ii) the set PCs

(
x∗ − 1

L∇f(x∗)
)
is a singleton.1

Proof. We will prove both parts simultaneously. Suppose to the contrary that
there exists a vector

(2.11) y ∈ PCs

(
x∗ − 1

L
∇f(x∗)

)
,

which is different from x∗ (y �= x∗). Invoking Lemma 2.4 with x = x∗, we have

f(x∗)− f(y) ≥ L− L(f)

2
‖x∗ − y‖2,

contradicting the optimality of x∗. We conclude that x∗ is the only vector in the set
PCs

(
x∗ − 1

L∇f(x∗)
)
.

To summarize this section, we have shown that under a Lipschitz condition on
∇f , L-stationarity for any L > L(f) is a necessary optimality condition, which also
implies the basic feasibility property. In section 3.1 we will show how the IHT method
for solving the general problem (P) can be used in order to find L-stationary points
(for L > L(f)).

2.4. CW-minima. The L-stationarity necessary optimality condition has
two major drawbacks: first, it requires the function’s gradient to be Lipschitz contin-
uous, and second, in order to validate it, we need to know a bound on the Lipschitz
constant. We now consider a different and stronger necessary optimality condition
that does not require such knowledge on the Lipschitz constant, and in fact does not
even require Assumption 2 to hold.

For a general unconstrained optimization problem, a vector x∗ is a CW-minimum
if for every i = 1, 2, . . . , n the scalar x∗

i is a minimum of f with respect to the ith
component xi while keeping all other variables fixed:

x∗
i ∈ argmin

xi

f(x∗
1, . . . , x

∗
i−1, xi, x

∗
i+1, . . . , x

∗
n).

Clearly, any optimal x∗ is also a CW-minimum. It is therefore natural to extend this
definition to problem (P) in order to obtain an alternative necessary condition.

Definition 2.4. Let x∗ be a feasible solution of (P). Then x∗ is a CW-minimum
of (P) if one of the following cases holds true:

1A set is called a singleton if it contains exactly one element.
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Case I. ‖x∗‖0 < s and for every i = 1, 2, . . . , n one has

(2.12) f(x∗) = min
t∈R

f(x∗ + tei).

Case II. ‖x∗‖0 = s and for every i ∈ I1(x
∗) and j = 1, 2, . . . , n one has

(2.13) f(x∗) ≤ min
t∈R

f(x∗ − x∗
i ei + tej).

Obviously, any optimal solution of (P) is also a CW-minimum. This is formally
stated in the next theorem.

Theorem 2.3. Let x∗ be an optimal solution of (P). Then x∗ is a CW-minimum
of (P). Of course, a CW-minimum is not necessarily an optimal solution and in fact
can be far from the global optimum.

It is easy to see that any CW-minimum is also a BF vector, as stated in the
following lemma.

Lemma 2.5. Let x∗ ∈ Cs be a CW-minimum of (P). Then x∗ is also a BF
vector.

Proof. We first show that if a vector x∗ satisfying ‖x∗‖0 = s is a CW-minimum
of (P), then (2.12) is satisfied for any i ∈ I1(x

∗). Indeed, inequality (2.13) with
i ∈ I1(x

∗) and j = i becomes

(2.14) f(x∗) ≤ min
t∈R

f(x∗ − x∗
i ei + tei).

Since f(x∗ − x∗
i ei + x∗

i ei) = f(x∗), it follows that (2.14) is equivalent to

f(x∗) = min
t∈R

f(x∗ − x∗
i ei + tei),

which letting s = t− x∗
i becomes

f(x∗) = min
s∈R

f(x∗ + sei).

We conclude that for any CW-minimum x∗ of (P) we have

(2.15) ∇if(x
∗) = 0 for all i ∈ I1(x

∗).

In addition, in Case I of Definition 2.4, we obviously have that ∇f(x∗) = 0, which
completes the proof.

We have previously established under Assumption 2 in Theorem 2.2 that being
an L-stationary point for L > L(f) is a necessary condition for optimality. A natural
question that arises is what is the relation between CW-minima and L-stationary
points (for L > L(f)). We will show that being a CW-minimum is a stronger, i.e.,
more restrictive, condition than being an L-stationary point for any L ≥ L(f). In
fact, a stronger result will be established: any CW-minimum is also an L̃-stationary
point for an L̃ which is less than or equal to L(f). In practice, L̃ can be much smaller
than L(f).

In order to precisely define L̃, we note that under Assumption 2, it follows imme-
diately that for any i �= j there exists a constant Li,j(f) for which

(2.16) ‖∇i,jf(x)−∇i,jf(x+ d)‖ ≤ Li,j(f)‖d‖
for any x ∈ Rn and any d ∈ Rn which has at most two nonzero components. Here
∇i,jf(x) denotes a vector of length 2 whose elements are the ith and jth elements of
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1490 AMIR BECK AND YONINA C. ELDAR

∇f(x). We will be especially interested in the following constant, which we call the
local Lipschitz constant :

L2(f) ≡ max
i�=j

Li,j(f).

Clearly (2.16) is satisfied when replacing Li,j(f) by L(f). Therefore, in general,

L2(f) ≤ L(f).

In practice, L2(f) can be much smaller than L(f), as the following example illustrates.

Example 2.1. Suppose that the objective function in (P) is f(x) = xTQx+2bTx,
with b being a vector in Rn and

Q = In + Jn,

where In is the n× n identity matrix and Jn is the n× n matrix of all ones. Then

L(f) = 2λmax(Q) = 2λmax(In + Jn) = 2(n+ 1).

On the other hand, for any i �= j the constant Li,j(f) is twice the maximum eigenvalue
of the submatrix of Q consisting of the ith and jth rows and columns. That is,

Li,j(f) = 2λmax

(
2 1
1 2

)
= 6.

For large n, L(f) = 2n+ 2 can be much larger than L2(f) = 6. It is not difficult to
see that the descent lemma (Lemma 2.3) can be refined to a suitable “local” version.

Lemma 2.6 (local descent lemma). Suppose that Assumption 2 holds. Then

f(x+ d) ≤ f(x) +∇f(x)Td+
L2(f)

2
‖d‖2

for any vector d ∈ Rn with at most two nonzero components.

Using the local descent lemma we can now show that a CW-minimum is also an
L2(f)-stationary point.

Theorem 2.4. Suppose that Assumption 2 holds and let x∗ be a CW-minimum
of (P). Then

(2.17) |∇if(x
∗)|

{≤ L2(f)Ms(x
∗), i ∈ I0(x

∗),
= 0, i ∈ I1(x

∗),

that is, x∗ is an L2(f)-stationary point.

Proof. Since x∗ is a CW-minimum, it follows by Lemma 2.5 that it is a BF vector.
Thus, if ‖x∗‖0 < s, we have ∇f(x∗) = 0, establishing the result for this case.

Suppose now that ‖x∗‖0 = s. Let i ∈ I1(x
∗). Then again by Lemma 2.5 it follows

that x∗ is a BF vector and thus ∇if(x
∗) = 0. Now let i ∈ I0(x

∗) and let m be
an index for which |x∗

m| = Ms(x
∗). Obviously, m ∈ I1(x

∗), and thus, since x∗ is a
CW-minimum, it follows in particular that

(2.18) f(x∗) ≤ f(x∗ − x∗
mem − σx∗

mei),
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where σ = sgn (x∗
m∇if(x

∗)). By the local descent lemma (Lemma 2.6) we have

f(x∗ − x∗
mem − σx∗

mei)(2.19)

≤ f(x∗) +∇f(x∗)T (−x∗
mem − σx∗

mei) +
L2(f)

2
‖x∗

mem + σx∗
mei‖2

= f(x∗)− x∗
m∇mf(x∗)− σx∗

m∇if(x
∗) + L2(f)(x

∗
m)2

= f(x∗)− σx∗
m∇if(x

∗) + L2(f)(x
∗
m)2,

where the last equality follows from the fact that since m ∈ I1(x
∗), it follows by (2.15)

that ∇mf(x∗) = 0.
Combining (2.18) and (2.19) we obtain that

0 ≤ −σx∗
m∇if(x

∗) + L2(f)(x
∗
m)2.

Recalling the definition of σ, we conclude that

|x∗
m∇if(x

∗)| ≤ L2(f)(x
∗
m)2,

which is equivalent to

|∇if(x
∗)| ≤ L2(f)|x∗

m| = L2(f)Ms(x
∗),

concluding the proof.
An immediate consequence of Theorem 2.4 is that under Assumption 2, any

optimal solution of (P) is an L2(f)-stationary point.
Corollary 2.2. Suppose that Assumption 2 holds. Then any optimal solution

of (P) is also an L2(f)-stationary point of (P).
To summarize our discussion on optimality conditions we have shown that without

Assumption 2 we have the following relations:

optimal solution of (P)
Theorem 2.3 ⇓

CW-minimum of (P)
Lemma 2.5 ⇓

BF vector of (P)

Under Assumption 2, we have

optimal solution of (P)
Theorem 2.3 ⇓

CW-minimum of (P)
Theorem 2.4 ⇓

L2(f)− stationary
Corrolary 2.1 ⇓

BF vector of (P)

To illustrate these relationships we consider a detailed example.
Example 2.2. Consider problem (P) with s = 2, n = 5, and

f(x) = xTQx+ 2bTx,

where Q = I5 + J5 as in Example 2.1 and b = −(3, 2, 3, 12, 5)T . In Lemma 2.1 we
showed how to compute the BF vectors of problem (P) with a quadratic objective.
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Table 2.1

Function values and stationarity levels of the 10 BF vectors.

BF vector number 1 2 3 4 5 6 7 8 9 10
Function value -4.66 -6.00 -78 -12.66 -4.66 -82.66 -12.66 -78 -12.66 -72.66

Stationarity level 62 20 3 56 62 1.25 58 3 56 11

Using this method it is easy to see that in our case there are 10 BF vectors given by
(each corresponding to a different choice of two variables out of 5):

x1 = (1.3333, 0.3333, 0, 0, 0)T ,

x2 = (1.0000, 0, 1.0000, 0, 0)T ,

x3 = (−2.0000, 0, 0, 7.0000, 0)T,

x4 = (0.3333, 0, 0, 0, 2.3333)T ,

x5 = (0, 0.3333, 1.3333, 0, 0)T ,

x6 = (0,−2.6667, 0, 7.3333, 0)T,

x7 = (0,−0.3333, 0, 0, 2.6667)T,

x8 = (0, 0,−2.0000, 7.0000, 0)T,

x9 = (0, 0, 0.3333, 0, 2.3333)T ,

x10 = (0, 0, 0, 6.3333,−0.6667)T.

The stationarity levels (see Remark 2.3) and function values up to two digits of
accuracy of each of the BF vectors is given in Table 2.1.

Since in this case L2(f) = 6 (see Example 2.1), it follows by Corollary 2.2 that
any optimal solution is a 6-stationary point, implying that only the three BF vectors
x3,x6,x8 are candidates for being optimal solutions. In addition, by Theorem 2.4,
only these three BF vectors may be CW-minima. By direct calculation we found that
only x6—the optimal solution of the problem—is a CW-minimum. Therefore, in this
case, the only CW-minimum is the global optimal solution. Note, however, that there
could of course be examples in which there exist CW-minima which are not optimal.

3. Numerical algorithms. We now develop two classes of algorithms that
achieve the necessary conditions defined in the previous section:

• IHT. The first algorithm results from using the L-stationary condition. For
the case f ≡ fLI, and under the assumption that ‖A‖2 < 1, it coincides with
the IHT method [6]. Our approach extends this algorithm to the general
case under Assumption 2, and it will be referred to as the IHT method in
our general setting as well. We note that a generalization of IHT to the
nonlinear case can also be found in [5]. We will prove that the limit points
of the algorithm are L(f)-stationary points. As we show, this method is
well defined only when Assumption 2 holds and relies on knowledge of the
Lipschitz constant.

• Sparse-simplex methods. The other two algorithms we suggest are essentially
coordinate descent methods that optimize the objective function at each it-
eration with respect to either one or two decision variables.
The first algorithm in this class seeks the coordinate or coordinates that
lead to the largest decrease and optimizes with respect to them. Since the
support of the iterates changes by at most one index, it has some resemblance
to the celebrated simplex method for linear programming and will thus be
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referred to as the greedy sparse-simplex method. We show that any limit
point of the sequence generated by this approach is a CW-minimum, which
as shown in Theorem 2.4 is a stronger notion than L-stationarity for any
L ≥ L2(f). An additional advantage of this approach is that it is well defined
even when Assumption 2 is not valid, and it does not require any knowledge
of the Lipschitz constant even when one exists. The disadvantage of the
greedy sparse-simplex method is that it does not have a selection strategy for
choosing the indices of the variables to be optimized but rather explores all
possible choices. Depending on the objective, this may be a very costly step.
To overcome this drawback, we suggest a second coordinate descent algorithm
with an extremely simple index selection rule; this rule discards the need
to perform an exhaustive search for the relevant indices on which
the optimization will be performed. This approach will be referred to as
the partial sparse-simplex method. Under Assumption 2 we show that it is
guaranteed to converge to L2(f)-stationary points.

In the ensuing subsections we consider each of the algorithms above.

3.1. The IHT method. One approach for solving problem (P) is to employ the
following fixed point method in order to enforce the L-stationary condition (2.4):

(3.1) xk+1 ∈ PCs

(
xk − 1

L
∇f(xk)

)
, k = 0, 1, 2, . . . .

Convergence results on this method can be obtained when Assumption 2 holds; we will
therefore make this assumption throughout this subsection. The iterations defined by
(3.1) were studied in [6] for the special case in which f ≡ fLI and ‖A‖2 < 1 and
were referred to as the M -sparse algorithm. Later on, in [7], the authors referred to
this approach as the IHT method (again, for f = fLI) and analyzed a version with
an adaptive stepsize which avoids the need for the normalization property ‖A‖2 < 1.
Similarly, we refer to this approach for more general objective functions as the IHT
method:

The IHT method
Input: a constant L > L(f).
• Initialization: Choose x0 ∈ Cs.
• General step : xk+1 ∈ PCs

(
xk − 1

L∇f(xk)
)
, (k = 0, 1, 2, . . .)

Remark 3.1. We adopt the convention in the literature that does not specify the
strategy for choosing a vector from the set Dk ≡ PCs

(
xk − 1

L∇f(xk)
)
. The strategy

of choosing an element in Dk is a matter of implementation. For example, one can
implement the method so that in case of ties the smallest indices are chosen. The
convergence theorems are independent of the specific strategy for choosing the vector
from the set Dk and are valid for any sequence satisfying the inclusion relation in the
general step of the IHT method. It can be shown that the general step of the IHT
method is equivalent to the relation

(3.2) xk+1 ∈ argmin
x∈Cs

hL(x,x
k),

where hL(x,y) is defined by (2.6). (See also the proof of Theorem 2.2.)
Several basic properties of the IHT method are summarized in the following

lemma.
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1494 AMIR BECK AND YONINA C. ELDAR

Lemma 3.1. Let {xk}k≥0 be the sequence generated by the IHT method with a
constant stepsize 1

L where L > L(f). Then

1. f(xk)− f(xk+1) ≥ L−L(f)
2 ‖xk − xk+1‖2;

2. {f(xk)}k≥0 is a nonincreasing sequence;
3. ‖xk − xk+1‖ → 0;
4. for every k = 0, 1, 2, . . . , if xk �= xk+1, then f(xk+1) < f(xk).

Proof. Part 1 follows by substituting x = xk,y = xk+1 in (2.8). Parts 2, 3, and
4 follow immediately from part 1.

A direct consequence of Lemma 3.1 is the convergence of the sequence of function
values.

Corollary 3.1. Let {xk}k≥0 be the sequence generated by the IHT method with
a constant stepsize 1

L where L > L(f). Then the sequence {f(xk)}k≥0 converges.
As we have seen, the IHT algorithm can be viewed as a fixed point method

for solving the condition for L-stationarity. The following theorem states that all
accumulation points of the sequence generated by the IHT method with constant
stepsize 1

L are indeed L-stationary points.
Theorem 3.1. Let {xk}k≥0 be the sequence generated by the IHT method with

stepsize 1
L where L > L(f). Then any accumulation point of {xk}k≥0 is an L-

stationary point.
Proof. Suppose that x∗ is an accumulation point of the sequence. Then there

exists a subsequence {xkn}n≥0 that converges to x∗. By Lemma 3.1

(3.3) f(xkn)− f(xkn+1) ≥ L− L(f)

2
‖xkn − xkn+1‖2.

Since {f(xkn)}n≥0 and {f(xkn+1)}n≥0 both converge to the same limit f∗, it
follows that f(xkn)− f(xkn+1) → 0 as n → ∞, which combined with (3.3) yields that

xkn+1 → x∗ as n → ∞.

Recall that for all n ≥ 0

xkn+1 ∈ PCs

(
xkn − 1

L
∇f(xkn)

)
.

Let i ∈ I1(x
∗). By the convergence of xkn and xkn+1 to x∗, it follows that there exists

N such that

xkn

i , xkn+1
i �= 0 for all n > N,

and therefore, for n > N ,

xkn+1
i = xkn

i − 1

L
∇if(x

kn).

Taking n to ∞ we obtain that

∇if(x
∗) = 0.

Now let i ∈ I0(x
∗). If there exists an infinite number of indices kn for which

xkn+1
i �= 0, then as in the previous case we obtain that xkn+1

i = xkn

i − 1
L∇if(x

kn)
for these indices, implying (by taking the limit) that ∇if(x

∗) = 0. In particular,
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|∇if(x
∗)| ≤ LMs(x

∗). On the other hand, if there exists an M > 0 such that for all
n > M xkn+1

i = 0, then∣∣∣∣xkn

i − 1

L
∇if(x

kn)

∣∣∣∣ ≤ Ms

(
xkn − 1

L
∇f(xkn)

)
= Ms(x

kn+1).

Thus, taking n to infinity while exploiting the continuity of the functionMs, we obtain
that

|∇if(x
∗)| ≤ LMs (x

∗) ,

establishing the desired result.

3.1.1. The Case f = fLI. When f(x) ≡ fLI(x) ≡ ‖Ax − b‖2, and under
the assumption of s-regularity of (P), we know by Lemma 2.1 that the number of
BF vectors is finite. Utilizing this fact we can now show convergence of the whole
sequence generated by the IHT method when f = fLI. This result is stronger than the
one of Theorem 3.1, which only shows that all accumulation points are L-stationary
points.

Theorem 3.2. Let f(x) ≡ fLI(x) = ‖Ax − b‖2. Suppose that the s-regularity
property holds for the matrix A. Then the sequence generated by the IHT method with
stepsize 1

L where L > L(f) converges to an L-stationary point.
Proof. Let {xk}k≥0 be the sequence generated by the IHT method. We begin by

showing that the sequence is bounded. By the descent property of the sequence of
function values (see Lemma 3.1), it follows that the sequence {xk}k≥0 is contained in
the level set

T = {x ∈ R
n : fLI(x) ≤ fLI(x

0)}.
We now show that T is bounded. To this end, note that the number of subsets

of {1, 2, . . . , n} whose size is no larger than s is equal to

p =

s∑
k=0

(
n

k

)
.

By denoting these p subsets as I1, I2, . . . , Ip, we can represent the set T as the union

T =

p⋃
j=1

Tj,

where

Tj =
{
x ∈ R

n : fLI(x) ≤ fLI(x
0), xi = 0 for all i /∈ Ij

}
.

In this notation, we can rewrite Tj as

Tj =
{
x ∈ R

n : ‖ATjxTj − b‖2 ≤ fLI(x
0),xTj

= 0
}
.

The set Tj is bounded since the s-regularity of A implies that the matrix AT
Tj
ATj is

positive definite. This implies the boundedness of T .
We conclude that the sequence {xk}k≥0 is bounded and therefore, in particular,

there exists a subsequence {xkn}n≥0 which converges to an accumulation point x∗
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1496 AMIR BECK AND YONINA C. ELDAR

which is an L-stationary point and hence also a BF vector. By Lemma 2.1, the
number of BF vectors is finite, which implies that there exists an ε > 0 smaller
than the minimal distance between all the pairs of the BF vectors. To show the
convergence of the entire sequence to x∗, suppose in contradiction that this is not
the case. We will assume without loss of generality that the subsequence {xkn}n≥0

satisfies ‖xkn − x∗‖ ≤ ε for every n ≥ 0. Since we assumed that the sequence is not
convergent, the index tn given by

tn = max{l : ‖xi − x∗‖ ≤ ε, i = kn, kn + 1, . . . , l}

is well defined. We have thus constructed a subsequence {xtn}n≥0 for which

‖xtn − x∗‖ ≤ ε, ‖xtn+1 − x∗‖ > ε, n = 0, 1, . . . .

It follows that xtn converges to x∗, and in particular there exists an N > 0 such that
for all n > N , ‖xtn − x∗‖ ≤ ε/2. Thus, for all n > N ,

‖xtn − xtn+1‖ >
ε

2
,

contradicting part 3 of Lemma 3.1.
Remark 3.2. As we noted previously, the IHT method in the case f = fLI with

fixed stepsize set to 1 was proposed in [6]. It was shown in [6] that if A satisfies
the s-regularity property and ‖A‖2 < 1, then the algorithm converges to a local
minimum. This result is consistent with Theorem 3.2 since when ‖A‖2 < 1, the
Lipschitz constant satisfies L(f) < 1, and we can therefore ensure convergence by
Theorem 3.2 with stepsize equal to 1. In [7] the authors note that the IHT method
with stepsize 1 might diverge when ‖A‖2 > 1. To overcome this limitation, they
propose an adaptive stepsize for which they show the same type of convergence results.
Our result here shows that a fixed stepsize which depends on the Lipschitz constant
can also be used.

3.1.2. Examples.
Example 3.1. Consider the problem

(3.4) min
{
f(x1, x2) ≡ 12x2

1 + 20x1x2 + 16x2
2 + 2x1 + 18x2 :

∥∥(x1;x2)
T
∥∥
0
≤ 1

}
.

The objective function is convex quadratic and the Lipschitz constant of its gradient
is given by

L(f) = 2λmax

(
12 10
10 16

)
= 48.3961.

It can be easily seen that there are only two BF vectors to this problem: (0,−9/16)T ,
(−1/12, 0)T (constructed by taking one variable to be zero and the other to satisfy that
the corresponding partial derivative is zero). The optimal solution of the problem is
the first BF vector (0,−9/16)T with objective function value of −81/16. This point is
an L-stationary point for any L ≥ L(f). The second point (−1/12, 0)T is not an opti-
mal solution (its objective function value is −1/12). Since ∇2f((−1/12, 0)T ) = 49/3,

it follows by Lemma 2.2 that it is an L-stationary point for L ≥ 49/3
1/12 = 196.

Therefore, for any L ∈ [L(f), 196), only the optimal solution (0,−9/16)T is an
L-stationary point and the IHT method is guaranteed to converge to the global
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Fig. 3.1. The optimal solution (0,−9/16)T is denoted by a red asterisk and the additional BF
vector (−1/12, 0)T is denoted by a red diamond. The region of convergence to the optimal solution
is the blue region and the points in the white region converged to the nonoptimal point (−1/12, 0)T .
The left image describes the convergence region when the IHT method was invoked with L = 250,
while the right image describes the same for L = 500. When L gets larger, the chances to converge
to the nonoptimal L-stationary point are higher.

optimal solution. However, if the upper bound is chosen to satisfy L ≥ 196, then
(−1/12, 0)T is also an L-stationary point and the IHT method might converge to it.
This is illustrated in Figure 3.1.

Example 3.1 illustrates the fact that although convergence of the sequence is
always guaranteed by Theorem 3.2, the likelihood that the convergence will be to the
global optimum decreases as L gets larger (i.e., the stepsize gets smaller).

Example 3.2. For any two positive number a < b, consider the problem

min{f(x1, x2) ≡ a(x1 − 1)2 + b(x2 − 1)2 : ‖(x1, x2)
T ‖0 ≤ 1}.

Obviously the optimal solution of the problem is (x1, x2) = (0, 1). An additional BF
vector is x̃ = (1, 0)T . Note that here L(f) = 2b. Therefore, since ∇f(x̃) = (0,−2b)T

and M1(x̃) = 1, it follows that

|∇2f(x̃)| ≤ L(f)M1(x̃),

and hence x̃ will also be an L-stationary point for any L ≥ L(f). Therefore, in
this problem, regardless of the value of L, there is always a chance to converge to a
nonoptimal solution.

3.2. The greedy sparse-simplex method. The IHT algorithm is able to find
L-stationary points for any L > L(f) under Assumption 2. However, by Corollary 2.2,
any optimal solution is also an L2(f)-stationary point, and L2(f) can be significantly
smaller than L(f). It is therefore natural to seek a method that is able to generate
such points. An even better approach would be to derive an algorithm that converges
to a CW-minimum, which by Theorem 2.4 is a stronger notion than L-stationarity.
An additional drawback of IHT is that it requires the validity of Assumption 2 and
the knowledge of the Lipschitz constant L(f).

Below we present the greedy sparse-simplex method which overcomes the faults
of IHT alluded to above: its limit points are CW-minima and it does not require
the validity of Assumption 2, but if the assumption does hold, then its limit points
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1498 AMIR BECK AND YONINA C. ELDAR

are L2(f)-stationary points (without the need to know any information on Lipschitz
constants).

The Greedy Sparse-Simplex Method
• Initialization: Choose x0 ∈ Cs.
• General step : (k = 0, 1, . . .)

• If ‖xk‖0 < s, then compute for every i = 1, 2, . . . , n

ti ∈ argmin
t∈R

f(xk + tei),(3.5)

fi = f(xk + tiei).

Let ik ∈ argmin
i=1,...,n

fi. If fik < f(xk), then set

xk+1 = xk + tikeik .

Otherwise, STOP.
• If ‖xk‖0 = s, then for every i ∈ I1(x

k) and j = 1, . . . , n compute

ti,j ∈ argmin
t∈R

f(xk − xk
i ei + tej),(3.6)

fi,j = f(xk − xk
i ei + ti,jej).

Let (ik, jk) ∈ argmin{fi,j : i ∈ I1(x
k), j = 1, . . . , n}. If fik,jk < f(xk),

then set

xk+1 = xk − xk
ik
eik + tik,jkejk .

Otherwise, STOP.

Remark 3.3. One advantage of the greedy sparse-simplex method is that it can be
easily implemented for the case f ≡ fQU, that is, the case when the objective function
is quartic. In this case the minimization steps (3.5) and (3.6) consist of finding the
minimum of a scalar quartic (though nonconvex) function, which is an easy task since
the minimizer is one of at most three roots of the cubic polynomial derivative.

By its definition, the greedy sparse-simplex method generates a nonincreasing
sequence of function values and gets stuck only at CW-minima.

Lemma 3.2. Let {xk} be the sequence generated by the greedy sparse-simplex
method. Then f(xk+1) ≤ f(xk) for every k ≥ 0 and equality holds if and only if
xk = xk+1 and xk is a CW-minimum.

Theorem 3.3 establishes the main convergence result for the greedy simplex-sparse
algorithm, namely, that its accumulation points are CW-minima.

Theorem 3.3. Let {xk} be the sequence generated by the greedy sparse-simplex
method. Then any accumulation point of {xk} is a CW-minimum of (P).

Proof. By Lemma 3.2 the sequence of function values {f(xk)} is nonincreasing
and by Assumption 1 is also bounded below. Therefore, {f(xk)} converges. Suppose
that x∗ is an accumulation point of {xk}. Then there exists a subsequence {xpn}n≥0

that converges to x∗. Suppose that ‖x∗‖0 = s. Then the convergence of {xkn} to x∗

implies that there exists a subsequence of {xpn}n≥0, which we will denote by {xkn},
such that I1(x

kn) = I1(x
∗) for all n. Let i ∈ I1(x

∗), j ∈ {1, 2, . . . , n}, and t ∈ R. By
definition of the method it follows that
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f(xkn)− f(xkn+1) ≥ f(xkn)− f(xkn − xkn

i ei + tej) for all n.

The convergence of {f(xkn)} implies that when taking the limit n → ∞ in the latter
inequality, we obtain

0 ≥ f(x∗)− f(x∗ − x∗
i ei + tej).

That is, f(x∗) ≤ f(x∗ − x∗
i ei + tej) for all i ∈ I1(x

∗), j ∈ {1, 2, . . . , n}, and t ∈ R,
meaning that

f(x∗) ≤ min
t∈R

f(x∗ − x∗
i ei + tej)

for all i ∈ I1(x
∗) and j ∈ {1, 2, . . . , n}, thus showing that x∗ is a CW-minimum.

Suppose now that ‖x∗‖0 < s. By the convergence of {xkn} to x∗, it follows that
there exists an N for which I1(x

∗) ⊆ I1(x
kn) for all n > N . Take n > N ; if i ∈ I1(x

∗),
than i ∈ I1(x

kn), which in particular implies that

f(xkn)− f(xkn+1) ≥ f(xkn)− f(xkn + tei) for all t ∈ R.

Taking n → ∞ in the last inequality yields the desired inequality

(3.7) f(x∗) ≤ min
t∈R

f(x∗ + tei).

Now suppose that i ∈ I0(x
∗) and take n > N . If ‖xkn‖0 < s, then by the definition

of the greedy sparse-simplex method we have

(3.8) f(xkn)− f(xkn+1) ≥ f(xkn)− f(xkn + tei).

On the other hand, if ‖xkn‖0 = s, then the set I1(x
kn) \ I1(x∗) is nonempty, and we

can pick an index jn ∈ I1(x
kn) \ I1(x

∗). By definition of the greedy sparse-simplex
method we have

(3.9) f(xkn)− f(xkn+1) ≥ f(xkn)− f(xkn − xkn

jn
ejn + tei) for all t ∈ R.

Finally, combining (3.8) and (3.9) we arrive at the conclusion that

(3.10) f(xkn)− f(xkn+1) ≥ f(xkn)− f(xkn + dn + tei),

where

dn =

{
0, ‖xkn‖0 < s,

−xkn

jn
ejn , ‖xkn‖0 = s.

Since dn → 0 as n tends to ∞, it follows by taking the limit n → ∞ in (3.10) that
the inequality

f(x∗) ≤ f(x∗ + tei)

holds for all t ∈ R, showing that also in this case x∗ is a CW-minimum.
Combining Theorem 3.3 with Theorem 2.4 leads to the following corollary.
Corollary 3.2. Suppose that Assumption 2 holds and let {xk} be the sequence

generated by the greedy sparse-simplex method. Then any accumulation point of {xk}
is an L2(f)-stationary point of (P).

D
ow

nl
oa

de
d 

11
/1

4/
20

 to
 1

32
.6

6.
11

.2
12

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/p

ag
e/

te
rm

s



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

1500 AMIR BECK AND YONINA C. ELDAR

3.2.1. The case f = fLI. We consider now the greedy sparse-simplex method
when f ≡ fLI. At step (3.5) we perform the minimization ti = argmin f(xk + tei).
Since f(xk + tei) = ‖Axk − b + tai‖2 (ai being the ith column of A), we have
immediately that

ti = − aTi rk
‖ai‖2 ,

where rk = Axk − b. We can then continue to compute

(3.11) fi =

∥∥∥∥rk − aTi rk
‖ai‖2 ai

∥∥∥∥
2

= ‖rk‖2 − (aTi rk)
2

‖ai‖2

so that

ik ∈ argmin
i=1,...,n

fi = argmax
i=1,...,n

|aTi rk|
‖ai‖ .

The algorithm then proceeds as follows. For ‖xk‖0 < s we choose

(3.12) ik ∈ argmax
i=1,...,n

|aTi rk|
‖ai‖ .

If aTikrk �= 0, then we set

xk+1 = xk − aTikrk

‖aik‖2
eik .

In this case,

rk+1 = Axk+1 − b = rk −
aTikrk

‖aik‖2
aik .

Otherwise we stop. Note that if A has full row-rank, then aTikrk = 0 only if rk = 0.

For ‖xk‖0 = s we choose

(ik, jk) = argmax
i∈I1(xk),j∈{1,2,...,n}

|aTj rik|
‖aj‖

with rik = Axk − xk
i ai − b. Let fik,jk = f(xk − xk

ik
eik + tejk) with

t = − aTjkr
ik
k

‖ajk‖2
.

If fik,jk < f(xk), then we set

xk+1 = xk − xk
ikeik − aTjkr

ik
k

‖ajk‖2
ejk .

Otherwise we stop.
It is interesting to compare the resulting iterations with the MP algorithm [21]

designed to find a sparse solution to the system Ax = b. The MP method begins
with an initial guess of x0 = 0 and r0 = b. At each iteration, we add an element to
the support by choosing

(3.13) m ∈ argmax
i=1,2,...,n

|aTi rk|
‖ai‖ .
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The current estimate of x is then updated as

(3.14) xk+1 = xk − aTmrk
‖am‖2 em,

and the residual is updated as

(3.15) rk+1 = Axk+1 − b = rk − aTmrk
‖am‖2 am.

The iterations continue until there are s elements in the support. Evidently, the MP
method coincides with our method as long as the support is smaller than s. Our
approach, however, has several advantages:

• We do not need to initialize it with a zero vector.
• In MP once an indexm is added to the support it will not be removed unless in
some iteration aTmrk = xm‖am‖2 and m maximizes aTi rk/‖ai‖. On the other
hand, our approach allows us to remove elements from the support under
much broader conditions. Thus, there is an inherent “correction” scheme
incorporated into our algorithm.

• In MP the algorithm stops once the maximal support is achieved. In con-
trast, in our approach further iterations are made by utilizing the correction
mechanism.

We note that once our method converges to a fixed support set, it continues
to update the values on the support. Ultimately, it converges to the least-squares
solution on the support since in this situation the method is a simple coordinate
descent method employed on a convex function. This is similar in spirit to the OMP
approach [20]. The OMP proceeds similarly to the MP method; however, at each
stage it updates the vector xk as the least-squares solution on the current support.
In our approach, we will converge to the least-squares solution on the final support;
however, in choosing the support values we do not perform this orthogonalization.
Instead, we allow for a correction stage which aids in correcting erroneous decisions.

3.2.2. Examples.
Example 3.3. Consider the sparse least-squares problem

(P2) min{‖Ax− b‖2 : x ∈ C2},

where A ∈ R4×5 and b ∈ R4 were constructed as follows. First, the components
were randomly and independently generated from a standard normal distribution,
and then all the columns were normalized. The vector b was chosen as b ≡ Axtrue,
where xtrue = (1,−1, 0, 0, 0)T , so that xtrue is the optimal solution of the problem.
Specifically, the MATLAB code constructing A and b is

randn(‘seed’,327);

A=randn(4,5);

A=A*diag(1./sqrt(sum(A.^2)));

b=A*[1;-1;0;0;0]

The problem has 10 BF vectors (corresponding to the 5-choose-2 options for the sup-
port of the solution) and they are denoted by 1, 2, . . . , 10, where the first solution is the
optimal solution xtrue. The corresponding objective function values and stationarity
levels (with two digits of accuracy) are given in Table 3.1.
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Table 3.1

Function values and stationarity levels of the 10 BF vectors of (P2).

BF vector number 1 2 3 4 5 6 7 8 9 10
Function value 0.00 0.81 0.90 0.43 0.43 0.93 0.30 1.08 0.81 2.30

Stationarity level 0.00 2.90 8.46 0.91 1.08 13.97 0.69 18.70 1.50 9.05

In this problem L(f) = 4.78 and L2(f) = 3.4972. We compared three methods:
• the IHT method w.th L1 = 2L(f),
• the IHT method with L2 = 1.1L(f),
• the greedy sparse-simplex method.

Each of these methods was run 1000 times with different randomly generated
starting points. All the runs converged to one of the 10 BF vectors. The number of
times each method converged to each of the BF vectors is given in Table 3.2.

First note that when employing IHT with L1 = 2L(f) = 9.56, the method never
converged to the BF vectors 6, 8. The theoretical reason for this phenomena is simple:
the stationarity levels of these two points are 13.97 and 18.70, and they are therefore
not 9.56-stationary points. When employing IHT with L2 = 1.1 · L(f) = 5.26, there
are two additional BF vectors—3 and 10—to which convergence is impossible, because
their stationarity level is 8.46 and 9.05. This illustrates the fact that as L gets larger,
there are more nonoptimal candidates to which IHT can converge. The greedy sparse-
simplex algorithm exhibits the best results with more than 80% chance to converge to
the true optimal solution. Note that this method will never converge to the BF vectors
3, 6, 8, and 10 since they are not L2(f)-stationary points. Moreover, there are only
three possible BF vectors to which the greedy sparse-simplex algorithm converge: 1, 4,
and 7. The reason is that among the 10 BF vectors, there are only three CW-minima.
This illustrates the fact that even though any CW-minimum is an L2(f)-stationary
point, the reverse claim is not true—there are L2(f)-stationary points which are not
CW-minima.

In Table 3.3 we describe the 11 first iterations of the greedy sparse-simplex
method. Note that at the fourth iteration the algorithm “finds” the correct sup-
port, and the rest of the iterations are devoted to computing the exact values of the
nonnegative components of the BF vector.

Example 3.4 (comparison with MP and OMP). To compare the performance of
MP and OMP to that of the greedy sparse-simplex, we generated 1000 realizations of
A and b exactly as described in Example 3.3. We ran both MP and OMP on these
problems with s = 2. Each of these methods were considered “successful” if it found
the correct support. (MP usually does not find the correct values.) The greedy sparse-
simplex was run with an initial vector of all zero, so that the first two iterations were

Table 3.2

Distribution of limit points among the 10 BF vector. N1(i) (N2(i)) is the amount of runs for
which the IHT method with L1 (L2) converged to the ith BF vector. N3(i) is the amount of runs
for which the greedy sparse-simplex method converged to the ith BF vector. The exact definition of
N4(i) will be made clear in section 3.3.

BF vector (i) 1 2 3 4 5 6 7 8 9 10
N1(i) 329 50 63 92 229 0 130 0 61 46
N2(i) 340 59 0 89 256 0 187 0 69 0
N3(i) 813 0 0 112 0 0 75 0 0 0
N4(i) 772 0 0 92 0 0 93 0 43 0
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Table 3.3

First 11 iterations of the greedy sparse-simplex method with starting point (0, 1, 5, 0, 0, 0)T .

Iteration number x1 x2 x3 x4 x5

0 0 1 5 0 0
1 0 1.0000 1.5608 0 0
2 0 0 1.5608 0 -0.6674
3 1.6431 0 0 0 -0.6674
4 1.6431 -0.8634 0 0 0
5 1.0290 -0.8634 0 0 0
6 1.0290 -0.9938 0 0 0
7 1.0013 -0.9938 0 0 0
8 1.0013 -0.9997 0 0 0
9 1.0001 -0.9997 0 0 0
10 1.0001 -1.0000 0 0 0
11 1.0000 -1.0000 0 0 0

identical to MP. The results were the following: of the 1000 realizations, both MP
and OMP found the correct support in 452 cases. The greedy sparse-simplex method,
which adds “correcting” steps to MP, was able to recover the correct support in 652
instances.

An additional advantage of greedy sparse-simplex is that it is capable of running
from various starting points. We therefore added the following experiment: for each
realization of A and b, we ran the greedy sparse-simplex method from five different
initial vectors generated in the same way as in Example 3.3 (and not the all-zeros
vector). If at least one of these five runs detected the correct support, then the
experiment is considered to be a success. In this case the correct support was found
952 times out of the 1000 realizations.

The example above illustrates an important feature of the greedy sparse-simplex
algorithm: since it can be initialized with varying starting points, it is possible to
improve its performance by using several starting points and obtaining several pos-
sible sparse solutions. The final solution can then be taken as the one with minimal
objective function value. This feature provides additional flexibility over the MP and
OMP methods.

3.3. The partial sparse-simplex method. The greedy sparse-simplex algo-
rithm, as illustrated in Example 3.3, has several advantages over the IHT method:
first, its limit points satisfy stronger optimality conditions, and as a result it is more
likely to converge to the optimal solution; second, it does not require knowledge of a
Lipschitz constant. On the other hand, the computational effort per iteration of the
greedy sparse-simplex is larger than the one required by IHT. Indeed, in the worst
case it requires the call for O(s · n) one-dimensional minimization procedures; this
computational burden is caused by the fact that the method has no index selection
strategy. That is, instead of deciding a priori according to some policy on the index
or indices on which the optimization will be performed, the algorithm invokes an op-
timization procedure for all possible choices and then picks the index resulting in the
minimal objective function value.

The partial sparse-simplex method described below has an extremely simple way
to choose the index or indices on which the optimization will be performed. The only
difference from the greedy sparse-simplex algorithm is in the case when ‖xk‖0 = s,
where there are two options: Either perform a minimization with respect to the vari-
able in the support of xk which causes the maximum decrease in function value,
or replace the variable in the support with the smallest absolute value (that is,
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1504 AMIR BECK AND YONINA C. ELDAR

substituting zero instead of the current value) with the nonsupport variable corre-
sponding to the largest absolute value of the partial derivative—the value of the new
nonzero variable is set by performing a minimization procedure with respect to it.
Finally, the best of the two choices (in terms of objective function value) is selected.
Since the method is no longer “greedy” and only considers part of the choices for the
pair of indices, we will call it the partial sparse-simplex method.

The Partial Sparse-Simplex Method
• Initialization: x0 ∈ Cs.
• General Step (k = 0, 1, 2, . . .):

• If ‖xk‖0 < s, then compute for every i = 1, 2, . . . , n

ti ∈ argmin
t∈R

f(xk + tei),

fi = f(xk + tiei).

Let ik ∈ argmin
i=1,...,n

fi. If fik < f(xk), then set

xk+1 = xk + tikeik .

Otherwise, STOP.
• If ‖xk‖0 = s, then compute for every i ∈ I1(x

k)

ti ∈ argmin
t∈R

f(xk + tei),

fi = f(xk + tiei).

Let

i1k ∈ argmin{fi : i ∈ I1(x
k)},

i2k ∈ argmax{|∇if(x
k)| : i ∈ I0(x

k)},
mk ∈ argmin{|xk

i | : i ∈ I1(x
k)},

and let

D1
k = mint∈R f(xk + tei1k), T 1

k ∈ argmin
t∈R

f(xk + tei1k)

D2
k = mint∈R f(xk − xk

mk
emk

+ tei2k), T 2
k ∈ argmin

t∈R

f(xk − xk
mk

emk
+ tei2k)

If D1
k < D2

k, then set

xk+1 = xk + T 1
k ei1k .

Else

xk+1 = xk − xk
mk

emk
+ T 2

kei2k .

Remark 3.4. The partial sparse-simplex coincides with the greedy sparse-simplex
when ‖xk‖0 < s. Therefore, when f ≡ fLI, the partial sparse-simplex method co-
incides with MP for the first s steps and when the initial vector is the vector of all
zeros.
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The basic property of the partial sparse-simplex method is that it generates
a nonincreasing sequence of function values and that all its limit points are BF
vectors.

Lemma 3.3. Let {xk} be the sequence generated by the partial sparse-simplex
method. Then any accumulation point of {xk} is a BF vector.

Proof. The proof of Theorem 3.3 until (3.7) is still valid for the partial sparse-
simplex method, so that for any i ∈ I1(x

∗) and any t ∈ R,

f(x∗) ≤ f(x∗ + tei),

which in particular means that 0 ∈ argmin {gi(t) ≡ f(x∗ + tei)} and thus ∇if(x
∗) =

g′i(0) = 0.
The limit points of the partial sparse-simplex are not necessarily CW-minima.

However, when Assumption 2 holds, they are L2(f)-stationary points, which is a
better result than the one known for IHT.

Theorem 3.4. Suppose that Assumption 2 holds and let {xk} be the sequence
generated by the partial sparse-simplex method. Then any accumulation point of {xk}
is an L2(f)-stationary point.

The proof of the theorem relies on the following lemma.
Lemma 3.4. Suppose that Assumption 2 holds and let {xk} be the sequence

generated by the partial sparse-simplex method. Then for any k for which ‖xk‖0 < s
it holds that

(3.16) f(xk)− f(xk+1) ≥ 1

2L2(f)
max

i=1,2,...,n
(∇if(x

k))2.

For any k with ‖xk‖0 = s, the inequality

(3.17) f(xk)− f(xk+1) ≥ A(xk)

holds true with

A(x) ≡ max

{
1

2L2(f)
max

i∈I1(x)
(∇if(x))

2,Ms(x)

×
[
max

i∈I0(x)
|∇if(x)| − max

i∈I1(x)
|∇if(x)| − L2(f)Ms(x)

]}
.(3.18)

Proof. Suppose that ‖xk‖0 < s. Then by the definition of the method we have
for all i = 1, 2, . . . , n,

(3.19) f(xk+1) ≤ f

(
xk − 1

L2(f)
∇if(x

k)ei

)
.

On the other hand, for any i = 1, 2, . . . , n,

f

(
xk − 1

L2(f)
∇if(x

k)ei

)
≤ f(xk)− 1

L2(f)
(∇if(x

k))2 +
1

2L2(f)
(∇if(x

k))2

(Lemma 2.6)

= f(xk)− 1

2L2(f)
(∇if(x

k))2,

which combined with (3.19) implies that

f(xk)− f(xk+1) ≥ 1

2L2(f)
max

i=1,2,...,n
(∇if(x

k))2,
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1506 AMIR BECK AND YONINA C. ELDAR

establishing (3.16).
Next, suppose that ‖xk‖0 = s. A similar argument to the one just invoked shows

that

(3.20) f(xk)− f(xk+1) ≥ 1

2L2(f)
max

i∈I1(xk)
(∇if(x

k))2.

By the definition of the greedy sparse-simplex method, it follows that

(3.21)
f(xk)−f(xk+1) ≥ f(xk)−f(xk−xk

mk
emk

+T 2
kei2k) ≥ f(xk)−f(xk−xk

mk
emk

−σxk
mk

ei2k),

where σ = sgn (xk
mk

∇i2k
f(xk)). Using the local descent lemma (Lemma 2.6) once

more, we obtain that

f(xk − xk
mk

emk
− σxk

mk
ei2k)

(3.22)

≤ f(xk) +∇f(xk)T (−xk
mk

emk
− σxk

mk
ei2k) +

L2(f)

2

∥∥∥−xk
mk

emk
− σxk

mk
ei2k

∥∥∥2
= f(xk)− xk

mk
∇mk

f(xk)− σxk
mk

∇i2
k
f(xk) + L2(f)(x

k
mk

)2

= f(xk) +Ms(x
k)

[
L2(f)Ms(x

k)− |∇i2k
f(xk)|

]
− xk

mk
∇mk

f(xk).

Combining (3.21) and (3.22) we obtain that
(3.23)

f(xk)− f(xk+1) ≥ Ms(x
k)

[
max

i∈I0(xk)
|∇if(x

k)| − L2(f)Ms(x
k)

]
+ xk

mk
∇mk

f(xk).

Finally, (3.20) and (3.23) along with the fact that

xk
mk

∇mk
f(xk) ≥ −Ms(x

k) max
i∈I1(xk)

|∇if(x
k)|

readily imply the inequality (3.17).
We now turn to prove Theorem 3.4.
Proof of Theorem 3.4. Let x∗ be an accumulation point of the generated se-

quence. Then there exists a subsequence {xkn}n≥0 converging to x∗. Suppose first
that ‖x∗‖0 = s. Then there exists an N > 0 such that I1(x

kn) = I1(x
∗) for all n > N .

Therefore, by (3.17) we have

(3.24) f(xkn)− f(xkn+1) ≥ A(xkn)

for all n > N . Since {f(xk)} is a nonincreasing and lower bounded sequence, it follows
that the left-hand side of the inequality (3.24) tends to 0 as n → ∞. Therefore, by
the continuity of the operator A we have A(x∗) ≤ 0, from which it follows that

1

2L2(f)
max

i∈I1(x∗)
(∇if(x

∗))2 = 0,(3.25)

Ms(x
∗)

[
max

i∈I0(x∗)
|∇if(x

∗)| − max
i∈I1(x∗)

|∇if(x
∗)| − L2(f)Ms(x

∗)
]
≤ 0.(3.26)

By (3.25) it follows that ∇if(x
∗) = 0 for all i ∈ I1(x

∗) and substituting this into
(3.26) yields the inequality

max
i∈I0(x∗)

|∇if(x
∗)| ≤ L2(f)Ms(x

∗),

meaning that x∗ is an L2(f)-stationary point.
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Now suppose that ‖x∗‖0 < s. There are two cases. If there exists an infinite
number of n-s for which ‖xkn‖0 < s, then by Lemma 3.4 for each such n

f(xkn)− f(xkn+1) ≥ 1

2L2(f)
max

i=1,2,...,n
∇if(x

kn)2,

and therefore by taking n → ∞ along the n-s for which ‖xkn‖0 < s, we obtain that
∇f(x∗) = 0. If, on the other hand, there exists an integer N such that the equality
‖xkn‖0 = s holds for all n > N , then by the definition of the method we have for all
n > N

(3.27) f(xkn)− f(xkn+1) ≥ 1

2L2(f)
max

i∈I1(xkn )
(∇if(x

kn))2

and

f(xkn)− f(xkn+1) ≥ f(xkn)− f(xkn − xk
mk

emk
+ T 2

kei2k)(3.28)

= f(xkn)− f(xkn − xk
mk

emk
) + f(xkn − xk

mk
emk

)

− f(xkn − xk
mk

emk
+ T 2

kei2k).

Since T 2
k ∈ argmint∈R

f(xkn − xk
mk

emk
+ tei2k), then

f(xkn − xk
mk

emk
)−f(xkn − xk

mk
emk

+ T 2
kei2k) ≥

1

2L2(f)
(∇i2k

f(xkn − xk
mk

emk
))2

=
1

2L2(f)
max

i∈I0(xk)
(∇if(x

kn − xk
mk

emk
))2,

which combined with (3.28) yields

(3.29)
1

2L2(f)
max

i∈I0(xk)
(∇if(x

kn − xk
mk

emk
))2 ≤ f(xkn − xk

mk
emk

)− f(xkn+1).

In addition,

|∇if(x
kn)| ≤ |∇if(x

kn)−∇if(x
kn − xk

mk
emk

)|+ |∇if(x
kn − xk

mk
emk

)|
≤ L2(f)|xk

mk
|+ |∇if(x

kn − xk
mk

emk
)|

= L2(f)Ms(x
kn) + |∇if(x

kn − xk
mk

emk
)|,

and thus (3.29) readily implies that

max
i∈I0(xk)

|∇if(x
kn)| ≤ L2(f)Ms(x

kn) +
√
2L2(f)[f(xkn − xk

mk
emk

)− f(xkn+1)],

which together with (3.27) yields that for all i = 1, 2, . . . , n

|∇if(x
kn)| ≤ min

{
L2(f)Ms(x

kn) +
√
2L2(f)[f(xkn − xk

mk
emk

)− f(xkn+1)],

√
2L2(f)[f(xkn)− f(xkn+1)]

}
.

Since the right-hand side of the latter inequality converges to 0 as n → ∞, it follows
that the desired result ∇f(x∗) = 0 holds.
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1508 AMIR BECK AND YONINA C. ELDAR

We end this section by returning to Example 3.3, and adding a comparison to the
partial sparse-simplex algorithm.

Example 3.4 (Example 3.3 continued). In Example 3.3 we added 1000 runs of the
partial sparse-simplex method. The results can be found in Table 3.2 under N4(i),
which is the amount of times in which the algorithm converged to the ith BF vector.
As can be seen, the method performs very well, much better than IHT with either
L1 = 1.1L(f) or L2 = 2L(f). It is only slightly inferior to the greedy sparse-simplex
method since it has another BF vector to which it might converge (BF vector number
9). Thus, in this example the partial sparse-simplex is able to compare with the
greedy sparse-simplex despite the fact that each iteration is much cheaper in terms
of computational effort.

Example 3.5 (quadratic equations). We now consider an example of quadratic
equations. Given m vectors a1, . . . , am, our problem is to find a vector x ∈ Rn

satisfying

(aTi x)
2 = ci, i = 1, 2, . . . ,m,(3.30)

‖x‖0 ≤ s.(3.31)

The problem of finding an x ∈ Rn satisfying (3.30) and (3.31) is the same as finding
an optimal solution to the optimization problem (P) with f ≡ fQI, where Ai = aia

T
i .

We compare the greedy and partial sparse-simplex algorithms on an example with
m = 80, n = 120, and s = 3, 4, . . . , 10. As noted in Remark 3.3, the greedy and
partial sparse-simplex methods require solving several one-dimensional minimization
problems of quartic equations at each iteration. Each component of the 80 vectors
a1, . . . , a80 was randomly and independently generated from a standard normal dis-
tribution. Then, the “true” vector xtrue was generated by choosing randomly the
s nonzero components whose values were also randomly generated from a standard
normal distribution. The vector c was then determined by ci = (aTi xtrue)

2. For each
value of s (s = 3, 4, . . . , 10), we ran the greedy and partial sparse-simplex algorithms
from 100 different and randomly generated initial vectors. The numbers of runs out
of 100 in which the methods found the correct solution are given in Table 3.4.

As can be clearly seen by the results in the table, the greedy sparse-simplex
outperforms the partial sparse-simplex in terms of the success probability. In addition,
the chances of obtaining the optimal solution decrease as s gets larger. Of course,
we can easily increase the success probability of the partial sparse-simplex method by
starting it from several initial vectors and taking the best result.

Table 3.4

The second (third) column contains the number of runs of 100 for which the partial (greedy)
sparse-simplex method converged.

s NPSS NGSS

3 27 73
4 22 69
5 8 20
6 5 19
7 9 13
8 5 8
9 3 6
10 2 3
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