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Abstract. We consider a broad class of regularized structured total least squares (RSTLS)
problems encompassing many scenarios in image processing. This class of problems results in a
nonconvex and often nonsmooth model in large dimension. To tackle this difficult class of problems
we introduce a novel algorithm which blends proximal and alternating minimization methods by
beneficially exploiting data information and structures inherently present in RSTLS. The proposed
algorithm, which can also be applied to more general problems, is proven to globally converge to crit-
ical points and is amenable to efficient and simple computational steps. We illustrate our theoretical
findings by presenting numerical experiments on deblurring large scale images, which demonstrate
the viability and effectiveness of the proposed method.
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1. Introduction. In this paper we consider a broad class of optimization prob-
lems for regularized structured total least squares (RSTLS), which captures many
models arising in applications and consists of solving the following nonconvex and
nonsmooth minimization problem:

(1) min
x,y

⎧⎨⎩F (x) +
1

σ2
w

∥∥∥∥∥
(
A +

p∑
i=1

yiAi

)
x− b

∥∥∥∥∥
2

+
1

σ2
e

‖y‖2 : x ∈ R
n,y ∈ R

p

⎫⎬⎭,

where the model matrix A ∈ R
m×n and the measurements vector b ∈ R

m are con-
taminated by noise, σe and σw are the standard deviations of the corresponding noise
components (see section 5 for more details), and F : Rd → (−∞,+∞] is a given con-
vex (possibly nonsmooth) function that allows us to capture some desired regularized
features of the solution. We are focusing in this paper on the situation in which the
model matrix A admits a linear structure, and therefore it is natural to assume that
the noise matrix contaminating the “true” model matrix shares the same structure
described by the structure matrices A1,A2, . . . ,Ap ∈ R

m×n, with y1, y2, . . . , yp ∈ R

being the unknown structure components. The proposed model is motivated by our
desire to tackle and extend various well-known total least squares (TLS)-based models
which have been studied in the literature and will be briefly recalled and discussed in
the next section.
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1130 AMIR BECK, SHOHAM SABACH, AND MARC TEBOULLE

A key difficulty in the RSTLS problem is the nonconvexity in the variables (x,y)
due to the coupling term in the squared norm of the objective function in (1). An-
other difficulty is the large scale nature of the problem which naturally arises in many
applications of interest, as well as the possible nonsmoothness of the regularizer F (·).
Thus, we face a problem sharing the three most difficult properties an optimization
problem can have—nonconvexity, nonsmoothness, and large size—precluding the di-
rect use of any standard optimization schemes in its solution. However, the RSTLS
problem also shares some particular structures and data information, such as convex-
ity in separate arguments (x,y) and smoothness of the least squares term, that can
be beneficially exploited.

In the present work we will strongly exploit the aforementioned structures and
properties; our main objective is to devise a simple and efficient algorithm proven to
globally converge to a critical point of the nonconvex objective function of (1) and
capable of handling large scale instances. To achieve this goal we blend alternating
minimization and proximal methods. These two very well known paradigms have re-
cently attracted intensive research activity in many disparate applications due to their
simplicity and remarkable theoretical and practical performance, mainly in the convex
setting; see, e.g., [3, 6, 13, 39] and references therein for a small representative sample
of this activity. However, here the RSTLS problem under consideration is noncon-
vex and nonsmooth. Motivated by the recent algorithmic and convergence analysis
framework developed in [12], which builds on the powerful Kurdyka–�Lojasiewicz prop-
erty [22, 24] to handle genuine nonconvex and nonsmooth minimization problems, we
address the inherent nonconvex difficulty present in the RSTLS problem by further
exploiting the problem’s data information. This leads us to introduce a novel algo-
rithm which relies on alternating minimization and on semiproximal regularization,
which for ease of reference is called SPA. While the focus of this paper is on RSTLS
problems, our analysis is developed for broader class of problems which captures the
class of RSTLS problems and the corresponding algorithm as a particular case. Thus,
our results can also be applied to other applications and contexts sharing this pro-
posed broader formulation. For the RSTLS problem, the resulting algorithm involves
two simple computational steps. One asks for the solution of a small scale (p × p)
linear system, while the other step, depending on the choice of the regularizer F (·),
either admits a closed-form solution or can be efficiently computed via a fast dual
proximal method [7]. We prove that the proposed algorithm SPA globally converges
to a critical point of the problem at hand. Finally, we illustrate our theoretical find-
ings by presenting some numerical examples on image deblurring which demonstrate
the effectiveness of the proposed method.

Outline of the paper. The paper is organized as follows. In the next section
we describe various TLS models which have motivated the proposed RSTLS approach
and make our setting more precise. While the focus of this paper is on the RSTLS
problem, our analysis is developed for a broader class of problems which captures the
class of RSTLS problems and the corresponding algorithm as a particular case; this is
developed in section 3. In section 4, we present a general analysis framework, and we
state and prove the main convergence results. Finally, in section 5, numerical results
on image deblurring problems illustrate our theoretical findings. To make the paper
self-contained, a short appendix includes some relevant additional technical material.
Our notation is quite standard and will be defined throughout the text if and when
necessary.D
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2. Total least squares: Approaches and models.

2.1. Motivation. Many data fitting and linear inverse problems arising in a
wide variety of applications lead one to study overdetermined linear systems of the
form

(2) Ax ≈ b,

where both the model matrix A ∈ R
m×n and the measurement vector b ∈ R

m are
contaminated by noise, leading to the model

(3) (A + E)x = b + w,

where E ∈ R
m×n and w ∈ R

m are the unknown perturbation matrix and vector to
the model matrix and to the right-hand side vector, respectively. A well-known and
classical approach to this problem is the TLS method, which seeks to find a triple
(x,E,w) that minimizes ‖E‖2F + ‖w‖2 subject to the consistency equation (3); that
is, to solve the following nonconvex minimization problem:

(TLS) min
x,w,E

{
‖E‖2F + ‖w‖2 : (A + E)x = b + w

}
,

where ‖·‖F denotes the Frobenius norm. The popularity of TLS mainly stems from
the fact that, although nonconvex, this problem admits an explicit solution expressed
by the singular value decomposition of the augmented matrix (A,b); see [16, 21].

However, it also well known that in the cases where the model matrix A has a
special structure, TLS methods may not always be appropriate, since they do not
take into consideration the given structure. It is thus desirable to exploit the special
structure in order to reduce the number of unknown parameters and to improve
performance. In the context of image processing, which is one of the main applications
of interest in this work, it is natural and adequate to consider the same structure on
the perturbation matrix E. Thus, for a model matrix A admitting a linear structure,
which as just mentioned is a common situation in ill-posed linear inverse problems, in
this paper we assume that the perturbation matrix E shares the same structure and
is defined by

E =

p∑
i=1

yiAi,

where A1,A2, . . . ,Ap ∈ R
m×n are the structure matrices and y1, y2, . . . , yp ∈ R are

the unknown structure components. Then, the structured total least squares (STLS)
method aims at solving the following minimization problem [1, 5, 23, 26, 28, 29, 36]:

(STLS) min
x,y

⎧⎨⎩ 1

σ2
w

∥∥∥∥∥
(
A +

p∑
i=1

yiAi

)
x− b

∥∥∥∥∥
2

+
1

σ2
e

‖y‖2
⎫⎬⎭ ,

where y = (y1, y2, . . . , yp)
T

.
The STLS problem is nonconvex, and in contrast to the unstructured TLS prob-

lem (which can easily be seen as a special case of (STLS)), finding its global solution is
difficult. Note also that by minimizing with respect to y, we can reformulate (STLS)
as a minimization problem with respect to the x variables only via

min
x∈Rn

{
(Ax− b)

T
C (x) (Ax− b)

}
, with C (x) :=

(
σ2
wI + σ2

e

p∑
i=1

Aixx
TAT

i

)−1

,
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1132 AMIR BECK, SHOHAM SABACH, AND MARC TEBOULLE

which, however, remains highly nonconvex. Several algorithms have been proposed
to find a stationary point of this formulation of the STLS problem (see, for instance,
[25, 27, 36]).

In [36], the authors developed the structured total least norm (STLN) method
to solve this class of problems, which turns out to be useful for many structured
linear problems. However, for many problems, such as image deblurring, the matrix
is often ill-conditioned, and applying STLN results in poor image recovery. Thus
regularization is needed. Such an approach was considered, for instance, in [32],
which implemented Tikhonov regularization [37] to derive the regularized structured
total least norm (RSTLN), with an algorithm preserving linear structure of the matrix
and which minimizes the lp-norm error, with p = 1, 2, or ∞. For another work which
focused on quadratic regularizers and improved the computational efficiency of the
algorithm from [32], see, for instance, [26]. RSTLN-based methods rely on a variation
of the Gauss–Newton method,1 one of the main drawbacks of which is that it requires
solving a least squares problem at each iteration (see section 5.1 for more details on
the method), which in many scenarios becomes too difficult or impossible for large
scale models. In addition, the objective function to be minimized is nonconvex, so
there is no guarantee that the algorithm converges to a global minimum.

Linear inverse problems where the model matrix A is ill-conditioned are common
phenomena, which directly implies that solutions obtained by the LS (least squares),
TLS, or STLS methods have a huge norm, resulting in meaningless solutions. This
was discussed above within the RSTLN approach. Alternatively, this difficulty is often
handled by, for example, adding a penalty term which plays the role of regularization
and is somehow able to control the size of the solution. A popular one is the Tikhonov
regularization method [38], but other choices are also possible depending on the appli-
cation at hand. In this case, the resulting model is either called the regularized TLS
(RTLS) or regularized structured TLS (RSTLS), depending on whether the model is
structured; see [4, 15, 18] and the references therein for several regularization ideas.

Motivated by the above, in this paper we focus on a broad class of RSTLS prob-
lems which capture the ideas and models just described and allow for unification and
extension, by considering the following nonconvex and nonsmooth RSTLS problem:

(RSTLS) min
x,y

⎧⎨⎩F (x) +
1

σ2
w

∥∥∥∥∥
(
A +

p∑
i=1

yiAi

)
x− b

∥∥∥∥∥
2

+
1

σ2
e

‖y‖2 :

(x,y) ∈ R
n × R

p

}
,

where F : R
d → (−∞,+∞] is a proper, lsc, and convex function (possibly non-

smooth) and which, as illustrated next, allows us to encompass various scenarios.

2.2. Some model examples. Now we describe some interesting special cases
of the RSTLS problem that can be obtained by specific choices of the regularizing
function F (·).

Example 1 (the constrained RSTLS problem). Let the nonsmooth function F be

1When the regularizer is quadratic, e.g., p = 2, the Gauss–Newton method is directly applicable,
while for p = 1,∞, the objective function is no longer differentiable but can be applied similarly; see
[32] for details.
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AN ALTERNATING SEMIPROXIMAL METHOD FOR RSTLS 1133

the indicator function of the convex set

Cq :=
{
x ∈ R

n : ‖Lx‖q ≤ δ
}
,

where L ∈ R
d×n, δ > 0, and q = 1, 2,∞. In this case, we obtain from (1) the

constrained RSTLS model given by

(RSTLS-C) min
x,y

⎧⎨⎩ 1

σ2
w

∥∥∥∥∥
(
A +

p∑
i=1

yiAi

)
x− b

∥∥∥∥∥
2

+
1

σ2
e

‖y‖2 : ‖Lx‖q ≤ δ

⎫⎬⎭ .

Example 2 (penalized RSTLS). As an alternative to the constrained RSTLS, we
can penalize the constraint with F (x) := λf (x). The penalized RSTLS model is then
given by

(RSTLS-P) min
x,y

⎧⎨⎩λf (Lx) +
1

σ2
w

∥∥∥∥∥
(
A +

p∑
i=1

yiAi

)
x− b

∥∥∥∥∥
2

+
1

σ2
e

‖y‖2
⎫⎬⎭ ,

where f : R
d → R is a convex function (usually a norm) and λ > 0 is a penalty

(regularization) parameter which measures the trade-off between error measurements
and constraint satisfaction. One of the popular choices for the penalty function is
known as the Tikhonov regularization [38], in which f (·) = ‖·‖2. Another penalty
function that has attracted revived interest and considerable attention in the signal
processing literature is the use of the �1-norm, which is discussed in more detail in
the next example.

Example 3 (total variation (TV) deblurring). This example will serve as a basis
of our numerical experiments given in section 5. We concentrate on RSTLS with a
total variation penalized function f (x) := TV1 (x). More precisely, TV1 stands for
the �1-based anisotropic TV, given by

TV1 (x) =
m−1∑
i=1

n−1∑
j=1

( |xi,j − xi+1,j | + |xi,j − xi,j+1|
)

+
m−1∑
i=1

|xi,n − xi+1,n|

+

n−1∑
j=1

|xm,j − xm,j+1| .(4)

It is well known that TV1 (x) =
∥∥LTx

∥∥
1
, where L : R(m−1)×n × R

m×(n−1) → R
m×n

is defined by the formula

L (C,D)i,j = ci,j + di,j − ci−1,j − di,j−1, i = 1, 2, . . . ,m and j = 1, 2, . . . , n,

where we assume that c0,j = cm,j = di,0 = di,n = 0 for every i = 1, 2, . . . ,m and
j = 1, 2, . . . , n. This means that in this case L = LT , and the operator LT : Rm×n →
R

(m−1)×n × R
m×(n−1), which is the adjoint to L, is given by

LT (x) = (C,D) ,

where C ∈ R
(m−1)×n and D ∈ R

m×(n−1) are the matrices defined by

ci,j = xi,j − xi+1,j , i = 1, 2, . . . ,m− 1 and j = 1, 2, . . . , n,

di,j = xi,j − xi,j+1, i = 1, 2, . . . ,m and j = 1, 2, . . . , n− 1.

D
ow

nl
oa

de
d 

09
/0

1/
16

 to
 1

32
.6

9.
24

2.
10

9.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

1134 AMIR BECK, SHOHAM SABACH, AND MARC TEBOULLE

3. Problem formulation and the main algorithm. Although the emphasis
of this paper is on solving the class of RSTLS problems, for the purpose of the forth-
coming development and analysis we will consider a more general class of nonconvex
and nonsmooth problems which captures the RSTLS as a special case, and which we
hope could also be beneficially applied in other contexts.

3.1. The problem model. Consider the nonconvex and nonsmooth optimiza-
tion model

(M) min
x,y

{Ψ (x,y) := H (x,y) + F (x) + G (y)} ,
with the following assumption.

Assumption 1.
(i) F : Rn → (−∞,+∞] is a proper, closed, and convex function.

(ii) G : Rp → (−∞,+∞] is a proper, closed, and strongly convex function with
strong convexity constant σ.

(iii) H : Rn × R
p → R is a C1 function, and for any fixed x the function y →

H (x,y) is convex.

The general optimization model (M) is naturally motivated by the RSTLS prob-
lem, which is clearly a special case of problem (M) and satisfies Assumption 1 with

(5) H (x,y) =
1

σ2
w

∥∥∥∥∥
(
A +

p∑
i=1

yiAi

)
x− b

∥∥∥∥∥
2

and G (y) =
1

σ2
e

‖y‖2

and the choice of any proper, lsc, and convex function F . Indeed, G is strongly convex
with σ = 2/σ2

e ; the above H is clearly C1 on R
n × R

p, and for any fixed x ∈ R
n the

function y → H (x,y) is convex on R
p.

Note that the first item in Assumption 1 allows us to consider various interesting
scenarios (see the previous examples), while the second item naturally generalizes

the quadratic function ‖·‖2, through strong convexity. (Note that smoothness is
not needed.) The third item, which asks for the smoothness of H (·, ·) and partial
convexity with respect to second variable, will be beneficially exploited in building
the algorithm proposed below, where each step involves the solution of a convex
minimization problem in each block (x,y).

3.2. The algorithm SPA. The block structure of problem (M) naturally sug-
gests applying the alternating minimization (AM) (also known as Gauss–Seidel [8])
method. That is, starting with any given initial point

(
x0,y0

) ∈ R
n×R

p, we generate
a sequence {(xk,yk)}k∈N via the following two steps: for k ∈ N

xk+1 ∈ argminx Ψ
(
x,yk+1

)
,(6)

yk+1 = argminy Ψ
(
xk+1,y

)
,(7)

where the second step produces a unique minimizer, thanks to the strong convexity
of y → Ψ

(
xk+1,y

)
; see Assumption 1(ii).

The AM algorithm is quite attractive, as it permits a natural decoupling of the
function H and amounts to solving two simpler problems at each iteration. The AM
algorithm and many of its variants have been studied in several works, both in the
convex and nonconvex setting, and we refer the reader to [2, 12] and references therein
for details on the origin, advantages, difficulties, and convergence results of several
AM-based schemes.
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Both subproblems in the AM algorithm above are convex, but they usually cannot
be solved exactly. Very recently, [12] suggested overcoming this difficulty by solving
both iterations of AM approximately. More precisely, since each iteration of AM
consists of minimizing the sum of a smooth function and a nonsmooth one, they
apply one step of the so-called proximal gradient method (see, e.g., [6]), resulting
in the proximal alternating linearization minimization (PALM) algorithm [12], which
actually can solve a broader class of nonsmooth and nonconvex problems (i.e., where
F and G also nonconvex) and was proven to globally converge to a critical point of Ψ
under suitable assumptions; see more in the next section. At this juncture, it should
be noted that very recently AM- and PALM-based methods have been applied in
various important applications. For instance, in [9], the authors use the regularized
version of the AM algorithm for solving blind image recovery problems. A variable
metric version of PALM can be found in [14]. Other variants of PALM have also been
very recently proposed and used in [20] to solve ptychographic diffraction imaging
problems, and in [33] for another variant which was used in the context of sparse
blind convolution.

Here, we follow the approach of [12], by further exploiting the data information
in problem (M). More specifically, since for the model (M) the y-step consists of
solving a strongly convex minimization problem, we keep it intact. As we shall see
below, for the RSTLS problem this step can be written explicitly as the solution of
a linear system which can be efficiently approximated. This motivates the proposed
algorithm, which can be seen as a variant of PALM, whereby only the x-step (6) is
solved approximately through one shot of a proximal gradient step, i.e.,

xk+1 = argminx

{
F (x) +

〈
x− xk,∇xH

(
x,yk

)〉
+

tk
2

∥∥x− xk
∥∥2} , tk > 0,

while the y-step is solved exactly through the global optimality condition for (7). For
ease of reference, we call the resulting algorithm semiproximal-alternating (SPA).

Before presenting the algorithm, it will be convenient to recall the definition of
the Moreau proximal map [30], to rewrite the above step compactly. Given a proper,
closed, and convex function ϕ : Rd → (−∞,+∞], the proximal map associated with
ϕ is uniquely defined by

(8) proxϕ (x) := argmin

{
ϕ (u) +

1

2
‖u− x‖2 : u ∈ R

m

}
.

For a recent and comprehensive review on proximal methods, we refer the reader to
[31].

To solve (M) we thus propose the following scheme; see Assumption 2 for a
definition of L1(y).

Algorithm SPA
(1) Initialization: Start with any (x0,y0) ∈ R

n × R
p.

(2) For each k = 1, 2, . . . generate a sequence {(xk,yk)}k∈N as follows:
(2.1) Set Lk := L1(yk) and compute

(9) xk+1 = prox 1
Lk

F

(
xk − 1

Lk
∇xH

(
xk,yk

))
.

(2.2) Solve the strongly convex minimization problem:

(10) yk+1 = argminy∈Rp

{
G (y) + H

(
xk+1,y

)}
.
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1136 AMIR BECK, SHOHAM SABACH, AND MARC TEBOULLE

To analyze and derive the convergence of SPA, we need the following minimal
assumptions.

Assumption 2.
(i) For any fixed y, the function x → H (x,y) is C1,1

L1(y)
; namely, the partial

gradient ∇xH (·,y) is globally Lipschitz with constant L1 (y), that is,

‖∇xH (x1,y) −∇xH (x2,y)‖ ≤ L1 (y) ‖x1 − x2‖ ∀ x1,x2 ∈ R
n.

In addition, there exist two positive numbers L and L such that infy∈B L1 (y) =
L > 0 and supy∈B L1 (y) = L < ∞ for any compact set B ⊆ R

m.
(ii) The gradient ∇H is Lipschitz continuous on bounded subsets of Rn × R

p.
(iii) inf(x,y)∈Rn×Rp Ψ (x,y) = Ψ > −∞.

Remark 4. As we shall see below, L1 (y) is explicitly available for the RSTLS
problem, and we can set the parameter Lk = L1(yk). However, note that if this
is unknown, or still too difficult to compute, then a backtracking scheme [6] can be
incorporated, and the convergence results developed below remain true; for simplicity
of exposition we omit the details.

3.3. Applying SPA: An algorithm for RSTLS. As we shall see now, the
particular realization of SPA when applied to RSTLS yields an attractive scheme for
solving a broad class of RSTLS problems. Before presenting the algorithm for RSTLS,
let us first verify that Assumption 2 also holds for RSTLS, which corresponds to the
choice of H and G as given in (5). A simple computation then shows that

∇xH (x,y) =
2

σ2
w

(
A +

p∑
i=1

yiAi

)T ((
A +

p∑
i=1

yiAi

)
x− b

)
,(11)

∇yH (x,y) = 2

(
1

σ2
e

Ip×p +
1

σ2
w

B(x)TB(x)

)
y +

1

σ2
w

B(x)T (Ax− b) ,(12)

where Ip stands for the usual p× p identity matrix and we define

(13) B(x) := (A1x,A2x, . . . ,Apx) .

Now, it is easy to see that Assumptions 2(ii) and (iii) hold for the RSTLS problem.
For the former, this is immediate with H defined in (5), while the latter follows since
Ψ is nonnegative in most applications of interest, i.e., with F (·) being chosen as a
norm. Now, for any fixed y ∈ R

p it is easy to see from (11) that the function H (·,y)
admits a Lipschitz continuous partial gradient ∇xH (·,y) with constant L1 (y) =

(2/σ2
w) ‖A +

∑p
i=1 yiAi‖2. Moreover, it follows by the continuity of L1 (·) that the

modulus L1 (y) is bounded from below and from above over compact sets, and hence
Assumption 2(i) holds.

Remark 5. It should be noted that the computation of L1 (y) requires finding
the largest singular value of the corresponding matrix. For large scale problems, such
as those arising in image applications, this could be quite involved, but in several
scenarios it can be handled efficiently. For example, the operator represents a blurring
operation with a point spread function (PSF) under reflexive or periodic boundary
conditions; the operator norm can be efficiently computed by directly computing the
eigenvalues of the matrix by the techniques described, for example, in [19]. In other
cases, as mentioned in Remark 4, a version of the algorithm with a backtracking
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AN ALTERNATING SEMIPROXIMAL METHOD FOR RSTLS 1137

scheme can be used in order to refrain from the computation of the exact Lipschitz
constant.

When applied to the RSTLS problem, namely with H and G defined in (5), the
SPA reduces to the following.

Algorithm for RSTLS. Start with any
(
x0,y0

) ∈ R
n ×R

p, and for each k ≥ 1
generate the sequence {(xk,yk)}k∈N as follows:

(a) Compute xk+1 via (9), with H defined in (5) and with Lk =
(
2/σ2

w

) ‖A+∑p
i=1 y

k
i Ai‖2.

(b) Compute yk+1 via (14) below.

The first step of the algorithm reduces to computing the proximal map of the
given convex function F . Depending on the choice of F , the proximal map can be
computed explicitly or via an efficient algorithm. For the case of interest in this paper,
namely with F being the TV function, we will use the recent efficient scheme FDPG
of [7]; see more details in the numerical section (section 5) below.

Now, let us derive the second step, (b). Writing the optimality condition for
the second step of (10) consists of finding the unique yk+1 which solves the equation
∇yH

(
xk+1, yk+1

)
+
(
1/σ2

e

)
yk+1 = 0. Using (12) and defining Bk := B(xk), this

reduces to solving a linear system of equations of dimension p× p given explicitly by

(14) yk+1 = −σ2
e

(
σ2
wIp×p + σ2

eB
T
k+1Bk+1

)−1
BT

k+1

(
Axk+1 − b

)
.

Since p is in many scenarios small, and clearly much smaller than mn, the solution of
this linear system can be computed very efficiently; see section 5.

In the next section we develop the theoretical framework and prove the promised
convergence results.

4. The analysis framework and convergence results. The main goal of this
section is to derive the convergence properties of SPA and hence of its special case,
the algorithm for the RSTLS problem.

4.1. Methodology: An abstract convergence result. To establish the main
convergence result of SPA, we follow the scope of a general convergence mechanism
first described in [2] and more recently in [12]. Here we use the methodology of [12],
whereby a systematic and simple procedure was developed and which essentially can
be applied to any given algorithm. We summarize here the key elements and main
results of the approach from [12] under an abstract convergence result which will then
be applied to prove the convergence of SPA.

Let
{
zk
}
k∈N

be a sequence in R
d with starting point z0. The set of all limit points

is denoted by ω(z0) and defined by{
z ∈ R

d : ∃ an increasing sequence of integers {kl}l∈N
such that zkl → z as l → ∞}.

For ϕ : Rd → (−∞,+∞] proper and lsc, critϕ := {x ∈ R
d : 0 ∈ ∂ϕ (x)} denotes the

set of critical points of ϕ, where ∂ϕ stands for the subdifferential of ϕ (see Appendix
A).

The following definition will be useful to capture two key ingredients of our
methodology.

Definition 6. Let ϕ : Rd → (−∞,+∞] be a proper and lsc function. A sequence{
zk
}
k∈N

is called a gradient-like descent sequence for ϕ if for k ∈ N the following two
conditions hold:
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1138 AMIR BECK, SHOHAM SABACH, AND MARC TEBOULLE

(C1) Sufficient decrease property: There exists a positive scalar ρ1 such that

ρ1
∥∥zk+1 − zk

∥∥2 ≤ ϕ
(
zk
)− ϕ

(
zk+1

)
.

(C2) A subgradient2 lower bound for the iterates gap:
–
{
zk
}
k∈N

is bounded.
– There exists a positive scalar ρ2 such that∥∥wk+1

∥∥ ≤ ρ2
∥∥zk+1 − zk

∥∥ , wk+1 ∈ ∂ϕ
(
zk+1

)
.

Remark 7. We note that the assumption that
{
zk
}
k∈N

is bounded can also be
relaxed, and condition (C2) can be replaced by: For any compact subset Q ⊂ R

d

there exists ρ2 > 0 (possibly depending on Q) such that

dist
(
0, ∂ϕ

(
zk+1

)) ≤ ρ2
∥∥zk+1 − zk

∥∥ ∀ zk, zk+1 ∈ Q.

The two conditions (C1) and (C2) defining a gradient-like descent sequence for
a given ϕ are typical for any descent-type algorithms (see, e.g., [2]) and provide the
basic tools to prove that the limit of any convergent subsequence of

{
zk
}
k∈N

is a

critical point of ϕ. More precisely, from [12, Lemma 5 and Remark 5] we have the
following result.

Lemma 8. If
{
zk
}
k∈N

is a gradient-like descent sequence for a given function ϕ,

which is lsc and proper on R
d, then ω(z0) is a nonempty, compact, and connected set,

and we have

lim
k→∞

dist
(
zk, ω

(
z0
))

= 0.

This result can thus be applied to any algorithm that produces a gradient-like
descent to establish convergence in accumulation points. The main goal is to establish
global convergence, i.e., that the whole sequence converges to a critical point of ϕ.
This can be achieved by imposing an additional assumption on the class of functions
ϕ: it must satisfy the so-called Kurdyka–�Lojasiewicz (KL) property [22, 24]. We refer
the reader to [11] for an in-depth study of the class KL, as well as references therein.

As proven in [12], relying on a key uniformization of the KL property (see [12,
Lemma 6]), it is possible to establish global convergence of any gradient-like descent
sequence

{
zk
}
k∈N

, independently of the algorithm used. Verifying the KL property
of a given function might often be a difficult task. However, thanks to a result
established in [10], any proper and lsc function ϕ which is semialgebraic satisfies the
KL property at any point in domϕ; see also the appendix. We can now conveniently
summarize the general methodology and convergence results of [12] in the following
abstract convergence result.

Theorem 9. Let ϕ : Rd → (−∞,∞] be a proper, lsc, and semialgebraic function
with inf ϕ > −∞, and assume that

{
zk
}
k∈N

is a gradient-like descent sequence for ϕ.

If ω(z0) ⊂ critϕ, then the sequence
{
zk
}
k∈N

converges to a critical point z∗ of ϕ.

Remark 10. Under the premises of this theorem, it is also possible to derive a
rate of convergence result for the sequence

{
zk
}
k∈N

of the form
∥∥zk − z∗

∥∥ ≤ C k−γ ,

2Here, ∂ϕ stands for the limiting subdifferential of ϕ [35], which in the convex case reduces to
the usual subgradient map [34]. For the reader’s convenience, more details are given in the appendix.
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AN ALTERNATING SEMIPROXIMAL METHOD FOR RSTLS 1139

for some positive constant C and where γ > 0 is the so-called KL exponent; see [2]
for details.

Semialgebraic functions abound in applications and include a broad list of func-
tions arising in many optimization models. Moreover, sum and composition of semial-
gebraic functions are also semialgebraic. We refer the reader to [12] and the references
therein for more details and illustrating examples. For the reader’s convenience some
properties/examples of semialgebraic sets and functions are also given in the appendix.

For our RSTLS model, it is immediate to see that both (1/σ2
e) ‖y‖2 and the

quadratic function H (x,y) (cf. (5)) are semialgebraic, and hence with any choice
of F (·) semialgebraic the RSTLS problem thus admits of a semialgebraic objective
function. Therefore, the global convergence result established below for SPA clearly
applies to the RSTLS algorithm described in section 3.3. It should be noted that in
the RSTLS case, the generated sequence is bounded (see condition (C2) in Definition
6) as long as the function F (·) is coercive. In this case the objective function Ψ (·, ·)
has bounded level sets, which is enough to guarantee boundedness of the sequence
(see [12, Remark 6(i), p. 482]).

4.2. Convergence of SPA. Equipped with the abstract Theorem 9, our main
objective is now to prove the global convergence of the sequence generated by SPA to
a critical point of Ψ. Before doing so, we need to recall some well-known basic results.
We begin by recalling the sufficient decrease property of the objective function at a
proximal gradient step (cf. [6, Lemma 2.3, p. 190]).

Lemma 11 (sufficient decrease property). Let h : Rd → R be a continuously dif-
ferentiable function with gradient ∇h assumed Lh-Lipschitz continuous, and let g :
R

d → (−∞,+∞] be a proper, lsc, and convex function. Then, for any u ∈ dom g and

u+ = prox 1
t g

(
u− 1

t
∇h (u)

)
we have

(15) h
(
u+
)

+ g
(
u+
) ≤ h (u) + g (u) −

(
t− L

2

)∥∥u+ − u
∥∥2 ,

where L ≥ Lh.

The next result recalls useful basic properties of subdifferential maps (see [35]).

Proposition 12 (subdifferentiability property). Assume that the coupling func-
tion H in problem (M) is continuously differentiable on R

n × R
p. Then, for all

(x,y) ∈ R
n × R

m we have
(16)
∂Ψ (x,y) = (∇xH (x,y) + ∂F (x) ,∇yH (x,y) + ∂G (y)) = (∂xΨ (x,y) , ∂yΨ (x,y)) .

Moreover, ∂Ψ (·, ·) is a closed map.

We are now ready to state and prove the main convergence result for SPA. In
what follows, for convenience we often use the notation

zk :=
(
xk,yk

) ∀ k ≥ 0

for the sequence generated by SPA.
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Theorem 13 (global convergence). Suppose that Assumptions 1 and 2 hold, and
assume that Ψ is semialgebraic. Let

{
zk
}
k∈N

be a sequence generated by SPA which
is assumed to be bounded. Then, the sequence

{
zk
}
k∈N

converges to a critical point
z∗ of Ψ.

Proof. We invoke Theorem 9. For that purpose the proof is divided into two
main parts. We first need to show that the sequence

{
zk
}
k∈N

generated by SPA is a
gradient-like descent with respect to Ψ; that is, according to Definition 6, we need to
show that conditions (C1) and (C2) hold. In the second part we then have to prove
that ω

(
z0
) ⊂ crit Ψ.

Step 1. Proving that conditions (C1)–(C2) hold. Thanks to Assumptions 1(ii)
and 2(i), we can apply Lemma 11 with h (·) := H(·, yk), Lh := L1

(
yk
)

= Lk ≥ L > 0
(since here yk is assumed bounded), and the convex function g (·) := F (·) to get from
(9) that, for any k ≥ 0,

(17) H
(
xk+1,yk

)
+ F

(
xk+1

) ≤ H
(
xk,yk

)
+ F

(
xk
)− L

2

∥∥xk+1 − xk
∥∥2 .

Now, from Assumptions 1(ii) and (iii), it follows that G (·) +H
(
xk+1, ·) is σ-strongly

convex, and hence by the well-known subgradient inequality for a σ-strongly convex
function [35, Chapter 12], we obtain for any k ≥ 0

G
(
yk
)

+ H
(
xk+1,yk

) ≥ G
(
yk+1

)
+ H

(
xk+1,yk+1

)
+
〈
ηk+1 + ∇yH

(
xk+1,yk+1

)
,yk − yk+1

〉
+

σ

2

∥∥yk+1 − yk
∥∥2

= G
(
yk+1

)
+ H

(
xk+1,yk+1

)
+

σ

2

∥∥yk+1 − yk
∥∥2 ,(18)

where ηk+1 ∈ ∂G
(
yk+1

)
and the last equality follows immediately from the optimality

condition for (10). Combining (17) and (18) and using the fact that Ψ (x,y) =
H (x,y) + F (x) + G (y) yields, for all k ≥ 0, that

(19) Ψ
(
zk
)− Ψ

(
zk+1

) ≥ L

2

∥∥xk+1 − xk
∥∥2 +

σ

2

∥∥yk+1 − yk
∥∥2 ≥ ρ1

2

∥∥zk+1 − zk
∥∥2 ,

where ρ1 = min {L, σ}, thus proving condition (C1) for the sequence
{
zk
}
k∈N

with
respect to Ψ. Moreover, as a by-product, it also follows that

(20) lim
k→∞

(
zk+1 − zk

)
= 0.

Indeed, from (19), the sequence {Ψ(zk)}k≥0 is nonincreasing, and since Ψ is assumed
to be bounded from below (see Assumption 2(iii)), it converges to some real number
Ψ. Summing (19) from k = 0 to N − 1, we thus get

(21)
N−1∑
k=0

∥∥zk+1 − zk
∥∥2 ≤ 2

ρ1

(
Ψ
(
z0
)− Ψ

(
zN
)) ≤ 2

ρ1

(
Ψ
(
z0
)− Ψ

)
,

and taking the limit as N → ∞, the claim (20) follows.
Now, we prove that condition (C2) holds for the sequence

{
zk
}
k∈N

. Writing the

optimality conditions for the convex iterations of SPA defined in (9) and (10), we have
for any k ≥ 0

∇xH
(
xk,yk

)
+ Lk

(
xk+1 − xk

)
+ uk+1 = 0, uk+1 ∈ ∂F

(
xk+1

)
,(22)

∇yH
(
xk+1,yk+1

)
+ vk+1 = 0, vk+1 ∈ ∂G

(
yk+1

)
.(23)
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On the other hand, using Proposition 12, we have
(24)

∂Ψ
(
zk
)

=
(∇xH

(
xk+1,yk+1

)
+ ∂F

(
xk+1

)
,∇yH

(
xk+1,yk+1

)
+ ∂G

(
yk+1

))
.

Therefore, defining the quantity

ξk+1
x := Lk

(
xk − xk+1

)
+ ∇xH

(
xk+1,yk+1

)−∇xH
(
xk,yk

)
,

and using (24) together with (22) and (23), we obtain

wk+1 :=
(
ξk+1
x ,0

) ∈ ∂Ψ
(
xk+1,yk+1

)
.

To complete the proof of condition (C2) it remains to estimate the norm of wk+1.
For that, since we assumed that

{
zk
}
k∈N

is bounded, thanks to Assumption 2(i) it

follows that Lk ≤ L, and since by Assumption 2(ii), ∇H is Lipschitz continuous over
bounded subsets of Rn × R

m, there exists M > 0 such that∥∥wk+1
∥∥ =

∥∥(ξk+1
x ,0)

∥∥ ≤ Lk

∥∥xk − xk+1
∥∥+

∥∥∇xH
(
xk+1,yk+1

)−∇xH
(
xk,yk

)∥∥
≤ L

∥∥xk+1 − xk
∥∥+ M

(∥∥xk+1 − xk
∥∥+

∥∥yk+1 − yk
∥∥)

≤ L
∥∥xk+1 − xk

∥∥+
√

2M
∥∥zk+1 − zk

∥∥
≤
(√

2M + L
) ∥∥zk+1 − zk

∥∥ ,(25)

thus proving that condition (C2) holds with ρ2 :=
√

2M + L.
Step 2. Proving that ω

(
z0
) ⊂ crit Ψ. Let z∗ = (x∗,y∗) be a limit point of{

zk
}
k∈N

. Thus, there exists a subsequence {(xkq ,ykq )}q∈N such that
(
xkq ,ykq

) →
(x∗,y∗) as q → ∞. We need to show that

lim
q→∞ Ψ

(
xkq ,ykq

)
= Ψ (x∗,y∗) and (0,0) ∈ ∂Ψ (x∗,y∗) .

Following the same proof as [12, Lemma 5(i), p. 476] for the iterative step (9), since
both sequences

{
xk
}
k∈N

and Lk are bounded, ∇H is continuous, and from (20) the

distance between two successive iterates tends to zero, it follows that F (xkq ) tends
to F (x∗) as q → ∞. On the other hand, from the iterative step (10), we have for all
k ≥ 0 that

H
(
xk+1,yk+1

)
+ G

(
yk+1

) ≤ H
(
xk+1,y∗)+ G (y∗) .

Since H (·, ·) is continuous (see Assumption 1(iii)), choosing k = kq − 1 in the above
inequality and letting q go to ∞ yields

lim sup
q→∞

G
(
ykq
) ≤ G (y∗) ,

and since G is lsc (see Assumption 1(ii)), this shows that G
(
ykq
)

tends to G (y∗) as
q → ∞. Therefore,

lim
q→∞ Ψ

(
xkq ,ykq

)
= lim

q→∞
{
H
(
xkq ,ykq

)
+ F

(
xkq
)

+ G
(
ykq
)}

= H (x∗,y∗) + F (x∗) + G (y∗) = Ψ (x∗,y∗) .
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Finally, since wk+1 =
(
ξk+1
x ,0

) ∈ ∂Ψ
(
xk+1,yk

)
and since, from (20) and (25),∥∥wk+1

∥∥ → 0 as k → ∞, then recalling the closedness property of the map ∂Ψ (cf.
Proposition 12), we obtain that (0,0) ∈ ∂Ψ (x∗,y∗), which completes the proof that
(x∗,y∗) is a critical point of Ψ.

5. Numerical results. In this section we report on several numerical experi-
ments of the SPA algorithm applied to the problem of deblurring images. We split
this section into two subsections. In the first subsection we present experiments on
small scale images (21×21), while in the second subsection we present results for large
images (256× 256). The motivation for this partition is the fact that on small images
we can compare our algorithm to the RSTLN method [32]. Since the RSTLN method
is based on the Gauss–Newton method, it can be used efficiently to solve small scale
problems.

To be more precise, in this section we are interested in solving the problem

min
x,y

⎧⎨⎩λf (Lx) +
1

σ2
w

∥∥∥∥∥
(
A +

p∑
i=1

yiAi

)
x− b

∥∥∥∥∥
2

+
1

σ2
e

‖y‖2
⎫⎬⎭ ,

where the following hold:
• b is the vectorized observed image (that is, a vector obtained by stacking the

columns of the observed image). This image was obtained from the original
vectorized image bt whose pixels were scaled to be between 0 and 1. The
image goes through a Gaussian blur PSF of size q×q and standard deviation γ
(given by the MATLAB command psfGauss([q,q],γ)), by using the MATLAB
command imfilter. After that we add a zero-mean white Gaussian noise with
standard deviation σw.

• We assume that the blurring operator is not exactly known and that the
observed PSF is constructed by taking the original PSF and adding to it
a q × q matrix with the same structure as the original PSF, such that the
components of each structure matrix Ai have been subjected to noise which
has been independently generated from a zero-mean normal distribution with
standard deviation σe.

• We consider here the periodic boundary condition. This means that the
blurring matrix has a structure of BCCB. For more details, we refer the
reader to the book [19].

• f : Rn → (−∞,+∞] is a regularizing function, and λ > 0 is a regularizing
parameter.

5.1. Small scale images—Comparison with RSTLN. We begin this section
by recalling the RSTLN algorithm (see [36, 32]). This method was designed to solve
the following class of RSTLS problems:

(26) min
x∈Rn,y∈Rp

∥∥∥∥∥∥
⎛⎝ (1/σw) ((A +

∑p
i=1 yiAi)x− b)

(1/σe)y
λLx

⎞⎠∥∥∥∥∥∥
μ

,

where μ = 1, 2,∞. It should be noted that when μ = 2, this formulation is equivalent
to (1), where the regularizer f (·) is chosen as λ ‖x‖22. This model is more flexible in
the sense that it allows different types of norms to measure the fidelity to the data
(in (1), only �2 is possible for the objective function). A major drawback of this
model is the fact that the type of the chosen norm should be the same for the data
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Fig. 1. The plus test image: Original image (left) and blurred and noised image (right).

fidelity and for the regularizer. On the other hand, in (1) any type of regularizer can
be considered, which gives us the possibility of tackling the problem in the common
situation that the data fidelity is measured with an �2-norm and the regularizer is
given by an �1-norm.

As we mentioned above, the RSTLN method is based on the Gauss–Newton
method, which means that at each iteration one should solve an optimization problem
of the following form:

(27) min
x,y

{∥∥∥∥( A +
∑p

i=1 y
k
i Ai Bk

0p×n
σw

σe
Ip×p

)(
x− xk

y − yk

)∥∥∥∥2 + λf (Lx)

}
,

where
(
xk,yk

)
is the given iterate and Bk is the m × p matrix defined in (13), that

is, Bk :=
[
A1x

k,A2x
k, . . . ,Apx

k
]
.

It should be noted that this is not exactly the problem that was solved in [32],
because here we apply the Gauss–Newton method on the model (1) and not on the
model (26), meaning we look at general regularizers. Here we use CVX [17] in order
to solve these subproblems at each iteration.

Here we regularize the problem with the �1-norm; that is, f (x) := λ ‖x‖1 with a
regularization parameter λ = 10−3. In this case the proximal mapping is the so-called
soft-thresholding operator, which is given by

proxλf (x)i := (|xi| − λ)+ sign (xi) ,

where xi is the i-coordinate of x and (x)+ := max {x, 0}.

Example 14. Consider the 21 × 21 “plus” image given in Figure 1(left). The
“true” image goes through a Gaussian blur PSF of size 5 × 5 and standard deviation
2, and then the observed image is constructed by adding to each of the components of
the blurred image a zero-mean normally distributed random variable with standard
deviation σw = 10−4. See Figure 1(right) for the blurred and noised image. We
also add noise to the structure components vector of the PSF, which is normally
distributed with zero mean and variance σe = 10−4. In this example we have six
structure matrices, i.e., p = 6, and each matrix is of size 5 × 5. Specifically, the
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Fig. 2. The plus test image: RSTLN solution (top-left); SPA solution, 972 iterations (top-
right); SPA solution, 2500 iterations (bottom-right); SPA solution, 4500 iterations (bottom-left).

structure matrices are

A1 =

⎡⎢⎢⎢⎢⎣
0.0352 0 0 0 0.0352

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

0.0352 0 0 0 0.0352

⎤⎥⎥⎥⎥⎦ , A2 =

⎡⎢⎢⎢⎢⎣
0 0.0387 0 0.0387 0

0.0387 0 0 0 0.0387
0 0 0 0 0

0.0387 0 0 0 0.0387
0 0.0387 0 0.0387 0

⎤⎥⎥⎥⎥⎦ ,

A3 =

⎡⎢⎢⎢⎢⎣
0 0 0.0399 0 0
0 0 0 0 0

0.0399 0 0 0 0.0399
0 0 0 0 0
0 0 0.0399 0 0

⎤⎥⎥⎥⎥⎦ , A4 =

⎡⎢⎢⎢⎢⎣
0 0 0 0 0
0 0.0425 0 0.0425 0
0 0 0 0 0
0 0.0425 0 0.0425 0
0 0 0 0 0

⎤⎥⎥⎥⎥⎦ ,

A5 =

⎡⎢⎢⎢⎢⎣
0 0 0 0 0
0 0 0.0438 0 0
0 0.0438 0 0.0438 0
0 0 0.0438 0 0
0 0 0 0 0

⎤⎥⎥⎥⎥⎦ , A6 =

⎡⎢⎢⎢⎢⎣
0 0 0 0 0
0 0 0 0 0
0 0 0.0452 0 0
0 0 0 0 0
0 0 0 0 0

⎤⎥⎥⎥⎥⎦ .

In this experiment we used periodic boundary conditions and initialized SPA with
x0 = b, the observed image, and y = 0. We first solved the problem with the RSTLN
method, which after eight outer iterations (of the Gauss–Newton method) produced
the solution given in Figure 2(top-left). The relative error of this solution is 0.0405
(i.e., the value of ‖xRSTLN − xorig‖ / ‖xorig‖) when the relative error of the blurred
and noisy image is 0.2725. The SPA algorithm achieves such an error (i.e., 0.0405)
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after 972 iterations (see the solution obtained by the SPA in Figure 2(top-right)).
The SPA obtained this solution after 2.15 seconds, while the RSTLN method did it
after 9.88 seconds. The relative error between the two solutions (SPA and RSTLN)
is ‖xRSTLN − xSPA‖ / ‖xSPA‖ = 0.047. The two figures in the bottom row were
obtained by the SPA algorithm after 2500 (left) and 4500 (right) iterations.

It should be noted that the 4500 iterations of the SPA algorithm took 10 seconds,
which is almost the time that the RSTLN ran. So, for the same running time, the
SPA algorithm generated a much better solution than the RSTLN method. (The
relative error of the SPA after 4500 iterations is 0.0252 and after 2500 iterations is
0.0288.) It should be noted that the poor performance of the RSTLN method here is
also due to the fact that we have used CVX in order to solve (27) at each iteration of
the Gauss–Newton method.

We made a more extensive set of tests in which we solved 10 problems—each
corresponding to a realization of σw and σe for different values 10−2, 10−3, and 10−4.
In Table 1, for each value of the standard deviation and for each choice of an algorithm
(SPA and RSTLN), we indicate the average CPU time of each algorithm (out of 100)
with tolerance parameter ε > 0 for ε = 10−3, 10−4, 10−5 after 100 iterations. The
parameter ε is used in the stopping criterion, which is

∥∥xN+1 − xN
∥∥ / ∥∥xN

∥∥ ≤ ε for
some N ∈ N.

For the moderate accuracy ε = 10−3, the SPA method is significantly better
(more than 10 times faster) than the RSTLN method. For the greater accuracies
ε = 10−4, 10−5, it is clear that the SPA method is better than RSTLN (about twice
as fast). It also should be noted that the maximum CPU time for RSTLN could be
very high for larger accuracies; for example, for the parameter ε = 10−5, RSTLN ran
for more than 230 seconds (for σw = σw = 10−2), while the SPA required only about
11 seconds.

5.2. Large scale image. In this section we present numerical examples on large
scale images. We consider the 256 × 256 cameraman test image whose pixels were
scaled into the range between 0 and 1. We will demonstrate the viability and effec-
tiveness of the proposed SPA method in deblurring large scale images.

50 100 150 200 250

50

100

150

200

250

50 100 150 200 250

50

100

150

200

250

Fig. 3. The cameraman test image: Original image (left) and blurred and noised image (right).

Example 15. The cameraman test image went through a Gaussian blur PSF of
size 5 × 5 and standard deviation 4, and then the observed image was constructed
by adding to each of the components of the blurred image a zero-mean normally
distributed random variable with standard deviation σw = 10−3. See Figure 3(left)
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for the original image and Figure 3(right) for the blurred and noised image. We
also added noise to the structure components vector of the PSF, which is normally
distributed with zero mean and variance σe = 10−3. The number and size of the
structure matrices are the same as in the previous example.

In this experiment we used periodic boundary conditions and considered the TV-
based regularization, that is, F (x) = λTV1 (x), where λ = 10−3 (see Example 3 for
the precise definition of TV1). We initialized the algorithm in the same way as in the
previous example; namely, the initial x is the observed image and y = 0. The main
effort in implementing SPA for deblurring the image involves the computation of the
proximal mapping of TV1. It is well known that there is no an explicit expression
for the proximal mapping of TV1, and therefore it requires an additional iterative
method. We will use the FDPG method of [7] in order to compute the prox of TV1.
When implementing the FDPG at each iteration of SPA, we bound the number of the
iterations of FDPG by 12.

Figure 4 shows data for the SPA after 50 and 200 iterations. The relative error
of the solution obtained by the SPA after 50 iterations is 0.0868 (i.e., the value of
‖xSPA − xorig‖ / ‖xorig‖), while after 200 iterations the relative error is 0.0657. The
relative error of the blurred and noisy image is 0.1327.
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Fig. 4. The cameraman test image: SPA solution after 50 (left) and 200 (right) iterations.

Appendix A. Appendix.

A.1. Nonsmooth calculus. Let us recall a few definitions concerning subdif-
ferential calculus (see, for instance, [35]). Recall that for a proper and lsc function ϕ :
R

d → (−∞,+∞] the domain of ϕ is defined via domϕ :=
{
x ∈ R

d : ϕ (x) < +∞}.

Definition 16 (subdifferentials). Let ϕ : Rd → (−∞,+∞] be a proper and lsc
function.

(i) For a given x ∈ domϕ, the Fréchet subdifferential of ϕ at x, written ∂̂ϕ (x),
is the set of all vectors u ∈ R

d which satisfy

lim inf
y �=x y→x

ϕ (y) − ϕ (x) − 〈u,y − x〉
‖y − x‖ ≥ 0.

When x /∈ domϕ, we set ∂̂ϕ (x) = ∅.
(ii) The limiting subdifferential, or simply the subdifferential, of ϕ at x ∈ R

n,
written ∂ϕ (x), is defined through the following closure process:D
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∂ϕ (x) :=
{
u ∈ R

d : ∃ xk → x, ϕ
(
xk
)→ ϕ (x) and

uk ∈ ∂̂ϕ
(
xk
)→ u as k → ∞

}
.

Note that in this nonsmooth and nonconvex context, the well-known Fermat’s
rule remains barely changed. It formulates as “if x ∈ R

d is a local minimizer of ϕ,
then 0 ∈ ∂ϕ (x).” Points whose subdifferential contains 0 are called critical points,
and the set of critical points of ϕ is denoted by critϕ.

A.2. Semialgebraic sets and functions. We recall here basic definitions and
properties; see, e.g., [12] and references therein for more details.

Definition 17 (semialgebraic sets and functions).
(i) A subset S of Rd is a real semialgebraic set if there exists a finite number of

real polynomial functions gij , hij : Rd → R such that

S =

p⋃
j=1

q⋂
i=1

{
u ∈ R

d : gij (u) = 0 and hij (u) < 0
}
.

(ii) A function h : Rd → (−∞,+∞] is called semialgebraic if its graph{
(u, t) ∈ R

d+1 : h (u) = t
}

is a semialgebraic subset of Rd+1.

The following useful result can be found in [10].

Theorem 18. Let ϕ : R
d → (−∞,+∞] be a proper and lsc function. If ϕ is

semialgebraic, then it satisfies the KL property at any point of domϕ.

The class of semialgebraic sets is stable under the following operations: finite
unions, finite intersections, complementation, and Cartesian products. There is a
broad class of semialgebraic functions arising in optimization: real polynomial func-
tions, indicator functions of semialgebraic sets, finite sums product and composition of
semialgebraic functions, sup/inf-type functions, the sparsity measure (or the counting
norm) ‖x‖0 of a vector x, and much more; see, e.g., [12] and the references therein.
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