
Lecture 9 - Optimization over a Convex Set

Throughout this lecture we will consider the constrained optimization problem (P)
given by

(P)
min f (x)
s.t. x ∈ C .

I C - closed convex subset of Rn.

I f - continuously differentiable1 over C . Not necessarily convex.

Definition of Stationarity. Let f be a continuously differentiable function
over a closed and convex set C . Then x∗ is called a stationary point of (P)
if

∇f (x∗)T (x− x∗) ≥ 0 for any x ∈ C

1We use the convention that a function is differentiable over a given set D if it is
differentiable over an open set containing D
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Stationarity as a Necessary Optimality Condition

Theorem. Let f be a continuously differentiable function over a nonempty
closed convex set C , and let x∗ be a local minimum of (P). Then x∗ is a
stationary point of (P).

Proof.

I Let x∗ be a local minimum of (P), and assume in contradiction that x∗ is not
a stationary point of (P) ⇒ there exists x ∈ C such that
∇f (x∗)T (x− x∗) < 0.

I Thus, f ′(x∗;d) < 0 where d = x− x∗.

I Therefore ∃ε ∈ (0, 1) s.t. f (x∗ + td) < f (x∗)∀t ∈ (0, ε).

I Since x∗ + td = (1− t)x∗ + tx ∈ C∀t ∈ (0, ε), we conclude that x∗ is not a
local optimum point of (P). Contradiction.
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Examples
I C = Rn.

I x∗ is a stationary point of (P) iff

(∗) ∇f (x∗)T (x− x∗) ≥ 0 ∀x ∈ Rn

I We will show that the above condition is equivalent to ∇f (x∗) = 0. Indeed, if
∇f (x∗) = 0, then obviously (*) is satisfied.

I Suppose that (*) holds.
I Plugging x = x∗ −∇f (x∗) in the above implies −‖∇f (x∗)‖2 ≥ 0.
I Thus, ∇f (x∗) = 0.

I C = Rn
+.

I x∗ ∈ Rn
+ is a stationary point iff ∇f (x∗)T (x− x∗) ≥ 0 for all x ≥ 0.

I ⇔ ∇f (x∗)Tx−∇f (x∗)Tx∗ ≥ 0 for all x ≥ 0.
I ⇔ ∇f (x∗) ≥ 0 and ∇f (x∗)Tx∗ ≤ 0.
I ⇔ ∇f (x∗) ≥ 0 and x∗

i
∂f
∂xi

(x∗) = 0, i = 1, 2, . . . , n.
I ⇔

∂f

∂xi
(x∗)

{
= 0 x∗

i > 0,
≥ 0 x∗

i = 0.
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Explicit Stationarity Condition

feasible set explicit stationarity condition
Rn ∇f (x∗) = 0

Rn
+

∂f
∂xi

(x∗)

{
= 0 x∗i > 0
≥ 0 x∗i = 0

{x ∈ Rn : eTx = 1} ∂f
∂x1

(x∗) = . . . = ∂f
∂xn

(x∗)

B[0, 1] ∇f (x∗) = 0 or ‖x∗‖ = 1 and ∃λ ≤ 0 : ∇f (x∗) = λx∗
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Stationarity in Convex Optimization
For convex problems, stationarity is a necessary and sufficient condition

Theorem. Let f be a continuously differentiable convex function over a
nonempty closed and convex set C ⊆ Rn. Then x∗ is a stationary point of

(P)
min f (x)
s.t. x ∈ C .

iff x∗ is an optimal solution of (P).

Proof.

I If x∗ is an optimal solution of (P), then we already showed that it is a
stationary point of (P).

I Assume that x∗ is a stationary point of (P).

I Let x ∈ C . Then

f (x) ≥ f (x∗) +∇f (x∗)T (x− x∗) ≥ f (x∗),

I establshing the optimality of x∗.
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The Second Projection Theorem

Theorem. Let C be a nonempty closed convex set and let x ∈ Rn. Then
z = PC (x) if and only if

(x− z)T (y − z) ≤ 0 for any y ∈ C . (1)

Proof.

I z = PC (x) iff it is the optimal solution of the problem

min g(y) ≡ ‖y − x‖2

s.t. y ∈ C .

I By the previous theorem, z = PC (x) if and only if

∇g(z)T (y − z) ≥ 0 for all y ∈ C ,

which is the same as (1).
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Properties of the Orthogonal Projection: (Firm)
Nonexpansivness

Theorem. Let C be a nonempty closed and convex set. Then

1. For any v,w ∈ Rn:

(PC (v)− PC (w))T (v −w) ≥ ‖PC (v)− PC (w)‖2. (2)

2. (non-expansiveness) For any v,w ∈ Rn:

‖PC (v)− PC (w)‖ ≤ ‖v −w‖. (3)

Proof.
I For any x ∈ Rn and y ∈ C :

(x− PC (x))T (y − PC (x)) ≤ 0 ∀x ∈ Rn, y ∈ C (4)

Substituting x = v, y = PC (w), we have

(v − PC (v))T (PC (w)− PC (v)) ≤ 0. (5)
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Proof Contd.
I Now, by substituting x = w, y = PC (v), we obtain

(w − PC (w))T (PC (v)− PC (w)) ≤ 0. (6)

Adding the two inequalities (5) and (6),

(PC (w)− PC (v))T (v −w + PC (w)− PC (v)) ≤ 0,

and hence,

(PC (v)− PC (w))T (v −w) ≥ ‖PC (v)− PC (w)‖2.

I To prove (3), note that if PC (v) = PC (w), the inequality is trivial. Assume
then that PC (w) 6= PC (w). By the Cauchy-Schwarz inequality we have

(PC (v)− PC (w))T (v −w) ≤ ‖PC (v)− PC (w)‖ · ‖v −w‖,

which combined with (2) yields the inequality

‖PC (v)− PC (w)‖ · ‖v −w‖ ≥ ‖PC (w)− PC (w)‖2.

Dividing by ‖PC (v)− PC (w)‖, implies (3).

Amir Beck “Introduction to Nonlinear Optimization” Lecture Slides - Optimization over a Convex Set 8 / 21



Proof Contd.
I Now, by substituting x = w, y = PC (v), we obtain

(w − PC (w))T (PC (v)− PC (w)) ≤ 0. (6)

Adding the two inequalities (5) and (6),

(PC (w)− PC (v))T (v −w + PC (w)− PC (v)) ≤ 0,

and hence,

(PC (v)− PC (w))T (v −w) ≥ ‖PC (v)− PC (w)‖2.

I To prove (3), note that if PC (v) = PC (w), the inequality is trivial. Assume
then that PC (w) 6= PC (w). By the Cauchy-Schwarz inequality we have

(PC (v)− PC (w))T (v −w) ≤ ‖PC (v)− PC (w)‖ · ‖v −w‖,

which combined with (2) yields the inequality

‖PC (v)− PC (w)‖ · ‖v −w‖ ≥ ‖PC (w)− PC (w)‖2.

Dividing by ‖PC (v)− PC (w)‖, implies (3).

Amir Beck “Introduction to Nonlinear Optimization” Lecture Slides - Optimization over a Convex Set 8 / 21



Representation of Stationarity via the Orthogonal
Projection Operator

Theorem. Let f be a continuously differentiable function over the nonempty
closed convex set C , and let s > 0. Then x∗ is a stationary point of

(P)
min f (x)
s.t. x ∈ C .

if and only if
x∗ = PC (x∗ − s∇f (x∗)).

Proof.

I By the second projection theorem, x∗ = PC (x∗ − s∇f (x∗)) iff

(x∗ − s∇f (x∗)− x∗)T (x− x∗) ≤ 0 for any x ∈ C .

I Equivalent to
∇f (x∗)T (x− x∗) ≥ 0 for any x ∈ C ,

namely to stationarity.
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The Gradient Mapping

I It is convenient to define the gradient mapping as

GL(x) = L

[
x− PC

(
x− 1

L
∇f (x)

)]
,

where L > 0.

I In the unconstrained case GL(x) = ∇f (x).

I GL(x) = 0 if and only if x is a stationary point of (P). This means that we
can consider ‖GL(x)‖2 to be optimality measure.
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The Gradient Projection Method

The Gradient Projection Method

Input: ε > 0 - tolerance parameter.

Initialization: pick x0 ∈ C arbitrarily.
General step: for any k = 0, 1, 2, . . . execute the following steps:

(a) pick a stepsize tk by a line search procedure.

(b) set xk+1 = PC (xk − tk∇f (xk)).

(c) if ‖xk − xk+1‖ ≤ ε, then STOP and xk+1 is the output.

I There are several strategies for choosing the stepsizes tk .

I When f ∈ C 1,1
L , we can choose tk to be constant and equal to 1

L .
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The Gradient Projection Method with Constant Stepsize

The Gradient Projection Method with Constant Stepsize
Input: ε > 0 - tolerance parameter. L > 0 - an upper bound on the
Lipschitz constant of ∇f .

Initialization: pick x0 ∈ C arbitrarily. t̄ > 0 - constant stepsize.
General step: for any k = 0, 1, 2, . . . execute the following steps:

(a) set xk+1 = PC (xk − t̄∇f (xk)) .

(b) if ‖xk − xk+1‖ ≤ ε, then STOP and xk+1 is the output.
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GPM with Backtracking

Gradient Projection Method with Backtracking
Initialization. Take x0 ∈ C and s > 0, α ∈ (0, 1), β ∈ (0, 1).
General Step (k ≥ 1)

I Pick tk = s. Then, while

f (xk)− f (PC (xk − tk∇f (xk))) < αtk‖G 1
tk

(xk)‖2

set tk := βtk .

I Set xk+1 = PC (xk − tk∇f (xk))

Stopping Criteria ‖xk − xk+1‖ ≤ ε.
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Convergence of the Gradient Projection Method

Theorem Let {xk} be the sequence generated by the gradient projection
method for solving problem (P) with either a constant stepsize t̄ ∈

(
0, 2

L

)
,

where L is a Lipschitz constant of ∇f or a backtracking stepsize strategy.
Assume that f is bounded below. Then

1. The sequence {f (xk)} is nonincreasing.

2. Gd(xk)→ 0 as k →∞, where

d =

{
1/t̄ constant stepsize,
1/s backtracking.

See the proof of Theorem 9.14 in the book

I It is easy to see that this result implies that any limit point of the sequence is
a stationary point of the problem.

I When f is convex, it is possible to show that the sequence converges to a
global optimal solution.
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Sparsity Constrained Problems
The sparsity constrained problem is given by

(S):
min f (x)
s.t. ‖x‖0 ≤ s,

I f : Rn → R is a lower-bounded continuously differentiable function.

I s > 0 is an integer smaller than n.

I ‖x‖0 is the `0 norm of x, which counts the number of nonzero components in
x.

I We do not assume that f is a convex function. The constraint set is of
course not convex.

Notation.

I I1(x) ≡ {i : xi 6= 0} - the support set.

I I0(x) ≡ {i : xi = 0} - the off-support set.

I Cs = {x : ‖x‖0 ≤ s}.
I For a vector x ∈ Rn and i ∈ {1, 2, . . . , n}, the ith largest absolute value

component in x is denoted by Mi (x).
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A Fundamental Necessary Optimality Condition - Basic
Feasibility

Definition. A vector x∗ ∈ Cs is called a basic feasible (BF) vector of (P) if:

1. when ‖x∗‖0 < s, ∇f (x∗) = 0;

2. when ‖x∗‖0 = s, ∂f
∂xi

(x∗) = 0 for all i ∈ I1(x∗).

Theorem (BF is a necessary optimality condition) Let x∗ be an optimal
solution of (P). Then x∗ is a BF vector.

Proof.

I If ‖x∗‖0 < s, then for any i ∈ {1, 2, . . . , n}

0 ∈ argmin{g(t) ≡ f (x∗ + tei )}.

Otherwise there would exist a t0 for which f (x∗ + t0ei ) < f (x∗), which is a
contradiction to the optimality of x∗.

I Therefore, we have ∂f
∂xi

(x∗) = g ′(0) = 0.

I If ‖x∗‖0 = s, then the same argument holds for any i ∈ I1(x∗).

Amir Beck “Introduction to Nonlinear Optimization” Lecture Slides - Optimization over a Convex Set 16 / 21



A Fundamental Necessary Optimality Condition - Basic
Feasibility

Definition. A vector x∗ ∈ Cs is called a basic feasible (BF) vector of (P) if:

1. when ‖x∗‖0 < s, ∇f (x∗) = 0;

2. when ‖x∗‖0 = s, ∂f
∂xi

(x∗) = 0 for all i ∈ I1(x∗).

Theorem (BF is a necessary optimality condition) Let x∗ be an optimal
solution of (P). Then x∗ is a BF vector.

Proof.

I If ‖x∗‖0 < s, then for any i ∈ {1, 2, . . . , n}

0 ∈ argmin{g(t) ≡ f (x∗ + tei )}.

Otherwise there would exist a t0 for which f (x∗ + t0ei ) < f (x∗), which is a
contradiction to the optimality of x∗.

I Therefore, we have ∂f
∂xi

(x∗) = g ′(0) = 0.

I If ‖x∗‖0 = s, then the same argument holds for any i ∈ I1(x∗).

Amir Beck “Introduction to Nonlinear Optimization” Lecture Slides - Optimization over a Convex Set 16 / 21



A Fundamental Necessary Optimality Condition - Basic
Feasibility

Definition. A vector x∗ ∈ Cs is called a basic feasible (BF) vector of (P) if:

1. when ‖x∗‖0 < s, ∇f (x∗) = 0;

2. when ‖x∗‖0 = s, ∂f
∂xi

(x∗) = 0 for all i ∈ I1(x∗).

Theorem (BF is a necessary optimality condition) Let x∗ be an optimal
solution of (P). Then x∗ is a BF vector.

Proof.

I If ‖x∗‖0 < s, then for any i ∈ {1, 2, . . . , n}

0 ∈ argmin{g(t) ≡ f (x∗ + tei )}.

Otherwise there would exist a t0 for which f (x∗ + t0ei ) < f (x∗), which is a
contradiction to the optimality of x∗.

I Therefore, we have ∂f
∂xi

(x∗) = g ′(0) = 0.

I If ‖x∗‖0 = s, then the same argument holds for any i ∈ I1(x∗).

Amir Beck “Introduction to Nonlinear Optimization” Lecture Slides - Optimization over a Convex Set 16 / 21



A Fundamental Necessary Optimality Condition - Basic
Feasibility

Definition. A vector x∗ ∈ Cs is called a basic feasible (BF) vector of (P) if:

1. when ‖x∗‖0 < s, ∇f (x∗) = 0;

2. when ‖x∗‖0 = s, ∂f
∂xi

(x∗) = 0 for all i ∈ I1(x∗).

Theorem (BF is a necessary optimality condition) Let x∗ be an optimal
solution of (P). Then x∗ is a BF vector.

Proof.

I If ‖x∗‖0 < s, then for any i ∈ {1, 2, . . . , n}

0 ∈ argmin{g(t) ≡ f (x∗ + tei )}.

Otherwise there would exist a t0 for which f (x∗ + t0ei ) < f (x∗), which is a
contradiction to the optimality of x∗.

I Therefore, we have ∂f
∂xi

(x∗) = g ′(0) = 0.

I If ‖x∗‖0 = s, then the same argument holds for any i ∈ I1(x∗).

Amir Beck “Introduction to Nonlinear Optimization” Lecture Slides - Optimization over a Convex Set 16 / 21



L-stationarity

Definition. A vector x∗ ∈ Cs is called an L-stationary point of (S) if it
satisfies the relation

[NCL] x∗ ∈ PCs

(
x∗ − 1

L
∇f (x∗)

)
.

I Note that since Cs is not a convex set, the orthogonal projection operator
PCs (·) is not single-valued.

I Specifically, the members of PCs (x) are vector consisting of the s components
of x with the largest absolute value and zeros elsewhere.

I In general, there could be more than one choice to the s largest components.
For example:

PC2 ((2, 1, 1)T ) =
{

(2, 1, 0)T , (2, 0, 1)T
}
.
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Explicit Reformulation of L-stationarity

Lemma. For any L > 0, x∗ satisfies [NCL] if and only if ‖x∗‖0 ≤ s and∣∣∣∣ ∂f∂xi (x∗)

∣∣∣∣ { ≤ LMs(x∗) if i ∈ I0(x∗),
= 0 if i ∈ I1(x∗).

(7)

Proof.

([NCL] ⇒ (7)).

I Suppose that x∗ satisfies [NCL]. Note that for any index j ∈ {1, 2, . . . , n},
the j-th component of PCs (x

∗ − 1
L∇f (x∗)) is either zero or equal to

x∗j − 1
L∇j f (x∗).

I Since x∗ ∈ PCs (x
∗ − 1

L∇f (x∗)), it follows that if i ∈ I1(x∗), then

x∗i = x∗i − 1
L

∂f
∂xi

(x∗), so that ∂f
∂xi

(x∗) = 0.

I If i ∈ I0(x∗), then
∣∣∣x∗i − 1

L
∂f
∂xi

(x∗)
∣∣∣ ≤ Ms(x∗), which combined with the fact

that x∗i = 0 implies that
∣∣∣ ∂f∂xi

(x∗)
∣∣∣ ≤ LMs(x∗), and consequently (7) holds

true.
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Proof Contd.

((7) ⇒ [NCL]).

I Suppose that x∗ satisfies (7). If ‖x∗‖0 < s, then Ms(x∗) = 0 and by (7) it
follows that ∇f (x∗) = 0. Therefore, PCs

(
x∗ − 1

L∇f (x∗)
)

= PCs (x
∗) = {x∗}.

I If ‖x∗‖0 = s, then Ms(x∗) 6= 0 and |I1(x∗)| = s. By (7)∣∣∣x∗i − 1/L ∂f
∂xi

(x∗)
∣∣∣ { = |x∗i | i ∈ I1(x∗)
≤ Ms(x∗) i ∈ I0(x∗).

I Therefore, the vector x∗ − 1
L∇f (x∗) contains the s components of x∗ with

the largest absolute value and all other components are smaller or equal to
them, so that [NCL] holds.

Remark: Note that the condition [NCL] depends on L in contrast to the
stationarity condition over convex sets.
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L-Stationarity as a Necessary Optimality Condition

When f ∈ C 1,1
L(f ), it is possible to show that an optimal solution of (S) is an

L-stationary point for any L > L(f ).

Theorem. Suppose that f ∈ C 1,1
L(f ) ∈ Rn, and that L > L(f ). Let x∗ be an

optimal solution of (S). Then x∗ is an L-stationary point.

See the proof of Theorem 9.22 in the book.

Amir Beck “Introduction to Nonlinear Optimization” Lecture Slides - Optimization over a Convex Set 20 / 21



The Iterative Hard-Thresholding (IHT) Method

The IHT method
Input: a constant L ≥ L(f ).

• Initialization: Choose x0 ∈ Cs .
• General step : xk+1 ∈ PCs

(
xk − 1

L∇f (xk)
)
, (k = 0, 1, 2, . . .)

Theorem (convergence of IHT) Suppose that f ∈ C 1,1
L(f ) and let {xk}k≥0 be

the sequence generated by the IHT method with stepsize 1
L where L > L(f ).

Then any accumulation point of {xk}k≥0 is an L-stationary point.

See the proof of Theorem 9.24 in the book

Amir Beck “Introduction to Nonlinear Optimization” Lecture Slides - Optimization over a Convex Set 21 / 21



The Iterative Hard-Thresholding (IHT) Method

The IHT method
Input: a constant L ≥ L(f ).

• Initialization: Choose x0 ∈ Cs .
• General step : xk+1 ∈ PCs

(
xk − 1

L∇f (xk)
)
, (k = 0, 1, 2, . . .)

Theorem (convergence of IHT) Suppose that f ∈ C 1,1
L(f ) and let {xk}k≥0 be

the sequence generated by the IHT method with stepsize 1
L where L > L(f ).

Then any accumulation point of {xk}k≥0 is an L-stationary point.

See the proof of Theorem 9.24 in the book

Amir Beck “Introduction to Nonlinear Optimization” Lecture Slides - Optimization over a Convex Set 21 / 21


