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Abstract

We present and study the matrix-restricted total least squares (MRTLS) devised to solve linear systems of the form

Ax � b where A and b are both subjected to noise and A has errors of the form DEC. D and C are known matrices and E is

unknown. We show that the MRTLS problem amounts to solving a problem of minimizing a sum of fractional quadratic

terms and a quadratic function and compare it to the related restricted TLS problem of Van Huffel and Zha [The restricted

total least squares problem: formulation, algorithm, and properties, SIAM J. Matrix Anal. Appl. 12(2) (1991) 292–309.].

Finally, we present an algorithm for solving the MRTLS, which is based on a reduction to a single-variable minimization

problem. This reduction is shown to have the ability of eliminating local optima points.

r 2006 Elsevier B.V. All rights reserved.
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1. Introduction

Consider an uncertain linear system:

ðAþ eEÞx ¼ bþ w, (1.1)

in which A 2 Rm�n; b 2 Rm are known and eE 2
Rm�n;w 2 Rm are unknown. In the case when eE and
w are not assumed to have any underlying structure,
the total least-squares (TLS) approach to this
problem [1–3] is to seek a perturbation matrix eE
and a perturbation vector w that minimize keEk2 þ
kwk2 subject to the consistency equation
ðAþ eEÞx ¼ bþ w. It is well known [1,3] that the
TLS problem can be reduced to the following
problem in the x variables:

min
x2Rn

kAx� bk2

kxk2 þ 1
, (1.2)
e front matter r 2006 Elsevier B.V. All rights reserved

gpro.2006.11.004

ess: becka@ie.technion.ac.il.
and that its solution can be expressed via the
singular value decomposition of the augmented
matrix ðA; bÞ.

When the perturbation matrix eE possesses some
linear structure, i.e., Lð ~EÞ ¼ 0 for some linear
operator L, the corresponding problem can be
expressed as

min
E;w;x
fk ~Ek2 þ kwk2 : ðAþ eEÞx ¼ bþ w;LðeEÞ ¼ 0g,

which is known as the structured total least-squares

(STLS) problem. In contrast to TLS problems for
which efficient solution procedures are known,
STLS problems often give rise to hard nonconvex
problems and current algorithms for solving these
type of problems are not guaranteed to find a global
solution but rather a local solution or even just a
stationary point [4–9].

There are several exceptions for this state of
affairs. If A (and therefore also eE) has a block
.
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circulant structure, then the corresponding STLS
problem can be solved by decomposing the problem
into several smaller TLS problems using the discrete
Fourier transform [10]. Another tractable STLS
problem arises when some of the columns of A are
error free while the other are subjected to noise.
This problem is called the generalized TLS (GTLS)
problem or mixed LS–TLS problem and its solution
can be obtained by computing a QR factorization of
A and then solving a TLS problem of reduced
dimension [11]. A more general problem is the
restricted TLS problem introduced in [12]. Here, it is
assumed that ðeE;wÞ ¼ D1EC1, where D1 2 Rm�p

and C1 2 R
l�ðnþ1Þ are known matrices and E 2

Rp�l is unknown. As was mentioned in [12], by
choosing the matrices D1 and C1 appropriately, the
restricted TLS problem can handle any weighted
least squares (LS), generalized LS, TLS, and GTLS
problems. The restricted TLS problem can be solved
using the restricted singular value decomposition
[13].

In this paper we introduce and analyze the
matrix-restricted TLS (MRTLS) problem in which
the unknown matrix perturbation eE has the form
~E ¼ DEC, where D 2 Rm�p;E 2 Rp�l ;C 2 Rl�n. The
STLS problem for this structure can therefore be
expressed as

(MRTLS): min
E;w;x
fkEk2 þ kwk2 : ðAþDECÞx ¼ bþ wg.

(1.3)

This problem is of course related to the restricted
TLS problem, however, while it is assumed in the
restricted TLS problem that the augmented pertur-
bation matrix ðeE;wÞ has the ‘‘DEC’’ structure, in the
MRTLS problem only the perturbation matrix eE is
of this structure. This allows us to model different

situations than those handled by the restricted TLS.
For example, the choice

D ¼
Im1

0ðm�m1Þ�m1

 !
; C ¼ In, (1.4)

corresponds to the situation in which the first m1

rows of A are contaminated by noise, while the
remainder m�m1 rows are not subjected to noise;
all the components of the right-hand side vector b

are assumed to be noisy. In other words, A and b

can be decomposed:

A ¼
A1

A2

 !
; b ¼

b1

b2

 !
, (1.5)
with A1 2 R
m1�n;A2 2 Rðm�m1Þ�n; b1 2 Rm1 and

b2 2 Rm�m1 , so that the linear problem suitable for
the choice (1.4) is

A1x � b1; A2x � b2,

where A1; b1 and b2 are subjected to noise and A2 is
error free. This is evidently a mixture of LS and TLS
problems. It is different from the ‘‘mixed LS–TLS’’
problem introduced in [11] in which part of the
columns of A are subjected to noise. This model will
be called the horizontal mixed LS– TLS problem.

We also note that for D ¼ Im;C ¼ In, the
MRTLS problem reduces to the standard TLS
problem and that by choosing D ¼ Im;C ¼
ð0n1

; In�n1
Þ, we recover the generalized TLS problem

in which the first n1 columns of A are error free
while the rest n� n1 are noisy. Another scenario in
which the MRTLS structure is suitable is when the
components of the perturbation matrix eE are
correlated and there exist nonsingular (square)
matrices D and C for which the components of
D�1eEC�1 are uncorrelated with equal variance.

The paper is organized as follows. In Section 2 we
derive a simplified form of the MRTLS problem
(1.3). We show that the MRTLS problem amounts
to solving a problem of minimizing a sum of
fractional quadratic terms and a single quadratic
term. We then compare the derived MRTLS
problem to the restricted TLS problem of [12],
which is a simpler problem consisting of minimizing
only a single fractional expression. Sufficient condi-
tions for the existence of the MRTLS solution are
derived in Section 3 in the case when DDT is a
projection; this case includes the horizontal LS–TLS
model. Finally, in Section 4.1 we describe an
algorithm for solving the MRTLS problem. The
procedure is based on a reduction of the multi-
variate problem into a one-dimensional optimiza-
tion problem. We prove and illustrate that the
process of passing to the one-dimensional problem
can eliminate local optima points but cannot add
any new ones. For the convenience of the reader, a
detailed MATLAB implementation of our code is
given.

Notation: For simplicity, instead of inf/sup we use
min/max; however, this does not mean that we
assume that the optimum is attained and/or finite.
Vectors are denoted by boldface lowercase letters,
e.g., y, and matrices are denoted by boldface
uppercase letters e.g., A. For any symmetric matrix
A and positive definite matrix B, we denote the
corresponding generalized minimum eigenvalue by



ARTICLE IN PRESS
A. Beck / Signal Processing 87 (2007) 2303–2312 2305
lminðA;BÞ; the generalized minimum eigenvalue has
several equivalent formulations:

lminðA;BÞ ¼ maxfl : A� lB � 0g

¼ min
xa0

xTAx

xTBx
¼ lminðB

�1=2AB�1=2Þ,

where we use the notation A � 0 (A � 0) for a
positive semidefinite (positive definite) matrix A. We
follow the MATLAB convention and use ‘‘;’’ for
adjoining scalars, vectors or matrices in a column.
The identity matrix of size m�m is denoted by Im

and 0k�l stands for the zero matrix of size k � l. For
a linear space S, we denote by PS the orthogonal
projection onto the space S.

2. The MRTLS problem

In order to analyze and solve the MRTLS
problem, we find in Section 2.1 a simplified form
of the MRTLS problem which is expressed only by
the x variables. We then compare in Section 2.2 the
structure of the derived form of the MRTLS
problem to the one of the restricted TLS problem.

2.1. A (more) explicit form of the MRTLS problem

The next lemma simplifies the problem by
eliminating the E and w variables. This is done
by minimizing first with respect to the variables E

and w.

Lemma 2.1. Let A 2 Rm�n; b 2 Rm;D 2 Rm�p and

C 2 Rl�n. Then ðE;w;xÞ 2 Rp�l � Rm � Rn is an

optimal solution of (1.3) if and only if x is an optimal

solution of

min
x2Rn
fðAx� bÞTðIm þ ðx

TCTCxÞDDTÞ
�1
ðAx� bÞg.

(2.1)

Proof. Note that for a fixed x, problem (1.3) is a
linearly constrained convex problem and therefore
the KKT conditions in this case are necessary and
sufficient [14, Proposition 3.4.1], and we conclude
that (E;w) is an optimal solution of (1.3) if and only
if there exists k 2 Rm such that

EþDTkxTCT
¼ 0, ð2:2Þ

w� k ¼ 0, ð2:3Þ

ðAþDECÞx ¼ bþ k. ð2:4Þ

Substituting (2.2) and (2.3) into (2.4) we obtain:

Ax� b ¼ ðIm þ ðx
TCTCxÞDDTÞk,
which yields

k ¼ ðIm þ ðx
TCTCxÞDDTÞ

�1
ðAx� bÞ. (2.5)

Therefore,

kEk2 þ kwk2 ¼
ð2:3Þ
kEk2 þ kkk2

¼
ð2:2Þ
ðxTCTCxÞkTDDTkþ kTk

¼ kT
ðIm þ ðx

TCTCxÞDDTÞk

¼ ðAx� bÞTðIm þ ðx
TCTCxÞDDTÞ

�1

�ðAx� bÞ,

so that problem (1.3) reduces to (2.1). &

In order to analyze our main problem (2.1), we
will occasionally use an even more explicit expres-
sion for its objective function. To do so, consider
the spectral decomposition of DDT:

DDT ¼ UTKU, (2.6)

where U 2 Rm�m is an orthogonal matrix, K ¼
diagðl1; l2; . . . ; lk; 0; . . . ; 0Þ; li40 and k ¼ rank
ðDDTÞ. Such a decomposition exists by the symme-
try of DDT. Using the decomposition (2.6), problem
(2.1) becomes

min
x2Rn
fðeAx� ~bÞTðIm þ ðx

TCTCxÞKÞ�1ðeAx� ~bÞg,
where eA ¼ UTA and ~b ¼ UTb. The latter problem
can also be written as follows:

min
x2Rn
fðFx� gÞTðIm þ ðx

TCTCxÞK1Þ
�1
ðFx� gÞ

þ kPx� qk2g. ð2:7Þ

Here F 2 Rk�n;P 2 Rðm�kÞ�n; g 2 Rk; q 2 Rm�k and
K1 2 Rk�k are defined by the following identities:

eA ¼ F

P

 !
; ~b ¼

g

q

 !
,

K ¼
K1 0k�ðm�kÞ

0ðm�kÞ�k 0ðm�kÞ�ðm�kÞ

 !
. ð2:8Þ

Problem (2.7) can also be written as a problem of
minimizing a sum of fractional quadratic terms and
a single quadratic term:

min
x2Rn

Xk

i¼1

ðfTi x� giÞ
2

1þ lixTC
TCx
þ kPx� qk2

( )
, (2.9)

where fT1 ; . . . ; f
T
k are the rows of F and g1; . . . ; gk are

the components of g.

Remark 2.1. A problem of a related structure to
(2.9) was addressed in [15] where the Tikhonov
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regularization of the TLS (TRTLS) was considered.
The TRTLS consists of minimizing a fractional
quadratic function and a pure quadratic term:

(TRTLS): min
kAx� bk2

kxk2 þ 1
þ kLxk2

� �
. (2.10)

While (2.9) is a reminiscent of the TRTLS problem,
there are several major differences. First, problem
(2.9) consists of minimizing a sum of fractional terms
rather than a single fractional expression. Second, the
denominators in (2.9) are not strictly convex func-
tions since C is not necessarily of full row rank.
Finally, the quadratic term in (2.9) is not homo-
genous as the one in the TRTLS problem. All these
differences complicate the problem considerably.

2.2. Connection to the restricted TLS

As was mentioned in the Introduction, in the
restricted TLS problem [12], both the matrix
and right-hand side vector have the ‘‘restricted’’
structure. Namely, the corresponding optimization
problem is

min
E;x
kEk2 : ðbAþD1EC1Þ

x

�1

� �
¼ 0

� �
, (2.11)

where D1 2 Rm�p and C1 2 Rl�ðnþ1Þ (and therefore E
is a p� l matrix). Here, bA denotes the augmented
matrix ðA; bÞ. For the sake of simplicity we assume
that D1 has full row rank. This assumption can be
removed in the price of making a more subtle
analysis. We also assume that beRðAÞ; otherwise
any solution to problem (2.11) will be of the form
ð0;x0Þ where x0 is an arbitrary solution to the
system Ax ¼ b.

Similar to Lemma 2.1, we now derive a simpler
optimization problem than (2.11) by eliminating the
E variables.

Lemma 2.2. Let A 2 Rm�n; b 2 Rm;D1 2 Rm�p and

C1 2 R
l�ðnþ1Þ. Assume that D1 has full row rank.

Then ðE; xÞ 2 Rp�l � Rn is an optimal solution of

(2.11) if and only if x is an optimal solution of

min
x2Rn

~xTbAT
ðD1D

T
1 Þ
�1bA ~x

~xTCT
1C1 ~x

: ~x ¼ ðx;�1Þ

( )
, (2.12)

where bA ¼ ðA; bÞ.
Proof. By denoting ~x ¼ ðx;�1Þ, problem (2.11)
becomes

min
E;x
fkEk2 : ðbAþD1EC1Þ ~x ¼ 0g. (2.13)
We now proceed as in the proof of Lemma 2.1.
By fixing x, the problem becomes a linearly
constrained problem in the variables E and thus E

is an optimal solution of (2.13) if and only if there
exists k 2 Rm such that

EþDT
1 k ~xTCT

1 ¼ 0,bA ~xþD1EC1 ~x ¼ 0.

Substituting the first equation into the second
equation we obtainbA ~x�D1D

T
1 k ~xTCT

1C1 ~x ¼ 0.

Since bA ~xa0 (by the assumption that beRðAÞ), we
conclude that ~xTCT

1C1 ~xa0 and, by using the
assumption that D1 has full row rank, we obtain

k ¼
1

~xTCT
1C1 ~x

ðD1D
T
1 Þ
�1bA ~x,

so that the optimal value of problem (2.13) is equal
to

kEk2 ¼ ðkTD1D
T
1kÞð ~xTCT

1C1 ~xÞ ¼
~xTbAT
ðD1D

T
1 Þ
�1bA ~x

~xTCT
1C1 ~x

,

and the result follows. &

Note that problem (2.12) is much simpler than the
MRTLS problem (2.9). Indeed, the restricted TLS
problem (2.12) has a form similar to the one of the
TLS problem (1.2), i.e., it consists of minimizing a
fractional quadratic function. Therefore, it is not
surprising that the solution of this problem—
similarly to the solution of the TLS problem—can
be computed by using some kind of a generalization
of the SVD [12]. In contrast, the MRTLS problem
amounts to minimizing a sum of fractional quad-
ratic functions and a quadratic term (2.9), which is a
much more complicated structure. It seems impos-
sible to solve this problem by simple means such as
SVD-type methods.

3. Existence of the MRTLS solution when DDT is a

projection

Problem (2.7) is bounded below by zero so that it
must have an infimum. However, the infimum is not
necessarily attained. An example with one fractional
term can be found in Section 3 of [15]. In this
section we derive a sufficient condition under which
the minimum is guaranteed to exist. We will restrict
the discussion to the case when DDT is a projection,
i.e., a matrix whose eigenvalues are zero or one [16,
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Theorem 4.1]. In this case K1 ¼ I and problem 2.7
reduces to

min
x2Rn

kFx� gk2

1þ xTCTCx
þ kPx� qk2

� �
. (3.1)

We note that in the horizontal mixed LS–TLS
model, DDT is a projection by the definition of D
(1.4). Therefore, the results of this section can be
applied to the horizontal mixed LS–TLS problem
which takes the form:

min
x2Rn

kA1x� b1k
2

kxk2 þ 1|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
TLS term

þkA2x� b2k
2|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}

LS term

8>>><>>>:
9>>>=>>>;, (3.2)

where A1;A2; b1 and b2 are defined by (1.5).

Theorem 3.1. Consider problem (3.1) with F 2

Rk�n;P 2 Rðm�kÞ�n; g 2 Rk and q 2 Rm�k. Assume

that NullðCÞ \NullðPÞ ¼ f0g. Let N be a matrix

whose columns form an orthonormal basis for the null

space of P and let x0 be any solution to the system

Px ¼ PImðPÞðqÞ. Suppose that the following condition

is satisfied:

lminðM1;M2ÞolminðN
TFTFN;NTCTCNÞ, (3.3)

where

M1 ¼
NTFTFN NTFðFx0 � gÞ

ðFx0 � gÞTFTN kFx0 � gk2

 !
,

M2 ¼
NTCTCN NTCTCx0

xT0C
TCN 1þ xT0C

TCx0

0@ 1A.

Then the minimum of (3.1) is attained.

Remark 3.1. Before proceeding with the proof of
the theorem, it is important to establish the positive
definiteness of the matrices NTCTCN and M2 since
otherwise the generalized minimum eigenvalues in
(3.3) would not be well defined. The matrix
NTCTCN is positive definite by the assumption that
NullðCÞ \NullðPÞ ¼ f0g. Moreover, for every w 2

Rr; t 2 R such that ðw; tÞa0rþ1 (here r is the
dimension of the null space of P), we have

ðw; tÞTM2ðw; tÞ
T

¼ ðwT; tÞ
NTCTCN NTCTCx0

xT0C
TCN 1þ xT0C

TCx0

0@ 1A w

t

 !
¼ wTNTCTCNwþ 2wTNTCTCx0t

þ xT0C
TCx0t

2 þ t2

¼ kCNwþ tx0k
2 þ t2. ð3:4Þ

If ta0 then (3.4) is positive. On the other hand, if
t ¼ 0 then w is nonzero and the expression kCNwþ

tx0k
2 þ t2 ¼ wTNTCTCNw is positive by the positive

definiteness property of NTCTCN. We thus con-
clude that M2 is positive definite.

Proof of Theorem 3.1. Consider the decomposition

q ¼ PImðPÞðqÞ þPNullðPTÞðqÞ.

Then by the orthogonality of PImðPÞðqÞ and
PNullðPTÞðqÞ we have

kPx� qk2 ¼ kPx�PImðPÞðqÞk
2 þ kPNullðPTÞðqÞk

2.

Let x0 2 Rn be, as defined in the premise of the
theorem, an arbitrary solution of the consistent
system Px ¼ PImðPÞðqÞ. By making the change of
variables y ¼ x� x0 and omitting the constant term
kPNullðPTÞðqÞk

2, problem (3.1) transforms to

min
y2Rn

f ðyÞ �
kFyþ Fx0 � gk2

1þ ðyþ x0Þ
TCTCðyþ x0Þ

þ kPyk2
� �

.

(3.5)

The problem is bounded below by zero and thus has an
infimum. In order to show the attainment of the
infimum (i.e., existence of a minimum), let us assume in
contradiction that the minimum is not attained. In that
case there must exist a sequence fyng such that kynk !

1 and f ðynÞ ! f � where f � is the infimum of problem
(3.5). The sequence fyn=kynkg is comprised of unit-
norm vectors and therefore has a subsequence fynk

=k
ynk
kg that converges to a unit-norm vector d 2 Rn.

Since ff ðynk
Þg is a convergent sequence we have

f ðynk
Þ

kynk
k2
! 0. (3.6)

On the other hand, f ðyÞ ¼ f 1ðyÞ þ f 2ðyÞ where

f 1ðyÞ ¼
kFyþ Fx0 � gk2

1þ ðyþ x0Þ
TCTCðyþ x0Þ

,

f 2ðyÞ ¼ kPyk
2.

Combining (3.6) with the nonnegativity of the functions
f 1; f 2 we conclude that

f 1ðynk
Þ

kynk
k2
! 0, ð3:7Þ
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f 2ðynk
Þ

kynk
k2
! 0. ð3:8Þ

The second limit (3.8) together with ynk
=kynk

k ! d

implies that kdk2 ¼ 1 and kPdk2 ¼ 0 so that
d 2 NullðPÞ; a direct consequence of the latter inclusion
is that d ¼ Nv where N is defined in the premise of the
theorem and v 2 Rr is nonzero (r being the dimension
of the null space of P). Therefore,

f � ¼ lim
k!1

f ðynk
Þ

X lim
k!1

f 1ðynk
Þ

¼ lim
k!1

kFynk
þ Fx0 � gk2

1þ ðynk
þ x0Þ

TCTCðynk
þ x0Þ

¼ lim
k!1

kFynk
=kynk

k þ ðFx0 � gÞ=kynk
kk2

1=kynk
k2 þ ððynk

þ x0Þ=kynk
kÞ

TCTCððynk
þ x0Þ=kynk

kÞ

¼
dTFTFd

dTCTCd
¼

vTNTFTFNv

vTNTCTCNv

XlminðN
TFTFN;NTCTCNÞ.

Now, combining the derived inequality
f �XlminðN

TFTFN;NTCTCNÞ with condition (3.3),
we obtain

f �4lminðM1;M2Þ. (3.9)

On the other hand,

f � ¼ min
y2Rn

f ðyÞ

pmin
y2Rn
ff ðyÞ : y 2 NullðPÞg ¼ min

v2Rr
ff ðNvÞg

¼ min
v2Rr

kFNvþ Fx0 � gk2

1þ ðNvþ x0Þ
TCTCðNvþ x0Þ

� �
¼ min

v2Rr;t2R

kFNvþ tFx0 � tgk2

t2 þ ðNvþ tx0Þ
TCTCðNvþ tx0Þ

: ta0

� �
.

ð3:10Þ

We now claim that the value of problem (3.10) is equal
to the value of

min
v2Rr;t2R

kFNvþ tFx0 � tgk2

t2 þ ðNvþ tx0Þ
TCTCðNvþ tx0Þ

:

�
ðv; tÞa0m�kþ1

�
, ð3:11Þ

which, by the definition of generalized minimum
eigenvalues, is equal to lminðM1;M2Þ. To show the
equality between the values of (3.10) and (3.11),
suppose on the contrary that the value of the
minimization problem (3.11) is strictly less than the
value of (3.10). Then in that case lminðM1;M2Þ, which
is the optimal value of problem (3.11), is equal to

lminðN
TFTFN;NTCTCNÞ

¼ min
v2Rr

kFNvk2

ðNvÞTCTCðNvÞ
: va0r

� �
,

which is a contradiction to (3.3). Therefore, we have
shown that

f �pval(3.11) ¼ lminðM1;M2Þ.

However, this contradicts inequality (3.9), and we
thus conclude that the solution of (3.1) is attained. &

Remark 3.2. Weak inequality is always satisfied in
(3.3): the matrix in the right-hand side of (3.3) is a
principal submatrix of the one in the left-hand side.
Hence, by the interlacing theorem of eigenvalues
[16, Theorem 7.8], weak inequality holds.

Remark 3.3. For the unstructured TLS problem
(D ¼ Im;C ¼ In), condition (3.3) reduces to the well-
known attainability condition for the TLS problem:
sminðbAÞosminðAÞ, where bA is the augmented matrix
ðA; bÞ.
4. Solving the MRTLS problem one-dimensional

solvers

In this section we present an algorithm for solving
the MRTLS problem. The algorithm is based on
converting the problem into a single-variable mini-
mization problem and then invoking a one-dimen-
sional solver. We show that the multivariate
problem has at least as many local optima points
as the one-dimensional problem and demonstrate
that local optima points tend to vanish in the
passage to the one-dimensional problem. The
section ends with the presentation of a detailed
MATLAB code for solving the MRTLS problem.
We assume in this section that the matrix A is of full
column rank.
4.1. Reduction to a single-variable optimization

problem

In order to solve problem (2.1), we use a similar
methodology to the one used in [15] and convert the
problem into a problem of minimizing a single-
variable function:

min
aX0

GðaÞ, (4.1)
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where GðaÞ is defined as

GðaÞ ¼ min
x2Rn
fðAx� bÞTðIm þ aDDTÞ

�1
ðAx� bÞ:

xTCTCx ¼ ag. ð4:2Þ

Calculating function values of G requires solving
a minimization problem with a quadratic objective
function and a quadratic equality constraint. This
problem is nonconvex due to the nonconvexity of its
equality constraint but nonetheless can be solved
efficiently; for details see Section 4.2. It can be
shown that the function G is in fact continuous on
½0;1	; the proof of this result, which relies on
sensitivity analysis for optimization problems, is
behind the scope of this paper and is thus omitted.
The function G might have several local optima but
in practice we observed—through numerous ran-
dom problems—that it is almost always an unim-
odal function, namely a function with a single local
optimum (which is also the global optimum).

A theoretical justification for the latter empirical
observation is given in Theorem 4.1 that shows that
each local optimum of the one-dimensional problem
(4.1) corresponds to at least one local optimum of
the multivariate problem (2.1). Interestingly, the
reverse claim does not hold true in general. There-
fore, local optima points of the multivariate
problem (2.1) might vanish in the transition to the
one-dimensional problem (4.1).
Theorem 4.1. Suppose that a0 is a local optimum of

the single-variable problem (4.1) and let x be an

optimal solution of (4.2) with a ¼ a0. Then x is a local

optimum solution of the MRTLS problem (2.1).
1Which is also the global optimum.
Proof. Since a0 is a local optimum solution of (4.1)
it follows that there exists an interval I ¼ ða0 �
d; aþ dÞ such that a0 2 I and Gða0ÞpGðaÞ for every
a 2 I \ ½0;1Þ. Now, as stated in the premise of the
theorem, let x0 be an optimal solution of problem
(4.2) with a ¼ a0. We will show that x0 is a local
optimum solution of (2.1). Indeed, let x 2 Rn satisfy
kx� x0kpr where r ¼ minf1; d=2lmaxðC

TCÞ

ðkx0k þ 1Þg. Then by the mean value theorem, we
obtain that there exist l 2 ½0; 1	 such that

xTCTCx� xT0C
TCx0

¼ 2ðx0 þ lðx� x0ÞÞ
T
ðCTCÞðx� x0Þ,
so that

jxTCTCx� xT0C
TCx0j

p2lmaxðC
TCÞkx0 þ lðx� x0Þk 
 kx� x0k

p2lmaxðC
TCÞðkx0k þ kx� x0kÞ 
 kx� x0k

p2lmaxðC
TCÞðkx0k þ 1Þ 
 r

pd.

Therefore, since xT0C
TCx0 ¼ a0, it follows that

xTCTCx 2 I \ ½0;1Þ and as a result

GðxTCTCxÞXGða0Þ.

Finally, denoting the objective function in (2.1) by

gðyÞ � ðAy� bÞTðIm þ ðy
TCTCyÞDDTÞ

�1
ðAy� bÞ,

we obtain that

gðxÞXGðxTCTCxÞXGða0Þ ¼ GðxT0C
TCx0Þ ¼ gðx0Þ,

for every x satisfying kx� x0kpr, proving the local
optimality of x0. &

The result of Theorem 4.1 implies that the
transition of the multivariate problem into a one-
dimensional problem can be viewed as process of
eliminating local optima points. We illustrate this
attractive property by an example.

Example. We consider the horizontal mixed
LS–TLS problem (3.2) with randomly chosen
A1;A2 2 R3�2; b1; b2 2 R3. A mesh and contour
plots of the objective function of (3.2) are plotted
in Fig. 1. The global optimum of this two-
dimensional function is attained at v ¼

ð0:443; 1:173Þ (marked by a triangle) and it has an
additional local optimum at w ¼ ð�0:214;�2:983Þ
(marked by a square). However, the corresponding
one-dimensional function G, plotted in Fig. 2, has
only one local optimum point1 that is attained at
kvk2 ¼ 1:572. Note that the function G does not
have a local solution at kwk2 ¼ 8:943 so that the
local optimum point w vanishes in the process of
passing to the one-dimensional problem.

4.2. Evaluating function values of G

Calculating function values of G amounts to
solving a minimization problem of the form

min
x2Rn
fxTBx� 2cTxþ d : xTGx ¼ hg, (4.3)
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2=kxk2 þ 1þ kA2x� b2k

2.

A. Beck / Signal Processing 87 (2007) 2303–23122310
where B 2 Rn�n is a symmetric positive definite
matrix,2 G is a positive semidefinite matrix, c 2

Rn; d and h is a positive number. This is a special
case of the generalized trust region subproblem

(GTRS) [17] which consists of minimizing a general
quadratic function (possible indefinite) subject to a
general quadratic constraint. Under some mild
condition, it is known that this class of problems
possesses necessary and sufficient optimality condi-
tions and that—as a result—the problem can be
efficiently solved [17]. In particular, by Theorem 3.2
2
B is positive definite (and not only positive semidefinite) since

A is assumed to have full column rank.
of [17], x is an optimal solution of (4.3) if and only if
there exists l 2 R such that3

ðB� lGÞx ¼ c,

xTGx ¼ h,

B� lG � 0.

We will make a standard assumption that in fact
B� lG � 0 at the optimal l. It follows directly from
the optimality conditions that the optimal solution
of (4.3) is given by x ¼ ðB� lGÞ�1c where l is a
3All the conditions of Theorem 3.2 of [17] are automatically

satisfied for problem (4.3).
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solution to the scalar equation

fðlÞ ¼ h; lo
1

lmaxðG;BÞ
,

where

fðlÞ � cTðB� lGÞ�1GðB� lGÞ�1c.

In order to solve the problem, it was suggested in
[18–20] to employ Newton’s method on the equiva-
lent problem of finding lo1=lmaxðG;BÞ satisfying
f�1=2ðlÞ ¼ h�1=2. It is well known [20] that in this
problem Newton’s method is guaranteed to have a
quadratic global convergence if the initial point is
chosen right to the optimal solution and left to the
upper bound 1=lmaxðG;BÞ. We will now describe in
detail the algorithm for solving (4.3). In our
calculation we use the following formula for the
derivative of f:

f0ðlÞ ¼ 2cTðB� lGÞ�1GðB� lGÞ�1GðB� lGÞ�1c.
Algorithm FUNVAL

Input: (B; c; d;G; h), where B 2 Rn�n is a positive
definite matrix, G 2 Rn�n is a positive semidefinite
matrix, c 2 Rn; d 2 R and h40.
Output: v- the optimal value of (4.3) (up to some
tolerance �2).
Step 1: Calculate r - the generalized maximum
eigenvalue of the matrix pair ðG;BÞ.
Step 2: Set Z0 ¼

1
r� �1 and k ¼ 0.

Step 3: Repeat the following steps until
jfðZkÞ � hjo�2
Step 3.a Calculate a Cholesky factorization:

B� lG ¼ LTL.
Step 3.b Set y ¼ L�1L�Tc and calculate

fðZkÞ ¼ yTGy.
Step 3.c Set z ¼ L�TGy and calculate

f0ðZkÞ ¼ 2zTGz.

Step 3.d Set

Zkþ1 ¼ Zk þ 2
f�1=2ðZkÞ � h�1=2

f�3=2ðZkÞf
0
ðZkÞ

.

Step 4. Set v ¼ yTBy� 2cTyþ d.

In our implementation the tolerance parameters
�1 and �2 take the values �1 ¼ 10�5; �2 ¼ 10�10. The
Newton steps in the above algorithm converge to
the optimal l in very few iterations (usually not
more than 6).
4.3. MATLAB implementation

We now present a MATLAB implementation of
the function gfun that calculates function values
of G.
function val ¼ gfun(alpha,A,b,DDT,CTC);

%
 solves:

%
 min (Ax-b)ˆT�(I+alpha�DDT)ˆ{-1}�

%
 (Ax-b) s.t. xˆT�CTC�x ¼ alpha

%
 input:

%
 alpha ............. real number

%
 A ............. m�n matrix

%
 assumes to have full column rank

%
 b ............. m vector

%
 DDT ............. an m�m matrix

%
 that stands for D�DˆT

%
 CTC ............. an n�n matrix

%
 that stands for CˆT�C

%
 output:

%
 val ............. the optimal

%
 value of the problem

[m,n] ¼ size(A);
Dinv ¼ inv(eye(m)+alpha�DDT);
B ¼ A’�Dinv�A;
c ¼ A’�Dinv�b;
d ¼ b’�Dinv�b;
G ¼ CTC;
G ¼ (G+G’)/2;
B ¼ (B+B’)/2;

opts.tol ¼ 1e-6;
opts.disp ¼ 0;
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epsilon1 ¼ 1e-5;
epsilon2 ¼ 1e-10;

eta ¼ 1/eigs(G,B,1,’la’,opts)-epsilon1;
y ¼ zeros(length(B),1);

while (abs(y’�G�y-alpha)4epsilon2)
R ¼ chol(B-eta�G);
y ¼ Rn(R’n c);
z ¼ R’nG�y);
phi ¼ y’�G�y;
phid ¼ 2�z’�z;
eta ¼ eta+2�(phi-phiˆ(1.5)/

sqrt(alpha))/phid;
end

val ¼ y’�B�y-2�c’�y+d;

Now, in order to solve the MRTLS problem we
can use any one-dimensional solver. In the example
of Section 4.1 we used the MATLAB function
fminbnd that finds a local optimum of a one-
dimensional function over an interval. This MA-
TLAB function is based on golden section search
and parabolic interpolation and is guaranteed to
find the global optimum when the function is
unimodal. The MATLAB command is:

fminbnd(@(alpha)gfun(alpha,A,b,D�D’,
C’�C),l,u,optimset(’Display’,’iter’))
where l and u are lower and upper bounds on the
value of xTCTCx at an optimal solution x.
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