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DUAL RANDOMIZED COORDINATE DESCENT METHOD FOR
SOLVING A CLASS OF NONCONVEX PROBLEMS\ast 

AMIR BECK\dagger AND MARC TEBOULLE\dagger 

Abstract. We consider a nonconvex optimization problem consisting of maximizing the differ-
ence of two convex functions. We present a randomized method that requires low computational
effort at each iteration. The described method is a randomized coordinate descent method employed
on the so-called Toland-dual problem. We prove subsequence convergence to dual stationarity points,
a new notion that we introduce and which is shown to be tighter than standard criticality. An almost
sure rate of convergence of an optimality measure of the dual sequence is proven. We demonstrate the
potential of our results on three principal component analysis models resulting in extremely simple
algorithms.

Key words. dual coordinate descent, Toland duality, stationarity

AMS subject classifications. 90C26, 90C30, 90C46

DOI. 10.1137/20M133926X

1. Introduction. This paper is concerned with nonconvex maximization prob-
lems of the form

(1.1) max
\bfx \in \BbbR d

\{ f(Ax) - g(x)\} ,

where f and g are extended real-valued convex functions such that the domain of g
is compact and A \in \BbbR n\times d (additional assumptions will be made in section 3). The
above model belongs to the class difference of convex (DC) programming problems,
which is a well-studied class of problems encompassing a wide variety of applications;
see, for example, the classical overview paper [4] as well as [9] for recent mathematical
developments and references.

Our motivation for looking at the model (1.1) comes from several dimensionality
reduction applications, such as principal component analysis (PCA), sparse PCA, and
a novel robust PCA model. The specific details as well as references are provided in
section 4. For now, we just mention the classical PCA problem that has the form

max

\biggl\{ 
1

2
\| Ax\| 22 : \| x\| 2 \leq 1

\biggr\} 
.

The above problem fits model (1.1) with

f(z) =
1

2
\| z\| 22, g(x) =

\biggl\{ 
0 \| x\| 2 \leq 1,
\infty else.

The main objective of the manuscript is to develop algorithms for solving problem
(1.1) that are
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1878 AMIR BECK AND MARC TEBOULLE

(A) able to tackle large-scale instances (i.e., involving simple computations);
(B) converge (in some sense) to favorable optimality conditions.

As for objective (A), we will be specifically interested in defining randomized algo-
rithms that require simple operations at each iteration taking into account only a
single row of the matrix A. For the specific case of the PCA problem, such algo-
rithms exist. More specifically, several variants of the stochastic gradient method
were defined in the literature, starting from the famous Oja method [8]. All of them
have the form

xk+1 =
\~xk+1

\| \~xk+1\| 2
, where \~xk+1 = xk + tkaik ,

where tk > 0 is a step size, a1, . . . ,an are the rows of A, and ik \in [n] is a randomly
chosen index; see also the more recent study [12]. Our approach for tackling the
general model (1.1) is completely different, as it is actually a dual-based approach.
Our starting point is the Toland-dual problem [13, 14] associated with (1.1). We
then apply a randomized coordinate descent method on the devised dual problem
and obtain an algorithm that, much like the above-mentioned algorithms for the
PCA problem, only involves simple operations related to a single row of A at each
iteration. For example, in the specific case of the PCA problem, the general update
rule of our algorithm has the form zk+1 = zk + skaik (without normalization!), and
sk is chosen based on data from previous iterations and a solution of a scalar quartic
equation. The output of the algorithm will be a normalization of the last iterate (the
exact details are in section 6.1).

The standard necessary optimality condition in DC programming is criticality [4].
We will show that our proposed class of algorithms are able to converge almost surely
to dual stationary points, which satisfy a stronger condition, and thus our objective
(B) will also be accomplished.

Paper layout. Section 2 reviews well-known optimality conditions, such as crit-
icality and stationarity and their relations. Section 3 presents the main mode and
its assumptions as well as the Toland-dual problem; the dual-stationarity optimality
condition is introduced and studied. The three prototype models---all related to di-
mensionality reduction---are discussed in section 4. The randomized dual coordinate
descent method is studied in section 5, where almost sure subsequence convergence is
proven under a bounded level sets assumption. It is shown how this assumption can
be simplified using an analysis based on asymptotic functions. The section ends with
an analysis of the case where g is the indicator of the \ell 2-ball (relevant, for example,
in two of the prototype problems). For this case, it is shown how the nondifferen-
tiability of the dual problem can be avoided altogether and as a result, it is possible
to establish an O(1/k) rate of convergence for the expected sequence of the squared
norms of the gradients of the dual sequence. The paper ends with a specification of
the dual randomized coordinate descent method for the three prototype PCA models
resulting in extremely simple algorithms.

Notation. Vectors are denoted by boldface lowercase letters, e.g., y, and ma-
trices by boldface uppercase letters, e.g., B. The vectors of all zeros and ones
are denoted by 0 and e, respectively. The canonical basis of \BbbR n is denoted by
e1, e2, . . . , en. The n-dimensional unit-simplex set is given by \Delta n = \{ x \in \BbbR n :
eTx = 1,x \geq 0\} . The closed \ell 2-norm ball with center c \in \BbbR n and radius r > 0
is denoted by B2[c, r] = \{ x \in \BbbR n : \| x  - c\| 2 \leq r\} . We use the standard nota-
tion [n] \equiv \{ 1, 2, . . . , n\} for a positive integer n. For a given function h, h\prime (x;d)
denotes the directional derivative of h at x \in \BbbR n in the direction d \in \BbbR n. For
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DUAL RANDOMIZED COORDINATE DESCENT METHOD 1879

an extended real-valued convex function h and a point x \in dom(h), we denote
the subdifferential set of h at x, meaning the set of all subgradients of h at x as
\partial h(x) = \{ g \in \BbbR n : h(y) \geq h(x) + \langle g,y  - x\rangle \forall y \in dom(h)\} . For any extended real-
valued function h, the conjugate is defined as h\ast (y) \equiv max\bfx \{ \langle x,y\rangle  - h(x)\} , and for
any set S, ri(S) stands for the relative interior of S.

2. Prelude on optimality conditions. This section contains several well-
known results related to optimality conditions that will be used later in our analysis.

2.1. Stationarity. One of the most natural first-order optimality conditions
is stationarity, which in this paper always means a point with no feasible descent
directions.

Definition 2.1 (stationarity). Suppose that F : \BbbR n \rightarrow ( - \infty ,\infty ] is an extended
real-valued function that satisfies that (1) dom(F ) is a convex set and that (2) it
has directional derivatives at all points in its domain in all feasible directions. Then
\=x \in dom(F ) is a stationary point of the problem min\bfx F (x) if it satisfies

F \prime (\=x;y  - \=x) \geq 0 for all y \in dom(F ).

Obviously, stationarity is a necessary optimality condition. A famous example
in which the stationarity condition can be written explicitly is the standard addi-
tive composite model, which consists of minimizing the sum of a differentiable (not
necessarily convex) function and a proper closed and convex function.

Lemma 2.1 (stationarity in the standard composite model). Consider the prob-
lem

(2.1) min
\bfx \in \BbbR n

F (x) +G(x),

where F : \BbbR n \rightarrow \BbbR is a nonconvex differentiable function and G : \BbbR n \rightarrow ( - \infty , \infty ] is
a proper closed and convex function. Then \=x \in dom(G) is a stationary point of (2.1)
if and only if

 - \nabla F (\=x) \in \partial G(\=x).

2.2. Criticality in DC programming. Consider the optimization problem

(M) min
\bfx \in \BbbR n

s(x) - t(x),

where
\bullet s, t : \BbbR n \rightarrow ( - \infty ,\infty ] are proper closed and convex;
\bullet dom(s) \subseteq dom(t);
\bullet t is subdifferentiable over dom(s).

Problem (M) is a DC programming problem; see, for example, the overview paper [4]
for results and applications. To make problem (M) well defined, we will define \infty  - \infty 
to be equal to \infty . The convention will be assumed only in the context of minimization
problems. A natural first-order optimality condition for problem (M) is criticality.

Definition 2.2 (criticality). A point \=x \in dom(s) is a critical point of problem
(M) if

\partial s(\=x) \cap \partial t(\=x) \not = \emptyset .

A well-known result states that a necessary optimality condition for problem (M)
is criticality. For the sake of completeness, we will provide the extremely short proof
of the result.
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1880 AMIR BECK AND MARC TEBOULLE

Theorem 2.1. Let \=x be an optimal solution of (M). Then \=x is a critical point of
(M).

Proof. Suppose that \=x is an optimal solution of (M). Then necessarily \=x \in dom(s)
and

(2.2) s(x) - t(x) \geq s(\=x) - t(\=x) for all x \in dom(s).

Since \=x \in dom(s) and t is subdifferentiable over dom(s), it follows that there exists
g \in \partial t(\=x). This means in particular that t(x)  - t(\=x) \geq \langle g,x  - \=x\rangle , which combined
with (2.2) leads to the conclusion that

s(x) \geq s(\=x) + \langle g,x - \=x\rangle for all x \in dom(s),

meaning that g \in \partial s(\=x), i.e., that g \in \partial s(\=x) \cap \partial t(\=x), thus establishing the desired
result.

Remark 2.1. We note that criticality at a point \=x is not equivalent to stationarity,
meaning the lack of feasible descent directions at \=x; see, for example, the extensive
study of optimality conditions in DC programming presented in [9]. In [3], the case
where in addition s is in differentiable over \BbbR n and t is real-valued was considered.
Criticality in this case takes the form

\nabla s(\=x) \in \partial t(\=x).

It was shown that in this scenario (where s is differentiable), the stronger condition

\{ \nabla s(\=x)\} = \partial t(\=x)

is equivalent to stationarity. This implies in particular that t is differentiable at any
stationary point. It was also shown in [3] that such a point can be generated by either
a greedy or a randomized coordinate descent method.

3. Problem formulation and duality. We consider the nonconvex problem

(P) max
\bfx \in \BbbR d

\{ f(Ax) - g(x)\} ,

where A \in \BbbR n\times d and f, g satisfy the following properties.

Assumption 1.
\bullet f : \BbbR n \rightarrow ( - \infty ,\infty ] is closed and strongly convex, and there exists \^x \in \BbbR d,

for which A\^x \in ri(dom f);
\bullet g : \BbbR d \rightarrow ( - \infty ,\infty ] is proper closed and convex with a compact domain;
\bullet dom(g) \subseteq dom(h), where h = f \circ A is the function h(x) \equiv f(Ax);
\bullet h = f \circ A is subdifferentiable over dom(g).

Note that here, in the context of a maximization problem, our convention is that
\infty  - \infty =  - \infty . By the previous section, \=x \in dom(g) is a critical point of (P) if

AT\partial f(A\=x) \cap \partial g(\=x) \not = \emptyset ,

where in the above we used the calculus rule \partial h(\=x) = AT\partial f(A\=x) that holds due to
[11, Theorem 23.9] and the first part of Assumption 1. We first derive the so-called
Toland-dual problem of (P) [13, 14]. For that, we note that since f is proper closed
and convex, it holds that f\ast \ast = f , and therefore, in particular, for any x \in \BbbR d,

D
ow

nl
oa

de
d 

09
/3

0/
21

 to
 1

32
.6

6.
11

.2
11

 R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/p

ag
e/

te
rm

s



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

DUAL RANDOMIZED COORDINATE DESCENT METHOD 1881

f(Ax) = f\ast \ast (Ax) = max\bfy \in \BbbR n \{ \langle Ax,y\rangle  - f\ast (y)\} . Consequently, problem (P) can be
equivalently written as

max
\bfx \in \BbbR d

max
\bfy \in \BbbR n

\{ \langle Ax,y\rangle  - f\ast (y) - g(x)\} .

Exchanging the order of maximizations yields the equivalent problem

max
\bfy \in \BbbR n

max
\bfx \in \BbbR d

\{ \langle Ax,y\rangle  - f\ast (y) - g(x)\} .

The set of maximizers of the inner problem with respect to x is \partial g\ast (ATy), and the
maximal value is g\ast (ATy) - f\ast (y). We thus obtain the following problem, known as
the Toland-dual problem:

(D) max
\bfy \in \BbbR n

\{ q(y) \equiv g\ast (ATy) - f\ast (y)\} .

Note also that given an optimal solution \=x of (P), the set of maximizers of the problem
max\bfy \{ \langle A\=x,y\rangle  - f\ast (y)\} , which is exactly \partial f(A\=x), are all optimal solutions of (D).
We summarize the above discussion.

Lemma 3.1. Suppose that f and g satisfy Assumption 1. If \=y is an optimal so-
lution of (D) and \=x \in \partial g\ast (AT \=y), then \=x is an optimal solution of (P). If \=x is an
optimal solution of (P), then any \=y \in \partial f(A\=x) is an optimal solution of (D).

By Assumption 1, f\ast and g\ast are both real-valued and convex, and in addition f\ast 

is differentiable.
By Definition 2.2, a vector \=y \in \BbbR n is a critical point of (D) if \nabla f\ast (\=y) \in 

A\partial g\ast (AT \=y); by Remark 2.1, it is a stationary point of (D) ifA\partial g\ast (AT \=y) = \{ \nabla f\ast (\=y)\} .
The following result establishes some relations between critical/stationary points of
(D) and (P).

Theorem 3.1. Suppose that Assumption 1 holds.
(a) Let \=y be a critical point of (D). Then there exists \=x \in \partial g\ast (AT \=y) satisfying

\nabla f\ast (\=y) = A\=x, and any such \=x is a critical point of (P).
(b) Let \=y be a stationary point of (D). Then any \=x \in \partial g\ast (AT \=y) is a critical point

of (P).

Proof. (a) If \=y is a critical point of (D), then \nabla f\ast (\=y) \in A\partial g\ast (AT \=y), which means
that there exists \=x for which

(3.1) \=x \in \partial g\ast (AT \=y),\nabla f\ast (\=y) = A\=x.

The relations (3.1) are equivalent to AT \=y \in \partial g(\=x) and \=y \in \partial f(A\=x). Consequently,
AT \=y \in AT\partial f(A\=x) \cap \partial g(\=x), and in particular AT\partial f(A\=x) \cap \partial g(\=x) \not = \emptyset , establishing
that \=x is a critical point of (P).

(b) If \=y is a stationary point of (D) and \=x \in \partial g\ast (AT \=y), then since A\partial g\ast (AT \=y) =
\{ \nabla f\ast (\=y)\} , it follows that \nabla f\ast (\=y) = A\=x, and the same argument from part (a) shows
that \=x is a critical point of (P).

Since stationarity is a more restrictive optimality condition than criticality, it
is natural to define a notion of ``dual-stationarity"" condition that is stronger than
criticality.

Definition 3.1 (dual-stationarity). A point \=x \in dom(g) is called a dual-station-
ary point of (P) if \=x \in \partial g\ast (AT \=y) for some stationary point \=y \in \BbbR m of (D).
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1882 AMIR BECK AND MARC TEBOULLE

Lemma 3.2 (optimality\Rightarrow dual-stationarity\Rightarrow criticality). Suppose that Assump-
tion 1 holds.

(a) If \=x is an optimal solution of (P), then it is a dual-stationary point of (P).
(b) If \=x is a dual-stationary point of (P), then it is a critical point of (P).

Proof. (a) Suppose that \=x is an optimal solution of problem (P). In particular,
by Theorem 2.1, \=x is a critical point of (P), and thus AT\partial f(A\=x) \cap \partial g(\=x) \not = \emptyset . We
can therefore pick \=y \in \partial f(A\=x) such that AT \=y \in \partial g(\=x). Since \=y \in \partial f(A\=x), then by
Lemma 3.1, it is also an optimal solution of (D) and thus also a stationary point of
(D). Finally, the inclusion AT \=y \in \partial g(\=x) is equivalent to the relation \=x \in \partial g\ast (AT \=y),
and by definition, this means that \=x is a dual-stationary point of (P).

(b) Suppose that \=x is a dual-stationary point. Then

(3.2) \=x \in \partial g\ast (AT \=y)

for some stationary point \=y of (D), which means that A\partial g\ast (AT \=y) = \{ \nabla f\ast (\=y)\} , and
thus, in particular, A\=x = \nabla f\ast (\=y), and therefore \=y \in \partial f(A\=x), implying that AT \=y \in 
AT\partial f(A\=x). This, combined with the fact that (3.2) is the same as AT \=y \in \partial g(\=x),
implies that AT\partial f(A\=x) \cap \partial g(\=x) \not = \emptyset , meaning that \=x is a critical point.

The next example shows that dual-stationarity might be a much stronger condi-
tion than criticality.

Example 3.1. Consider the problem

(P1) max
x1,x2

\biggl\{ 
1

2
(x1 + x2)

2 : | x1| \leq 1, | x2| \leq 1

\biggr\} 
.

This problem fits model (P) with f(t) = t2

2 ,A =
\bigl( 
1 1

\bigr) 
, and g(x) = \delta B\infty [\bfzero ,1](x).

Note that f\ast (t) = 1
2 t

2 and g\ast (x) = \| x\| 1, and thus the one-dimensional dual problem
is

(D1) max
y

\biggl\{ 
2| y|  - y2

2

\biggr\} 
.

Criticality for the dual problem means that

y \in 

\left\{   \{ 2\} y > 0,
\{  - 2\} y < 0,
[ - 2, 2] y = 0,

implying that the critical points of (D1) are  - 2, 0, 2. Stationarity eliminates the point
of nondifferentiability y = 0, and thus the stationary points of (D1) are  - 2, 2. A plot
of the dual objective function is given in Figure 1. As for the primal problem (P1), the
critical points are those satisfying (utilizing the differentiability of f) AT\nabla f(Ax) \in 
\partial g(x). Substituting the expressions for f, g in this relation, we obtain that it is the
same as\biggl( 

x1 + x2

x1 + x2

\biggr) 
\in J(x1)\times J(x2), where J(t) \equiv 

\left\{   \{ 0\} , t \in ( - 1, 1),
[0,\infty ), t = 1,
( - \infty , 0], t =  - 1.

The points that satisfy the above relation are

\{ (x1, x2)
T : x1 + x2 = 0, | x1| \leq 1, | x2| \leq 1\} \cup \{ ( - 1, - 1)T , (1, 1)T \} .
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-2 20

Fig. 1. The function 2| y|  - y2

2
has three critical point y =  - 2, 0, 2. Among them, y =  - 2, 2 are

stationary points.

All these points are critical points of (P1), and actually they are also stationary points
of (P1). Obviously, among these infinite amount of points, only ( - 1, - 1)T and (1, 1)T

are optimal solutions of the problem. The two stationary points y =  - 2, 2 of the
dual problem (D1) correspond to the dual-stationary points ( - 1, - 1)T and (1, 1)T ,
respectively, meaning that only two critical points out of the infinite amount of critical
points are dual-stationary, and in this case, both are global optimal solutions.

4. Three PCA prototype problems. We present three PCA-type problems
through which we will demonstrate the results of the paper. PCA is a fundamental
paradigm for dimensionality reduction. The literature on various PCA models and
algorithmic procedures to their solutions is very large; see, e.g., the review paper [6]
and references therein.

In all examples, we assume that A \in \BbbR n\times d is a data matrix whose rows
aT1 ,a

T
2 , . . . ,a

T
n are nonzero d-dimensional vectors corresponding to d features.1 We

write this formally as Assumption 2, and it will be used later in section 5.3.

Assumption 2. The rows of A are nonzero vectors.

4.1. PCA. The PCA problem seeks to find a normalized direction x \in \BbbR d for
which the projections of the vectors a1,a2, . . . ,an on the subspace spanned by x,
meaning aT1 x,a

T
2 x, . . . ,a

T
nx, have maximal variation. The problem therefore seeks to

find a vector x \in \BbbR d that is the solution to

(4.1) max
\| \bfx \| 2=1

n\sum 
i=1

(aTi x)
2.

A simple argument shows that the equality constraint can be replaced by an inequality,
and thus the above can also be written as

(PCA) max
\| \bfx \| 2\leq 1

\| Ax\| 22.

1In many applications, it is also quite common to assume that the data is centered, meaning that\sum n
i=1 ai = 0, but we will not require this assumption in our analysis.
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1884 AMIR BECK AND MARC TEBOULLE

This model fits problem (P) with f(\cdot ) = 1
2\| \cdot \| 22 and g = \delta B2[\bfzero ,1]. The Toland-dual

problem is therefore

(D-PCA) max
\bfy \in \BbbR n

\biggl\{ 
\| ATy\| 2  - 

1

2
\| y\| 22

\biggr\} 
.

4.2. Sparse PCA. In the sparse PCA problem, we further constrain the di-
rection vector to have a bound on the number of nonzero elements of the direc-
tion vector. A common formulation of the problem is via the \ell 0-``norm"" defined by
\| x\| 0 \equiv \#\{ i : xi \not = 0\} (see, for example, [7]):

(SPCA) max\{ \| Ax\| 22 : \| x\| 2 \leq 1, \| x\| 0 \leq s\} ,

where s \in [d]. To show that problem (SPCA) fits model (P), we use the well-known
fact that the maximum of a convex function over a nonempty compact and convex
set is attained at least at one of its extreme points. Therefore, problem (SPCA) is
equivalent to

max\{ \| Ax\| 22 : x \in conv(B2[0, 1] \cap Cs)\} ,

where B2[0, 1] \equiv \{ x : \| x\| 2 \leq 1\} and Cs \equiv \{ x : \| x\| 0 \leq s\} . The latter formulation of
(SPCA) fits model (P) with f(\cdot ) = 1

2\| \cdot \| 
2
2 and g = \delta conv(B2[\bfzero ,1]\cap Cs). The conjugate of

g is given by

g\ast (z) = max\{ xT z : x \in conv(B2[0, 1] \cap Cs)\} 
= max\{ xT z : x \in B2[0, 1] \cap Cs\} .(4.2)

We will make the following notation: For c \in \BbbR d, Ts(c) \in argmin\bfx \{ \| x - c\| 22 : \| x\| 0 \leq 
s\} is an d-length vector that keeps the s values of c with the largest absolute values
and plugs zeros elsewhere. The indices are chosen to be as small as possible in case
of ambiguity. It is easy to show that if z \not = 0, then an optimal solution of (4.2) is

Ts(\bfz )
\| Ts(\bfz )\| 2

, and thus the optimal value is g\ast (z) = Ts(\bfz )
T \bfz 

\| Ts(\bfz )\| 2
= \| Ts(z)\| 2. Obviously, in the

case where z = 0, it holds that g\ast (0) = 0 = \| Ts(0)\| 2, so in any case,

g\ast (z) = \| Ts(z)\| 2 for any z \in \BbbR d.

Consequently, the Toland-dual problem is given by

(D-SPCA) max
\bfy \in \BbbR n

\biggl\{ 
\| Ts(A

Ty)\| 2  - 
1

2
\| y\| 22

\biggr\} 
.

4.3. A model for robust PCA: The square-root PCA. We first consider
the alternative interpretation [10] of the PCA problem as the one that seeks a normal-
ized direction x for which the sum of squares of distances of the points a1,a2, . . . ,an
to the line spanned by x is minimal. The resulting optimization problem is

(PCA\prime ) min
\| \bfx \| 2=1

n\sum 
i=1

\| ai  - (aTi x)x\| 22.

Although problem (PCA\prime ) seems very much different than (PCA), it is easy to show
that they are equivalent, and the optimal sets of both consist of all the normalized
leading eigenvectors of the matrix ATA.
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DUAL RANDOMIZED COORDINATE DESCENT METHOD 1885

In the presence of outliers, it is well known that minimizing the sum of distances
rather than the sum of squared distances leads to a more robust solution. Thus, we
suggest the following formulation of the PCA problem that is robust to outliers:

min
\| \bfx \| 2=1

n\sum 
i=1

\| ai  - (aTi x)x\| 2.

This is the same as

(4.3) min
\| \bfx \| 2=1

n\sum 
i=1

\sqrt{} 
\| ai\| 22  - \langle ai,x\rangle 2.

The above problem will be referred to as the square-root PCA problem. The objective
function in (4.3) is concave, and thus we can replace the equality constraint by an
inequality:

(4.4) min
\| \bfx \| 2\leq 1

n\sum 
i=1

\sqrt{} 
\| ai\| 22  - \langle ai,x\rangle 2.

Finally, to make the objective function smooth, we will consider the following slightly
modified formulation:

(SRPCA) max
\| \bfx \| 2\leq 1

 - 
n\sum 

i=1

\sqrt{} 
\| ai\| 22  - \langle ai,x\rangle 2 + \varepsilon 2.

Problem (SRPCA) fits model (P) with

f(z) =

\biggl\{ 
 - 
\sum n

i=1

\sqrt{} 
\| ai\| 22 + \varepsilon 2  - z2i | zi| \leq 

\sqrt{} 
\| ai\| 22 + \varepsilon 2,

\infty else,
g = \delta B2[\bfzero ,1].

Note that the underlying assumption dom(g) \subseteq dom(f \circ A) and that f \circ A is subdif-
ferentiable on dom(g) holds true here as well as that A0 \in ri(dom f) as required by
Assumption 1. Denote f(z) =

\sum n
i=1 fi(zi), where

fi(zi) \equiv 
\biggl\{ 

 - 
\sqrt{} 
\| ai\| 22 + \varepsilon 2  - z2i | zi| \leq 

\sqrt{} 
\| ai\| 22 + \varepsilon 2,

\infty else.

By [2, section 4.4.13], it follows that f\ast 
i (yi) =

\sqrt{} 
\| ai\| 22 + \varepsilon 2

\sqrt{} 
y2i + 1, and therefore, by

the separability of f ,

f\ast (y) =

n\sum 
i=1

\sqrt{} 
\| ai\| 22 + \varepsilon 2

\sqrt{} 
y2i + 1.

The Toland-dual problem is therefore

(D-SRPCA) max
\bfy \in \BbbR n

\Biggl\{ 
\| ATy\| 2  - 

n\sum 
i=1

\sqrt{} 
\| ai\| 22 + \varepsilon 2

\sqrt{} 
y2i + 1

\Biggr\} 
.

5. The dual randomized coordinate descent method.

5.1. Definition and convergence. The algorithm that we will be interested in
is a randomized coordinate-descent method applied on the dual problem (D). We begin
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1886 AMIR BECK AND MARC TEBOULLE

by describing the randomized coordinate descent method for solving minimization
problems.

RCD method

Input. (F, t0, r,p), where F : \BbbR n \rightarrow \BbbR , t0 \in \BbbR m, r > 0 and a positive probability
vector p \in \BbbR n

++, e
Tp = 1.

General step. For any k = 0, 1, . . .
(a) pick ik \in [n] at random according to the probability vector p;
(b) compute \alpha \in argmint\in [ - r,r] F (tk1 , t

k
2 , . . . , t

k
ik - 1, t, t

k
ik+1, . . . , t

k
n);

(c) set tk+1
j =

\biggl\{ 
\alpha , j = ik,
tkj , j \in [n] \setminus \{ ik\} .

Remark 5.1. r can also be chosen as r = \infty , and in that case, the minimization
in step (c) is over the entire real line.

We will exploit the following convergence result from [3].

Theorem 5.1 (see [3, Theorem 4.2]). Suppose that F = f1 - f2 with f1 : \BbbR n \rightarrow \BbbR 
differentiable and convex and f2 : \BbbR n \rightarrow \BbbR convex. Let \{ yk\} k\geq 0 be the sequence
generated by the RCD method with input (F,y0, r,p), where y0 \in \BbbR n, r \in (0,\infty ], and
p \in \BbbR n

++ \cap \Delta n. Then almost surely, all accumulation points of the sequence \{ yk\} k\geq 0

are stationary points of the problem min\bfy F (y).

The next theorem shows that if \{ yk\} k\geq 0 is a sequence generated by the RCD
method employed on the problem of minimizing  - q and we define a primal sequence as
any sequence satisfying xk \in \partial g\ast (ATyk), then the primal sequence satisfies the prop-
erty that almost surely all its accumulation points are dual-stationary points of (P).

Theorem 5.2. Suppose that Assumption 1 holds. Let \{ yk\} k\geq 0 be the sequence
generated by the RCD method with input ( - q,y0, r,p) (y0 \in \BbbR n, r > 0,p \in \BbbR n

++\cap \Delta n),
where q(y) = g\ast (ATy)  - f\ast (y). Assume that the level sets of  - q are bounded. Let
xk \in \partial g\ast (ATyk). Then \{ xk\} k\geq 0 is bounded, and almost surely all its accumulation
points are dual-stationary points of problem (P).

Proof. Since xk \in \partial g\ast (ATyk), it follows that ATyk \in \partial g(xk), and thus, in
particular, xk \in dom(g), which is assumed to be compact. Thus, \{ xk\} k\geq 0 is bounded.
We note that by Theorem 5.1, almost surely all accumulation points of the sequence
\{ yk\} k\geq 0 are stationary points of (D). Let \=x be an accumulation point of \{ xk\} k\geq 0.
Then there exists a subsequence \{ xk\} k\in K (K \subseteq \BbbN ) that converges to \=x, meaning

that xk \rightarrow \=x as k
K\rightarrow \infty . Since the sequence of function values \{  - q(yk)\} k\geq 0 is

nonincreasing and  - q has bounded level sets, it follows that \{ yk\} k\geq 0 is bounded, and
in particular, there exists a subsequence of \{ yk\} k\in K , which we denote by \{ yk\} k\in T

with T \subseteq K, that converges to some point \=y, which is almost surely a stationary

point of (D). Taking k
T\rightarrow \infty in the relation xk \in \partial g\ast (ATyk), we obtain that

\=x \in \partial g\ast (AT \=y).

Thus, by Definition 3.1 and the fact that \=y is almost surely a stationary point of (D),
it follows that \=x is almost surely a dual-stationary point.

We end this section by presenting the dual RCD method for solving problem
(P) explicitly. To avoid expensive matrix/vector multiplications, we keep the vector
zk = ATyk, whose update is made in linear time in d.
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DUAL RANDOMIZED COORDINATE DESCENT METHOD 1887

Dual RCD method for solving (P)

Input. (f, g,A) satisfying Assumption 1, r > 0 and a positive probability vector
p \in \BbbR n

++ \cap \Delta n, e
Tp = 1 to p \in \BbbR n

++, e
Tp = 1

Initialization. y0 = 0 \in \BbbR n, z0 = 0 \in \BbbR d.
General step. For any k = 0, 1, . . . ,K,

(a) pick ik \in [n] at random according to the probability vector p;
(b) compute tk \in argmint\in [ - r,r]

\bigl\{ 
f\ast (yk + (t - ykik)eik) - g\ast (zk + (t - yik)aik)

\bigr\} 
;

(c) update yk+1 = yk + (tk  - ykik)eik and zk+1 = zk + (tk  - yik)aik .

Output: xout \in \partial g\ast (zK+1).

As can be seen from the above description, the general update formula of the
method is zk+1 = zk + skaik , where sk is chosen via the vector yk and the solution
of the one-dimensional problem in step (b).

5.2. Verifying the bounded level sets assumption. Theorem 5.2 on the
convergence of the dual CD method requires that the level sets of y \mapsto \rightarrow f\ast (y)  - 
g\ast (ATy) will be bounded. We will find a simpler condition that implies the bounded
level sets assumption and that is satisfied for all the three prototype problems. For
that, we recall some basic notions and properties related to asymptotic functions. For
the sake of simplicity, we will only consider real-valued functions (which is the case in
the dual setting). For a given real-valued function h, the asymptotic function denoted
by h\infty is given by [1, Theorem 2.5.1]

h\infty (d) \equiv lim inf
\bfd \prime \rightarrow \bfd ,t\rightarrow \infty 

h(td\prime )

t
.

If h is real-valued convex, then the following simpler formula for the asymptotic func-
tion holds [1, Corollary 2.5.3]:

(5.1) h\infty (d) = lim
t\rightarrow \infty 

h(td)

t
.

Lemma 5.2 below presents a calculus rule for the asymptotic function of the
difference of two real-valued functions. The result uses the following simple lemma.

Lemma 5.1. Let s, t : \BbbR p \rightarrow \BbbR be two real-valued functions, and let \=x \in \BbbR p.
Assume that lim\bfx \rightarrow \=\bfx t(x) = \=t, where \=t \in \BbbR . Then

lim inf
\bfx \rightarrow \=\bfx 

(s(x) - t(x)) = lim inf
\bfx \rightarrow \=\bfx 

s(x) - lim
\bfx \rightarrow \=\bfx 

t(x).

Proof. First,

(5.2) lim inf
\bfx \rightarrow \=\bfx 

(s(x) - t(x)) \geq lim inf
\bfx \rightarrow \=\bfx 

s(x) + lim inf
\bfx \rightarrow \=\bfx 

( - t(x)) = lim inf
\bfx \rightarrow \=\bfx 

s(x) - lim
\bfx \rightarrow \=\bfx 

t(x).

On the other hand,

lim inf
\bfx \rightarrow \=\bfx 

s(x) = lim inf
\bfx \rightarrow \=\bfx 

(s(x) - t(x) + t(x))

\geq lim inf
\bfx \rightarrow \=\bfx 

(s(x) - t(x)) + lim inf
\bfx \rightarrow \=\bfx 

t(x)

= lim inf
\bfx \rightarrow \=\bfx 

(s(x) - t(x)) + lim
\bfx \rightarrow \=\bfx 

t(x).(5.3)

Combining (5.2) and (5.3), the desired result follows.
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1888 AMIR BECK AND MARC TEBOULLE

Lemma 5.2. Suppose that u, v are real-valued functions such that v is Lipschitz
continuous and convex. Then

(u - v)\infty = u\infty  - v\infty .

Proof. First note that for any d \in \BbbR n,

(5.4) (u - v)\infty (d) = lim inf
\bfd \prime \rightarrow \bfd ,t\rightarrow \infty 

u(td\prime ) - v(td\prime )

t
= lim inf

\bfd \prime \rightarrow \bfd ,t\rightarrow \infty 

\biggl( 
u(td\prime )

t
 - v(td\prime )

t

\biggr) 
.

Since v is convex, it follows (cf. (5.1)) that

(5.5) v\infty (d) = lim
t\rightarrow \infty 

v(td)

t
.

In addition, since v is Lipschitz and denoting the Lipschitz constant of v by \ell v, we
obtain that \bigm| \bigm| \bigm| \bigm| v(td)t

\bigm| \bigm| \bigm| \bigm| = \bigm| \bigm| \bigm| \bigm| v(td) - v(0) + v(0)

t

\bigm| \bigm| \bigm| \bigm| \leq \ell v\| d\| 2 +
| v(0)| 

t
.

Consequently, v\infty (d) \in \BbbR and satisfies | v\infty (d)| \leq \ell v\| d\| 2.
Now, for any d,d\prime \in \BbbR n and t > 0,

(5.6)\bigm| \bigm| \bigm| \bigm| v(td\prime )

t
 - v\infty (d)

\bigm| \bigm| \bigm| \bigm| \leq \bigm| \bigm| \bigm| \bigm| v(td)t
 - v\infty (d)

\bigm| \bigm| \bigm| \bigm| +\bigm| \bigm| \bigm| \bigm| v(td\prime )

t
 - v(td)

t

\bigm| \bigm| \bigm| \bigm| \leq \bigm| \bigm| \bigm| \bigm| v(td)t
 - v\infty (d)

\bigm| \bigm| \bigm| \bigm| +\ell v\| d - d\prime \| 2,

where the inequality follows by the fact that v is \ell v-Lipschitz continuous. By (5.5), it

holds that limt\rightarrow \infty ,\bfd \prime \rightarrow \bfd 

\bigm| \bigm| \bigm| v(t\bfd )t  - v\infty (d)
\bigm| \bigm| \bigm| = 0; in addition, limt\rightarrow \infty ,\bfd \prime \rightarrow \bfd \| d - d\prime \| 2 = 0,

and therefore, by (5.6),

lim
t\rightarrow \infty ,\bfd \prime \rightarrow \bfd 

v(td\prime )

t
= v\infty (d),

which combined with (5.4) and Lemma 5.1 finally implies that

(u - v)\infty (d) = lim inf
\bfd \prime \rightarrow \bfd ,t\rightarrow \infty 

\biggl( 
u(td\prime )

t
 - v(td\prime )

t

\biggr) 
= lim inf

\bfd \prime \rightarrow \bfd ,t\rightarrow \infty 

u(td\prime )

t
 - lim

\bfd \prime \rightarrow \bfd ,t\rightarrow \infty 

v(td\prime )

t
= u\infty (d) - v\infty (d).

Based on the above result, we will now show that the bounded level sets assump-
tion in Theorem 5.2 can be replaced by a condition written in terms of (f\ast )\infty and
(g\ast )\infty .

Corollary 5.3. Theorem 5.2 still holds if the bounded level sets assumption is
replaced by the assumption

(5.7) (f\ast )\infty (d) - (g\ast )\infty (ATd) > 0 for all d \in \BbbR n \setminus \{ 0\} .

Proof. Set u = f\ast , v(\cdot ) = g\ast (AT \cdot ). Since g has a compact domain (Assumption
1), it follows that g\ast is Lipschitz continuous, and thus the assumptions of Lemma 5.2
hold, and we can thus conclude that

( - q)\infty (d) = (f\ast )\infty (d) - (g\ast )\infty (ATd),

where we used in the above the calculus rule [1, Proposition 2.6.3]. Therefore, condi-
tion (5.7) is the same as the condition ( - q)\infty (d) > 0 for any d \in \BbbR n \setminus \{ 0\} . Thus, by
[1, Proposition 3.1.3], the level sets of  - q are bounded.
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Fortunately, the prototype problems all satisfy condition (5.7). In the first two
problems, we have f\ast (y) = 1

2\| y\| 
2
2, and therefore (f\ast )\infty (d) = \infty for d \not = 0, which

trivially implies that condition (5.7) holds. The third problem is slightly more com-
plicated. Since f\ast (y) =

\sum n
i=1

\sqrt{} 
\| ai\| 22 + \varepsilon 2

\sqrt{} 
y2i + 1, it follows that (f\ast )\infty (d) =\sum n

i=1

\sqrt{} 
\| ai\| 22 + \varepsilon 2| di| . Also, g\ast (y) = \| y\| 2, and hence (g\ast )\infty (d) = \| d\| 2. Thus, the

condition that needs to be proven is

n\sum 
i=1

\sqrt{} 
\| ai\| 22 + \varepsilon 2| di|  - \| ATd\| 2 > 0 for all d \not = 0.

To prove the above, we first note that by the triangle inequality,

\| ATd\| 2 =

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 
n\sum 

i=1

diai

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 
2

\leq 
n\sum 

i=1

\| ai\| 2| di| .

Thus, for any d \not = 0,

n\sum 
i=1

\sqrt{} 
\| ai\| 22 + \varepsilon 2| di|  - \| ATd\| 2 \geq 

n\sum 
i=1

(
\sqrt{} 
\| ai\| 22 + \varepsilon 2  - \| ai\| 2)| di| > 0,

and we thus established that condition (5.7) holds for all three prototype problems.

5.3. Convergence in the case \bfitg = \bfitdelta \bfitB \| \cdot \| \bftwo 
[\bfzero ,\bfone ]. In this section, we will concen-

trate on the case where f and g satisfy, in addition to the properties of Assumption
1, the following.

Assumption 3. g(x) = \delta B\| \cdot \| 2 [\bfzero ,1]
(x) and argmin\bfx f(x) = \{ 0\} .

Thus, under Assumption 3, the primal problem takes the form

max
\bfx 

\{ f(Ax) : \| x\| 2 \leq 1\} ,

and the Toland-dual problem is therefore

(5.8) max
\bfy 

\bigl\{ 
\| ATy\| 2  - f\ast (y)

\bigr\} 
.

We will often consider the minimization form of the above:

min
\bfy 

\{ f\ast (y) - \| ATy\| 2\} .

Note that Assumption 3 is satisfied by the first and third prototype problems.
Since the function y \mapsto \rightarrow \| ATy\| 2 is differentiable at \=y \in \BbbR n if and only if AT \=y \not = 0,
it follows by Remark 2.1 that if \=y is a stationary point, then AT \=y \not = 0. The next
lemma will be key to showing that nondifferentiability can be avoided altogether.

Lemma 5.3. Suppose that Assumptions 1 and 3 hold. Let \=y \in \BbbR n satisfy q(\=y) >
q(0). Then AT \=y \not = 0.

Proof. Since argmin\bfx f(x) = \{ 0\} , it follows that 0 \in \partial f(0), and thus\nabla f\ast (0) = 0,
which implies that

(5.9) 0 \in argmin
\bfy 

f\ast (y).
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Let \=y \in \BbbR m satisfy q(\=y) > q(0), and assume by contradiction that AT \=y = 0. Then

q(\=y) = \| AT \=y\| 2  - f\ast (\=y)
\bfA T \=\bfy =\bfzero 

=  - f\ast (\=y)
(5.9)

\leq  - f\ast (0) = q(0),

and we arrive at a contradiction to the assumption that q(\=y) > q(0), proving the
desired result that AT \=y \not = 0.

Note that for any d such that ATd \not = 0,

q\prime (0;d) = \| ATd\| 2  - \nabla f\ast (0)Td = \| ATd\| 2 > 0.

This means that any direction d such that ATd \not = 0 is a descent direction of  - q at 0.
In particular, under Assumption 2, directions of the form \pm ei are descent directions
of  - q at 0 since \| AT (\pm ei)\| 2 = \| ai\| 2 \not = 0. Therefore, if we begin the RCD method
applied on  - q with y0 = 0, the first iteration will always result with a better objective
function, meaning that q(y1) > q(0), and since the RCD method is a descent method
(applied on  - q), we obtain that for any k \geq 1, q(yk) \geq q(y1) > 0. By Lemma 5.3, it
follows that ATyk \not = 0 for all k \geq 1, meaning in particular that q is differentiable at
yk \not = 0 for any k \geq 1, and thus \| \nabla q(yk)\| 2 is defined for any k \geq 1 and can serve as an
optimality measure for the kth iterate vector yk. We summarize these observations
in the following lemma.

Lemma 5.4. Suppose that Assumptions 1--3 hold. Let \{ yk\} k\geq 0 be the sequence
generated by the RCD method with input ( - q,0, r,p) (r > 0,p \in \BbbR n

++ \cap \Delta n), where
q(y) = g\ast (ATy) - f\ast (y). Then

q(yk) \geq q(y1) > q(0) for all k \geq 1,

and \nabla q(yk) exists for any k \geq 1.

Our next task is to show that under the additional assumption that the gradient
of f\ast is block Lipschitz continuous, it is possible to show a rate of convergence of the
expected values of the optimality measure \| \nabla q(yk)\| 2. We first explicitly write the
required property.

Assumption 4 (block Lipschitz-continuity of \nabla f\ast ). For any i \in [n],

\| \nabla if
\ast (y + hei) - \nabla if

\ast (y)\| 2 \leq Li| h| for all y \in \BbbR n, h \in \BbbR 

for some positive numbers L1, L2, . . . , Ln.

The rate of convergence of the optimality measure can now be established.

Theorem 5.4. Suppose that Assumptions 1--4 hold. Let \{ yk\} k\geq 0 be the sequence
generated by the RCD method with input ( - q,0,\infty ,p), where q(y) = g\ast (ATy) - f\ast (y)
and p \in \BbbR n

++ \cap \Delta n. Then for any k \geq 1, it holds that2

(5.10) min
k=1,...,N

\BbbE (\| \nabla q(yk)\| 22) \leq 
C

N
(qopt  - q(0)),

where qopt = max\bfy \in \BbbR n q(y) and C = 2maxi=1,...,n
Li

pi
.

2The expectation of \| \nabla q(yk)\| 22 is over the random variables i0, i1, . . . , ik - 1.
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Proof. Denote the convex set S \equiv Lev( - q, - q(y1)). Then by Lemma 5.4, yk \in S
for any k \geq 1, and q is differentiable over S. By the block descent lemma [2, Lemma
11.8], it follows that for any i \in [n] and y \in S,

(5.11) f\ast (y + hei) \leq f\ast (y) +\nabla if
\ast (y)h+

Li

2
h2
i for any h \in \BbbR .

Also, by the convexity of y \mapsto \rightarrow t(y) \equiv g\ast (ATy), we conclude that for any i \in [n],

(5.12)  - t(y + hei) \leq  - t(y) - \nabla it(y)h for all h \in \BbbR ,

where we also used in the above the fact that t = f\ast + q is differentiable over S.
Adding (5.11) and (5.12) and using the identity  - q = f\ast  - t, it follows that

(5.13)  - q(y) + q(y + hei) \geq \nabla iq(y)h - Li

2
h2 for any h \in \BbbR .

Define \=h\bfy \equiv \nabla iq(\bfy )
Li

. Plugging h = \=h\bfy into (5.13) yields

(5.14)  - q(y) + q(y + \=h\bfy ei) \geq 
(\nabla iq(y))

2

2Li
for any y \in S.

For any k \geq 1, it holds that yk \in S, and thus we can plug y = yk and i = ik into
(5.14) and obtain that for any k \geq 1,

(5.15)  - q(yk) + q(yk + \=h\bfy keik) \geq 
(\nabla ikq(y

k))2

2Lik

.

By the definition of the process,  - q(yk+1) \leq  - q
\bigl( 
yk + \=h\bfy keik

\bigr) 
, which combined with

(5.15) implies the inequality

 - q(yk) + q(yk+1) \geq 1

2Lik

(\nabla ikq(y
k))2.

Taking the expectation over the random variable ik, we obtain that

(5.16)  - q(yk) + \BbbE ik(q(y
k+1)) \geq 

n\sum 
i=1

pi
2Li

(\nabla iq(y
k))2 \geq min

i=1,...,n

\biggl\{ 
pi
2Li

\biggr\} 
\| \nabla q(yk)\| 22.

For any k \geq 1, we denote the multivariate random variable \xi k \equiv (i0, i1, . . . , ik - 1).
Taking expectation with respect to \xi k of both sides of (5.16) leads to the following
inequality:

 - \BbbE \xi k(q(y
k)) + \BbbE \xi k+1

(q(yk+1)) \geq min
i=1,...,n

\biggl\{ 
pi
2Li

\biggr\} 
\underbrace{}  \underbrace{}  

1
C

\BbbE \xi k(\| \nabla q(yk)\| 22).

Summing the above inequality over k = 1, . . . , N yields

 - \BbbE \xi 1(q(y
1))+\BbbE \xi N+1

(q(yN+1)) \geq 1

C

N\sum 
k=1

\BbbE \xi k(\| \nabla q(yk)\| 22) \geq 
1

C
N min

k=1,...,N
\BbbE \xi k(\| \nabla q(yk)\| 22)

meaning

min
k=1,...,N

\BbbE \xi k(\| \nabla q(yk)\| 22) \leq 
C

N
( - \BbbE \xi 1(q(y

1)) + \BbbE \xi N+1
(q(yN+1))).

By Lemma 5.4, q(y1) > q(0), and obviously q(yN+1) < qopt, implying the desired
result (5.10).
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6. Dual RCD for the three PCA prototype problems. This final section
shows how the dual RCD method can be applied in each of the three prototype models
described in section 4 to produce extremely simple schemes.

6.1. The PCA problem. The Toland-dual problem of the PCA problem is
given by (see section 4.1)

max
\bfy \in \BbbR n

\| ATy\| 2  - 
1

2
\| y\| 22.

Suppose that we are at iteration k, meaning that we know yk and we always keep
zk = ATyk. We pick at random an index ik \in [n], and the one-dimensional problem
that needs to be solved is

min
t

1

2
\| yk + (t - ykik)eik\| 

2
2  - \| zk + (t - ykik)aik\| 2,

where we use the notation that the rows of A are aT1 , . . . ,a
T
n . Denoting \~yk = yk  - 

ykikeik and \~zk = zk  - ykikaik , the problem thus becomes (using the relation eTik \~y
k = 0)

min
t

\biggl\{ 
h(t) \equiv 1

2
(\| \~yk\| 22 + t2) - 

\sqrt{} 
\| \~zk\| 22 + 2taTik\~z

k + t2\| aik\| 22
\biggr\} 
.

The optimality condition h\prime (t) = 0 is the same as

t =
aTik\~z

k + t\| aik\| 22\sqrt{} 
\| \~zk\| 22 + 2taTik\~z

k + t2\| aik\| 22
.

A simple and tedious algebraic argument shows that the solutions of the equation
h\prime (t) = 0 are all roots of the quartic equation, which admits an analytic solution.3

(6.1) c4t
4 + c3t

3 + c2t
2 + c1t+ c0 = 0,

where
(6.2)
c0 =  - (aTik\~z

k)2, c1 =  - 2(aTik\~z
k)\| aik\| 22, c2 = \| \~zk\| 22 - \| aik\| 42, c3 = 2(aTik\~z

k), c4 = \| aik\| 22.

The dual RCD method with r = \infty for solving the PCA problem is now explicitly
stated.

Dual RCD method for PCA

Input. A \in \BbbR n\times d and a positive probability vector p \in \BbbR n
++, e

Tp = 1. K is the
number of iterations.
Initialization. y0 = 0, z0 = 0.
General step. For any k = 0, 1, . . . ,K,

(a) pick ik \in [n] at random according to the probability vector p;
(b) compute \~zk = zk  - ykikaik ;
(c) find all real roots r1, r2, . . . , rc of the quartic equation (6.1) whose coefficients

are given in (6.2); set tk \in argmin\{ h(z) : z \in \{ r1, r2, . . . , rc\} \} ;
(d) update yk+1 = yk + (tk  - ykik)eik , z

k+1 = \~zk + tkaik .

Output: xout =
\bfz K+1

\| \bfz K+1\| 2
.

3The algebraic solution of quartic equations was discovered by Lodovico Ferrari and Gerolamo
Cardano in Ars Magna (1545); see https://www.britannica.com/biography/Lodovico-Ferrari.
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6.2. Square-root PCA. The Toland-dual problem for the square-root PCA
problem is given by (see section 4.3)

(D-SRPCA) max
\bfy 

\Biggl\{ 
\| ATy\| 2  - 

n\sum 
i=1

\sqrt{} 
\| ai\| 22 + \varepsilon 2

\sqrt{} 
y2i + 1

\Biggr\} 
.

As before, we denote zk = ATyk. At iteration k, the one-dimensional problem with
respect to yik (taking yik = t) is

min
t

\biggl\{ 
h3(t) \equiv 

\sqrt{} 
\| aik\| 22 + \varepsilon 2

\sqrt{} 
t2 + 1 - 

\sqrt{} 
\| \~zk\| 22 + 2taTik\~z

k + t2\| aik\| 22
\biggr\} 
,

where \~zk = zk  - yikaik . The optimality condition h\prime 
3(t) = 0 is the same as\sqrt{} 

\| aik\| 22 + \varepsilon 2
t\surd 

t2 + 1
=

aTik\~z
k + t\| aik\| 22\sqrt{} 

\| \~zk\| 22 + 2taTik\~z
k + t2\| aik\| 22

,

and it can be shown after some algebraic rearrangements that the solutions to the
above equations must be root of the quartic problem

(6.3) c4t
4 + c33 + c2t

2 + c1t+ c0 = 0,

where

c4 = \varepsilon 2\| aik\| 22, c3 = 2\varepsilon 2(aTik\~z
k), c2 = \| \~zk\| 22(\| aik\| 22 + \varepsilon 2) - (\| aik\| 42 + (aTik\~z

k)2),(6.4)

c1 =  - 2(aTik\~z
k)\| aik\| 22, c0 =  - (aTik\~z

k)2.(6.5)

This leads us to the following implementation of the dual RCD method with r = \infty .

Dual RCD method for SRPCA

Input. A \in \BbbR n\times d and a positive probability vector p \in \BbbR n
++, e

Tp = 1. K is the
number of iterations.
Initialization. y0 = 0, z0 = 0.
General step. For any k = 0, 1, . . . ,K,

(a) pick ik \in [m] at random according to the probability vector p;
(b) compute \~zk = zk  - ykikaik ;
(c) find all real roots r1, r2, . . . , rc of the quartic equation (6.3) whose coefficients

are given in (6.4) and (6.5); set tk \in argmin\{ h(z) : z \in \{ r1, r2, . . . , rc\} \} ;
(d) update yk+1 = yk + (tk  - ykik)eik , z

k+1 = \~zk + tkaik .

Output: xout =
\bfz K+1

\| \bfz K+1\| 2
.

6.3. Sparse PCA. The Toland-dual problem of the sparse PCA problem is (see
section 4.2)

(D-PCA) max
\bfy 

\biggl\{ 
\| Ts(A

Ty)\| 2  - 
1

2
\| y\| 22

\biggr\} 
.

Suppose that we are at iteration k, meaning that we know yk, and assume that we
always keep zk = ATyk. We pick at random an index ik \in [n]. The one-dimensional
problem that needs to be solved is
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Fig. 2. Plot of the function R\bfv ,\bfw for four normally and randomly generated u,v with n =
10, s = 2. The filled line corresponds to the theoretical interval in which a minimizer of the function
is guaranteed to reside.

min
t

\biggl\{ 
1

2
\| yk + (t - ykik)eik\| 

2
2  - \| Ts(z

k + (t - ykik)aik)\| 2
\biggr\} 
.

Thus, the problem that is solved at each iteration is of the form

(6.6) min
t

\biggl\{ 
R\bfv ,\bfw (t) \equiv 1

2
t2  - \| Ts(v + tw)\| 2

\biggr\} 
for some v,w \in \BbbR d. The objective function R\bfv ,\bfw is neither convex nor smooth. An
illustration can be found in Figure 2.

The next result shows that we can find a compact interval in which an optimal
solution is guaranteed to reside and an explicit expression for the Lipschitz constant of
the function. This means that it is possible to solve the problem quite effectively using
any of the existing solvers for Lipschitz-continuous functions over a compact interval;
see, for example, [5]. Note that the function values on the theoretical compact interval
are highlighted in Figure 2.

Theorem 6.1. Consider problem (6.6) with u,v \in \BbbR d and s \in [d]. Then
(b) the function R\bfv ,\bfw : \BbbR \rightarrow \BbbR is 2\| w\| 2-Lipschitz continuous over [ - \| w\| 2, \| w\| 2];
(b) all minimizers of problem (6.6) reside in the interval [ - \| w\| 2, \| w\| 2].
Proof. Define H(\cdot ) = \| Ts(\cdot )\| 2 and h\bfv ,\bfw (t) = H(v + tw). We begin by noting

that
H(z) = \| Ts(z)\| 2 = max\{ \langle x, z\rangle : \| x\| 2 \leq 1, \| x\| 0 \leq s\} = \sigma D(z),

where D = conv(B2[0, 1] \cap Cs). Therefore, since D is closed and convex,

\partial H(x) = argmax
\bfy 

\{ \langle x,y\rangle  - \sigma \ast 
D(y)\} = argmax

\bfy 
\{ \langle x,y\rangle  - \delta D(y)\} \subseteq D,

and hence

(6.7) \partial H(x) \subseteq B2[0, 1].
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Consequently, by (6.7), for any t \in \BbbR ,

(6.8) | \partial h\bfv ,\bfw (t)| = | wT\partial H(v + tw)| \leq \| w\| 2.

In particular, h\bfv ,\bfw is \| w\| 2-Lipschitz continuous. Since t \mapsto \rightarrow 1
2 t

2 is also \| w\| 2-Lipschitz
continuous over [ - \| w\| 2, \| w\| 2], it follows that R\bfv ,\bfw = 1

2 (\cdot )
2  - h\bfv ,\bfw is (2\| w\| 2)-

Lipschitz continuous over [ - \| w\| 2, \| w\| 2], establishing part (a). To show part (b),
note that by (6.8) it follows that for any t \in [ - \| w\| 2, \| w\| 2],

(6.9)  - \| w\| 2 \leq (h\bfv ,\bfw )\prime  - (t), (h\bfv ,\bfw )\prime +(t) \leq \| w\| 2.

Therefore, for any t <  - \| w\| 2, it holds that

max\{ (R\bfv ,\bfw )\prime  - (t), (R\bfv ,\bfw )\prime +(t)\} = t - min\{ (h\bfv ,\bfw )\prime  - (t), (h\bfv ,\bfw )\prime +(t)\} <  - \| w\| 2+\| w\| 2 = 0,

implying that there are no minimizers in the interval ( - \infty , - \| w\| 2). Similarly, there
are no minimizers in (\| w\| 2,\infty ) since for any t > \| w\| 2, it holds that

min\{ (R\bfv ,\bfw )\prime  - (t), (R\bfv ,\bfw )\prime +(t)\} = t - max\{ (h\bfv ,\bfw )\prime  - (t), (h\bfv ,\bfw )\prime +(t)\} 
(6.9)
> \| w\| 2 - \| w\| 2 = 0.

We thus conclude that the minimizers of R are in the interval [ - \| w\| 2, \| w\| 2].
Remark 6.1. Theorem 6.1 suggests that at each iteration of the dual RCD method

for solving the sparse PCA problem, the one-dimensional minimization can be per-
formed over the interval [ - 2\| aik\| 2, 2\| aik\| 2], and we can thus set the parameter r as
2\| aik\| 2.

7. Concluding remarks. In this paper, we considered the nonconvex model
of maximizing DC functions. Based on the notion of Toland duality and the given
structure of the input functions, we were able to define a class of randomized methods
that perform very simple operations at each iteration and rely on a solution of a one-
dimensional minimization problem and with proven convergence guarantees. Three
PCA models illustrate the theoretical results.
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