Lecture 8 - Convex Optimization

> A convex optimization problem (or just a convex problem) is a problem
consisting of minimizing a convex function over a convex set:

min f(x
e, 0

» C - convex set.
» f - convex function over C.

» A functional form of a convex problem can written as

min  f(x)
st. g(x)<0, i=1,2....m
hj(x):()? j:172"' 7p?
f.g1,--.,8m : R" = R are convex functions and hy, hp, ..., h, :R™ — R are

affine functions.

> Note that the functional form does fit into the general formulation (1).
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“Convex Problems are Easy” - Local Minima are Global
Minima

C CR". Let x* € C be a local minimum of f over C. Then x* is a global

Theorem. Let f : C — R be a convex function defined on the convex set
minimum of f over C. J

Proof.
> x* is a local minimum of f over C = 3r > 0 such that f(x) > f(x*) for any
x € CNB[x*,r].
> Let x* #y e C. We will show that f(y) > f(x*).
> Let A € (0,1) be such that x* + \(y — x*) € B[x*, r].
> Since x* + A(y — x*) € B[x*, r], it follows that f(x*) < f(x* + A(y — x*))
and hence by Jensen's inequality:

F(X*) < F(x* + My — x*)) < (1= N)F(x*) + M (y).

> Thus, the desired inequality f(x*) < f(y) follows.
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More Results
A small variation of the proof of the last theorem yields the following.
Theorem. Let f : C — R be a strictly convex function defined on the

convex set C. Let x* € C be a local minimum of f over C. Then x* is a
strict global minimum of f over C.

Another important and easily deduced property of convex problems is that set of
optimal solutions is also convex.

Theorem. Let f : C — R be a convex function defined over the convex set
C C R". Then the set of optimal solutions of the problem

min{f(x) : x € C}

is convex. If, in addition, f is strictly convex over C, then there exists at
most one optimal solution of the problem.

Proof. In class
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Example

» A Convex Problem:
min —2X1 =+ x>
st. x2+x3 <3,

» A Nonconvex Problem:

min X% — x
st. XX +x3 =3
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Linear Programming

min c’x
(LP):  st. Ax<b,
Bx=g.

> A convex optimization problem (constraints and objective function are
linear/affine and hence convex).

> It is also equivalent to a problem of maximizing a convex (linear) function
subject to a convex constraints set. Hence, if the feasible set is compact ans
nonempty, then there exists at least one optimal solution which is an extreme
point=basic feasible solution.

» A more general result drops the compactness assumption and is often called
the fundamental theorem of linear programming.
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Convex Quadratic Problems

» Convex quadratic problems are problems consisting of minimizing a convex
quadratic function subject to affine constraints.

» The general form is
min x’ Qx + 2b7x
st. Ax<c,

Q € R™" is positive semidefinite, b € R", A € R™*" ¢ € R™.
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Chebyshev Center of a Set of Points

Chebyshev Center Problem. Given m points aj,as,...,a, in R". The
objective is to find the center of the minimum radius closed ball containing
all the points.

» This ball is called the Chebyshev ball
and the corresponding center is the
Chebyshev center.

» In mathematical terms, the problem ]
can be written as (r is the radius and N G T
x is the center): e £
o5 /’ . X“
ming,, r ® 4 £
s.t. a, € Blx,r], i=12,...,n ‘ * ' .
" " ///
> or: e
min, . r
s.t. Ix=ail <r, i=12,...,m.
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The Portfolio Selection Problem

> We are given n assets numbered as 1,2,...,n. Let Yj(j =1,2,...,n) be the
RV representing the return from asset j.
» We assume that the expected returns are known:

wi=E(Y;),j=12,...,n,
and that the covariances of all the pairs of variables are also known:

oij=COV(Y.,Y)), i, j=12...,n

> x;i(j =1,2,...,n) - the proportion of budget invested in asset j. The decision
variables are constrained to satisfy x € A,,.
» The overall return is the random variable:

R=Zn:Xij7
j=1

whose expectation and variance are given by:
E(R) = u"x,V(R) = x" Cx,
p = (p1, p2, - -, in) " and C is the covariance matrix: Cj=oij
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The Markowitz Model

» There are several formulations of the portfolio optimization problem, which
are all referred to as the “Markowitz model” after Harry Markowitz (1952).
» Minimizing the risk under the constraint that a minimal return level is
guaranteed:
min  x"Cx
st pu'x>a,
e'x=1,
x >0,

» Maximize the expected return subject to a bounded risk constraint:

max p'x

st x'Cx<j,
e’'x=1,
x >0,

» A penalty approach:
min  —pu"x+ v(xTCx)
st elx=1,
x > 0,
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QCQP Problems

Quaderatically Constrained Quadratic Problems:

min  x’ Agx + 2b0Tx + ¢
(QCQP) st. x"Ax+2b/x+¢ <0, i=12....m,
xTij+2bij—|—cj:0, j=m+1m+2,....m+np.

Ao,...,Anip- n X nsymmetric, bg,...,byi, €R?, ,...,Cmpp €ER.
» QCQPs are not necessarily convex problems.

> When there are no equality constrainers (p = 0) and all the matrices are
positive semidefinite: A; = 0,/ =0,1,..., m, the problem is convex, and is
therefore called a convex QCQP.
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The Orthogonal Projection Operator

» Definition. Given a nonempty closed convex set C, the orthogonal projection
operator Pc : R" — C is defined by

Pc(x) = argmin{|ly — x||?: y € C}.

The first important result is that the orthogonal projection exists and is unique.

The First Projection Theorem. Let C C R” be a nonempty closed and
convex set. Then for any x € R", the orthogonal projection Pc(x) exists
and is unique.

Proof. In class
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Examples
» C=R1.

Pry (x) = [x]+,

where [v]+ = (max{vi, 0}, max{vs,0}, ..., max{v,, 0})".

» A box is a subset of R” of the form

B:[él,ul]x[62,U2]><~~~><[ﬁ,,,u,,]:{xeR”:&gX;gu;},

where {; < u; forall i =1,2,... n.

» C=B[0,r].

Amir Beck

up X > uj
[PB(X)],' = X f,‘ < Xj < uj,
E,’ Xj < E,’.

[ x xl=r
P01 —{ rx x>

(11l
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Linear Classification

» Suppose that we are given two types J
of points in R™: type A and type B . ‘

points. ] .
> X1,X2,...,Xm € R7 - type A.
> Xmt1; Xm42;5 - - y Xm+p eR”- type B.

The objective is to find a linear separator, which is a hyperplane of the form
H(w,B) = {x €R" :w'x+ 3 =0}
for which the type A and type B points are in its opposite sides:

wixi+8 < 0, i=1,2,...,m,
wixi+8 > 0, i=m+1,m+2,....,m+p.
Underlying Assumption: the two sets of points are linearly separable, meaning

that the set of inequalities has a solution.
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Maximizing the Margin

mmmmmm

The margin of the separator is the distance
of the hyperplane to the closest point.

The separation problem will thus consist of finding the separator with the
largest margin.

Lemma. Let H(a,b) = {x € R":a"x = b}, where 0 #a € R” and b € R.
Let y € R”. Then the distance between y and the set H is given by

lay — b|
[all

d(y, H(a, b)) =

Proof. Later on in lecture 10.
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Mathematical Formulation

| 4
max {min,-zlﬁgw’mﬂgW}
st. w/x;+£8<0, i=12....m,
wix;+8>0, i=m+1,m+2,....m+p.
Nonconvex formulation = difficult to handle.
> the problem has a degree of freedom in the sense that if (w, 3) is an optimal
solution, then so is any nonzero multiplier of it, that is, (aw, af) for a # 0.
We can therefore decide that

. T
. -1
i:1,2r?.'.rjm+p‘w xi+hl=1,

» Thus, the problem can be written as

max {5}

st mini—io, mip WX+ B = 1,
wixi+8<0, i=12,...,m,
wixi+8>0, i=m+1,2,....m+p.
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Mathematical Formulation Contd.

min %HWH2

s.t. min,-zl’z,,wmjtp |WTXi + 5| =1,
WTXi+6§71, ":1,27"""77
wixi+8>1, i=m+1,2,....m+p,

> The first constraint can be dropped (why?)

min %HWH2
st. wix;+8<-1, i=1,2,...,m,
wixi+8>1, i=m+1m+2,....m+p.

Convex Formulation.
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Hidden Convexity in Trust Region Subproblems

>
(TRS):  min{x"Ax+2b"x+ c: ||x||*> < 1}.

where b € R", ¢ € R and A is an n X n symmetric matrix. In general, this
is a nonconvex problem

» By the spectral decomposition theorem, there exist an orthogonal matrix U
and a diagonal matrix D = diag(dy, d», . .., d,) such that A= UDU’, and
hence (TRS) can be rewritten as

min{x"UDU"x+2b"UU x4+ c: [U"x|?> < 1}.

» Making the linear change of variables y = U x, the problem reduces to

min{y "Dy +2b"Uy + ¢ : |ly|]* < 1}.

» Denoting f = U”b, we obtain

min Yl diy?+2> " fiyitc )
st. YLy <L
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Hidden Convexity in Trust Region Subproblems Contd.

Lemma. Let y* be an optimal solution of (2). Then fy* < 0 for aIIJ
F= LD

Proof.
» Denote the objective function of (2) by g(y) =Y., diy? +2>."_ fiyi +c.
> Let i€ {1,2,...,n}. Definey as

. * [ £ 1,
p={%. i7!
—Yi J=1

¥ is feasible and g(y*) < g(¥).
S diy P 2 iy e < 3L () + 2500 i+ e
After cancelleation of terms, 2fiy" < 2fi(—y}"),

vV v v v

implying the desired inequality fjy; < 0.
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Hidden Convexity in Trust Region Subproblems Contd.

Back to the TRS problem —
> Make the change of variable y; = —sgn(f)\/zi(z; > 0).
> problem (2) becomes

min 37 diz — 2300 |filvzi+ ¢
s.t. 27:1 zi <1,
21,22, .,2n > 0.

» convex optimization problem.
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