Lecture 9 - Optimization over a Convex Set

Throughout this lecture we will consider the constrained optimization problem (P)
given by
min  f(x)
(P) st. xeC.

» C - closed convex subset of R".

> f - continuously differentiable! over C. Not necessarily convex.

Definition of Stationarity. Let f be a continuously differentiable function
over a closed and convex set C. Then x* is called a stationary point of (P)
if

VF(x*)T(x —x*) >0 for any x € C

LWe use the convention that a function is differentiable over a given set D if it is
differentiable over an open set containing D
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Stationarity as a Necessary Optimality Condition

Theorem. Let f be a continuously differentiable function over a nonempty
closed convex set C, and let x* be a local minimum of (P). Then x* is a
stationary point of (P).

Proof.

> Let x* be a local minimum of (P), and assume in contradiction that x* is not
a stationary point of (P) = there exists x € C such that
VEx*)T(x —x*) <0.

> Thus, f'(x*;d) < 0 where d = x — x*.

> Therefore 3e € (0,1) s.t. f(x* + td) < f(x*)Vt € (0,¢).

> Since x* + td = (1 — t)x* + tx € CVt € (0,¢), we conclude that x* is not a
local optimum point of (P). Contradiction.
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Examples

» C=R"
» x* is a stationary point of (P) iff

(+) V) (x—x) 20 ¥xeR"

» We will show that the above condition is equivalent to Vf(x*) = 0. Indeed, if
Vf(x*) =0, then obviously (*) is satisfied.
» Suppose that (*) holds.
» Plugging x = x* — Vf(x*) in the above implies —||Vf(x*)||> > 0.
» Thus, Vf(x*) =0.
» C=R].

» x* € RY is a stationary point iff V£(x*)7 (x — x*) > 0 for all x > 0.
» & VF(x*)'x— VF(x*)"x* >0 for all x > 0.

» & VF(x*) >0and VF(x*)'x* <O0.

» & VF(x*)>0and X,-*g—;(x*):o, i=1,2,...,n.

> &

g >") =0 XI'* >07
ox; X >0 x"=0.
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Explicit Stationarity Condition

B[0,1]

feasible set explicit stationarity condition
R" Vikx*)=0
=0 x*>0
n Of (* i
R} ad”{zogzo
{xeR":e"x=1} g—g(x*):...:gxfn(x*)

Vi(x*)=0or |[x*]|=1and IXA < 0: VF(x*) = Ax*

Amir Beck
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Stationarity in Convex Optimization
For convex problems, stationarity is a necessary and sufficient condition

Theorem. Let f be a continuously differentiable convex function over a
nonempty closed and convex set C C R”. Then x* is a stationary point of

min  f(x)
(P) s.t. x;C.

iff x* is an optimal solution of (P).

Proof.
> If x* is an optimal solution of (P), then we already showed that it is a
stationary point of (P).

> Assume that x* is a stationary point of (P).
> Let x € C. Then

f(x) > f(x*)+ Vf(x*)T(x —x*) > f(x"),

> establshing the optimality of x*.
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The Second Projection Theorem

Theorem. Let C be a nonempty closed convex set and let x € R”. Then
z = Pc(x) if and only if

(x—2)"(y —2z) <0foranyye C. (1)

Proof.

> z = Pc(x) iff it is the optimal solution of the problem

min  g(y) = [ly — x|
st. yeC.

> By the previous theorem, z = P¢(x) if and only if
Veg(z)"(y—2z)>0forally e C,
which is the same as (1).
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Properties of the Orthogonal Projection: (Firm)
Nonexpansivness

Theorem. Let C be a nonempty closed and convex set. Then
1. For any v,w € R":

(Pc(v) = Pc(w))" (v —w) > [|Pc(v) — Pc(w)||*.

2. (non-expansiveness) For any v,w € R":

1Pc(v) = Pc(w)| < [lv —w].

Proof.
> Foranyx € R"andy € C:

(x = Pc(x))T(y — Pc(x)) <0 ¥xeR"yeC
Substituting x = v,y = Pc(w), we have
(v — Pc(v))"(Pc(w) — Pc(v)) < 0.
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Proof Contd.
» Now, by substituting x = w,y = P¢(v), we obtain
(w — Pc(w))"(Pc(v) — Pc(w)) < 0. (6)
Adding the two inequalities (5) and (6),
(Pc(w) = Pc(v))" (v — w + Pc(w) — Pc(v)) <0,
and hence,

(Pc(v) = Pc(w))" (v —w) > [[Pc(v) — Pc(w)|.

» To prove (3), note that if Pc(v) = Pc(w), the inequality is trivial. Assume
then that Pc(w) # Pc(w). By the Cauchy-Schwarz inequality we have

(Pc(v) = Pc(w)) (v —w) < [|[Pc(v) — Pc(w)] - [lv — wl|,
which combined with (2) yields the inequality
1Pc(v) — Pc(w)] - v — wi| = [|Pc(w) — Pc(w)]*.
Dividing by ||Pc(v) — Pc(w)]|, implies (3).
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Representation of Stationarity via the Orthogonal
Projection Operator

Theorem. Let f be a continuously differentiable function over the nonempty
closed convex set C, and let s > 0. Then x* is a stationary point of

min  f(x)
(P) st. xeC.
if and only if
X" = Pc(x* — sV (x¥)).
Proof.

> By the second projection theorem, x* = Pc(x* — sV (x*)) iff
(x* = sVF(x*) —x*)T(x —x*) <0 forany x € C.

» Equivalent to
VF(x*)"(x —x*) >0 for any x € C,

namely to stationarity.
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The Gradient Mapping

> It is convenient to define the gradient mapping as

6L pe (x- bvrcn)|

where L > 0.
> In the unconstrained case G.(x) = Vf(x).

> Gi(x) =0 if and only if x is a stationary point of (P). This means that we
can consider || G (x)||? to be optimality measure.
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The Gradient Projection Method

The Gradient Projection Method
Input: £ > 0 - tolerance parameter.

Initialization: pick xo € C arbitrarily.

General step: for any k =0,1,2,... execute the following steps:
(a) pick a stepsize tx by a line search procedure.

(b) set Xk41 = Pc(Xk = thf(Xk)).

(c) if |[xx — Xk+1]| < e, then STOP and xx1 is the output.

> There are several strategies for choosing the stepsizes ty.

» When f € CLl’l, we can choose t; to be constant and equal to %
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The Gradient Projection Method with Constant Stepsize

The Gradient Projection Method with Constant Stepsize

Input: £ > 0 - tolerance parameter. L > 0 - an upper bound on the
Lipschitz constant of Vf.

Initialization: pick xg € C arbitrarily. £ > 0 - constant stepsize.
General step: for any k =0,1,2,... execute the following steps:

(a) set x¢+1 = Pc (xx — tVF(xk)).
(b) if ||xk — Xk+1|| < €, then STOP and x4y is the output.
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GPM with Backtracking

Gradient Projection Method with Backtracking
Initialization. Take xg € C and s > 0,a € (0,1), 8 € (0,1).
General Step (k > 1)

» Pick t, = s. Then, while
f(Xk) = f(Pc(Xk = thf(Xk))) < Oétk”Gi (Xk)Hz

set ty := [itk.
> Set X)11 = PC(Xk = thf(Xk))
Stopping Criteria ||xx — xx+1]| < e.
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Convergence of the Gradient Projection Method

Theorem Let {xx} be the sequence generated by the gradient projection
method for solving problem (P) with either a constant stepsize f € (0, 7),
where L is a Lipschitz constant of Vf or a backtracking stepsize strategy.
Assume that f is bounded below. Then

1. The sequence {f(xx)} is nonincreasing.

2. Gy(xk) — 0 as k — oo, where

d— 1/t constant stepsize,
~ | 1/s backtracking.

See the proof of Theorem 9.14 in the book
> |t is easy to see that this result implies that any limit point of the sequence is
a stationary point of the problem.
» When f is conve, it is possible to show that the sequence converges to a
global optimal solution.
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Sparsity Constrained Problems
The sparsity constrained problem is given by

~ min  f(x)
GF st xfo<s,

f:R" — R is a lower-bounded continuously differentiable function.

v

v

s > 0 is an integer smaller than n.

Ix|lo is the o norm of x, which counts the number of nonzero components in
X.

» We do not assume that f is a convex function. The constraint set is of
course not convex.

v

Notation.
> l1(x) = {i: x; # 0} - the support set.
> lp(x) = {i: x; = 0} - the off-support set.
> C={x: xo < s}
> For a vector x ¢ R" and i € {1,2,...,n}, the ith largest absolute value
component in x is denoted by M;(x).
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A Fundamental Necessary Optimality Condition - Basic
Feasibility

Definition. A vector x* € C; is called a basic feasible (BF) vector of (P) if:

1. when ||x*[jo < s, Vf(x*) = 0;

2. when ||x*|lo = s, a_x(X*) =0 for all i € (x*).

v

Theorem (BF is a necessary optimality condition) Let x* be an optimal
solution of (P). Then x* is a BF vector.

V.

Proof.
» If [|[x*[|o < s, then for any i € {1,2,... n}

0 € argmin{g(t) = f(x* + te;)}.

Otherwise there would exist a to for which f(x* + tge;) < f(x*), which is a
contradiction to the optimality of x*.

> Therefore, we have gf( *)=g'(0) =0.
> If ||[x*||o = s, then the same argument holds for any i € I (x*).
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L-stationarity

Definition. A vector x* € C; is called an L-stationary point of (S) if it
satisfies the relation

[NC,] x* € Pc, <x* - in(x*)) :

> Note that since C; is not a convex set, the orthogonal projection operator
Pc.(+) is not single-valued.

> Specifically, the members of P¢,(x) are vector consisting of the s components
of x with the largest absolute value and zeros elsewhere.

» In general, there could be more than one choice to the s largest components.

For example:
Pc,((2,1,1)7) = {(2,1,0)7,(2,0,1)"}.
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Explicit Reformulation of L-stationarity

Lemma. For any L > 0, x* satisfies [NC,] if and only if |[x*|[o < s and

< LM(x")  if i € h(x"),
{ —0 i e hix) (7)

of
5 )

Proof.([NC,] = (7)).
> Suppose that x* satisfies [NC.]. Note that for any index j € {1,2,...,n},

thej th component of Pc, (x* — $Vf(x*)) is either zero or equal to
X\ — TV (x*).

> Smce x* € Pc,(x* — $Vf(x*)), it follows that if i € /;(x*), then

; igf( *), so that af( *)y=0.

X = 1o (x)

that x; = 0 implies that ‘g—;(x*)
true.

> If i € Ip(x*), then

< Ms(x*), which combined with the fact

< LM;(x*), and consequently (7) holds
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Proof Contd.

((7) = INCyL]).
> Suppose that x* satisfies (7). If ||[x*|lo < s, then Ms(x*) =0 and by (7) it
follows that V£(x*) = 0. Therefore, Pc, (x* — $Vf(x*)) = Pc,(x*) = {x*}.
> If ||[x*]|o = s, then Ms(x*) # 0 and |h(x*)| =s. By (7)

= |x* i € Il(X*)
* _1/L of x* ‘Xl | I
XUV < Mix) i€ (x).
> Therefore, the vector x* — $Vf(x*) contains the s components of x* with
the largest absolute value and all other components are smaller or equal to
them, so that [NC,] holds.

Remark: Note that the condition [NC.] depends on L in contrast to the
stationarity condition over convex sets.
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L-Stationarity as a Necessary Optimality Condition

When f € CLl(’;), it is possible to show that an optimal solution of (S) is an
L-stationary point for any L > L(f).

Theorem. Suppose that f € CLI(’}) € R”, and that L > L(f). Let x* be an
optimal solution of (S). Then x* is an L-stationary point.

See the proof of Theorem 9.22 in the book.
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The lterative Hard-Thresholding (IHT) Method

The IHT method
Input: a constant L > L(f).

e Initialization: Choose xqg € C;.
e General step : x**! € P¢ (x* — 1Vf(x¥)), (k=0,1,2,..))

v

Theorem (convergence of IHT) Suppose that f € CLI(’}) and let {x*},>o be

the sequence generated by the IHT method with stepsize % where L > L(f).
Then any accumulation point of {x*},>¢ is an L-stationary point.

v

See the proof of Theorem 9.24 in the book
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