
Lecture 7 - Convex Functions
Definition A function f : C → R defined on a convex set C ⊆ Rn is called
convex (or convex over C ) if

f (λx + (1− λ)y) ≤ λf (x) + (1− λ)f (y) for any x, y ∈ C , λ ∈ [0, 1].
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Convexity, Strict Convexity and Concavity

I In case where no domain is specified, we naturally assume that f is defined
over the entire space Rn.

I A function f : C → R defined on a convex set C ⊆ Rn is called strictly
convex if

f (λx + (1− λ)y) < λf (x) + (1− λ)f (y) for any x 6= y ∈ C , λ ∈ (0, 1).

I A function is called concave if −f is convex. Similarly, f is called strictly
concave if −f is strictly convex.

I We can also define concavity directly: a function f is concave if and only if
for any x, y ∈ C and λ ∈ [0, 1],

f (λx + (1− λ)y) ≥ λf (x) + (1− λ)f (y).
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Examples of Convex Functions
I Affine Functions. f (x) = aTx + b, where a ∈ Rn and b ∈ R.
I Norms. g(x) = ‖x‖.

I Convexity of f : Take x, y ∈ Rn and λ ∈ [0, 1]. Then

f (λx + (1− λ)y) = aT (λx + (1− λ)y) + b

= λ(aTx) + (1− λ)(aTy) + λb + (1− λ)b

= λ(aTx + b) + (1− λ)(aTy + b)

= λf (x) + (1− λ)f (y),

I Convexity of g : Take x, y ∈ Rn and λ ∈ [0, 1]. Then

g(λx + (1− λ)y) = ‖λx + (1− λ)y‖
≤ ‖λx‖+ ‖(1− λ)y‖
= λ‖x‖+ (1− λ)‖y‖
= λg(x) + (1− λ)g(y),
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Jensen’s Inequality
Theorem. Let f : C → R be a convex function where C ⊆ Rn is a convex
set. Then for any x1, x2, . . . , xk ∈ C and λ ∈ ∆k , the following inequality
holds:

f

(
k∑

i=1

λixi

)
≤

k∑
i=1

λi f (xi ).

Proof very similar to the proof that any convex combination of pts. in a
convex sets is in the set – see the proof of Theorem 7.5 on pages 118,119
of the book.
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The Gradient Inequality

Theorem. Let f : C → R be a continuously differentiable function defined
on a convex set C ⊆ Rn. Then f is convex over C if and only if

f (x) +∇f (x)T (y − x) ≤ f (y) for any x, y ∈ C . (1)

Proof.

I Suppose first that f is convex. Let x, y ∈ C and λ ∈ (0, 1]. If x = y, then (1)
trivially holds. We will therefore assume that x 6= y.

I f (x+λ(y−x))−f (x)
λ ≤ f (y)− f (x).

I Taking λ→ 0+, we obtain

f ′(x; y − x) ≤ f (y)− f (x).

I Since f is continuously differentiable, f ′(x; y − x) = ∇f (x)T (y − x), and (1)
follows.
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Proof Contd.
I To prove the reverse direction, assume that that the gradient inequality holds.

I Let z,w ∈ C , and let λ ∈ (0, 1). We will show that
f (λz + (1− λ)w) ≤ λf (z) + (1− λ)f (w).

I Let u = λz + (1− λ)w ∈ C . Then

z− u =
u− (1− λ)w

λ
− u = −1− λ

λ
(w − u).

I We have

f (u) +∇f (u)T (z− u) ≤ f (z),

f (u)− λ

1− λ
∇f (u)T (z− u) ≤ f (w).

I Thus,
f (u) ≤ λf (z) + (1− λ)f (w).
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The Gradient Inequality for Strictly Convex Functions

Proposition Let f : C → R be a continuously differentiable function defined
on a convex set C ⊆ Rn. Then f is strictly convex over C if and only if

f (x) +∇f (x)T (y − x) < f (y) for any x, y ∈ C satisfying x 6= y
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Stationarity ⇒ Global Optimality

A direct result of the gradient inequality is that the first order optimality condition
∇f (x∗) = 0 is sufficient for global optimality.

Proposition Let f be a continuously differentiable function which is convex
over a convex set C ⊆ Rn. Suppose that ∇f (x∗) = 0 for some x∗ ∈ C .
Then x∗ is the global minimizer of f over C .

Proof. In class
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Convexity of Quadratic Functions with Positive
Semidefinite Matrices

Theorem. Let f : Rn → R be the quadratic function given by f (x) =
xTAx + 2bTx + c where A ∈ Rn×n is symmetric, b ∈ Rn and c ∈ R. Then
f is (strictly) convex if and only if A � 0 (A � 0).

Proof.
I The convexity of f is equivalent to

f (y) ≥ f (x) +∇f (x)T (y − x) for any x, y ∈ Rn

I Same as
yTAy + 2bTy + c ≥ xTAx + 2bTx + c + 2(Ax + b)T (y− x) for any x, y ∈ Rn.

I (y − x)TA(y − x) ≥ 0 for any x, y ∈ Rn.
I Equivalent to the inequality dTAd ≥ 0 for any d ∈ Rn.
I Same as A � 0.
I Similar arguments show that strict convexity is equivalent to

dTAd > 0 for any 0 6= d ∈ Rn,

namely to A � 0.
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Illustration
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Monotonicity of the Gradient

Theorem. Suppose that f is a continuously differentiable function over a
convex set C ⊆ Rn. Then f is convex over C if and only if

(∇f (x)−∇f (y))T (x− y) ≥ 0 for any x, y ∈ C .

See the proof of Theorem 8.11 on pages 122,123 of the book.
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Second-Order Characterization of Convexity
Theorem. Let f be a twice continuously differentiable function over an open
convex set C ⊆ Rn. Then f is convex over C if and only if ∇2f (x) � 0 for
any x ∈ C .

Proof.
I Suppose that ∇2f (x) � 0 ∀x ∈ C . Let x, y ∈ C , then ∃z ∈ [x, y] ∈ C :

f (y) = f (x) +∇f (x)T (y − x) +
1

2
(y − x)T∇2f (z)(y − x).

I (y − x)T∇2f (z)(y − x) ≥ 0⇒ f (y) ≥ f (x) +∇f (x)T (y − x)⇒ f convex.
I Suppose that f is convex over C . Let x ∈ C and let y ∈ Rn.
I C is open ⇒ ∃ε > 0 such that x + λy ∈ C ∀λ ∈ (0, ε).

skdjfhskdjfhskjdfhf (x + λy) ≥ f (x) + λ∇f (x)Ty.
I f (x + λy) = f (x) + λ∇f (x)Ty + λ2

2 yT∇2f (x)y + o(λ2‖y‖2).

I Thus, λ2

2 yT∇2f (x)y + o(λ2‖y‖2) ≥ 0 for any λ ∈ (0, ε).

I Dividing by λ2, 1
2yT∇2f (x)y + o(λ2‖y‖2)

λ2 ≥ 0.
I Taking λ→ 0+, we have yT∇2f (x)y ≥ 0∀y ∈ Rn.
I Hence ∇2f (x) � 0 for any x ∈ C .
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Convexity of the log-sum-exp function
I f (x) = log (ex1 + ex2 + . . .+ exn) , x ∈ Rn

I ∂f
∂xi

(x) = exi∑n
j=1 e

xj , i = 1, 2, . . . , n,

I ∂2f
∂xi∂xj

(x) =

 −
exi exj

(
∑n

j=1 e
xj )2 , i 6= j ,

− exi exj

(
∑n

j=1 e
xj )2 + exi∑n

j=1 e
xj , i = j

I We can thus write the Hessian matrix as

∇2f (x) = diag(w)−wwT , w =

(
exi∑n
j=1 e

xj

)n

i=1

∈ ∆n.

I For any v ∈ Rn: vT∇2f (x)v =
∑n

i=1 wiv
2
i − (vTw)2 ≥ 0 since defining

si =
√
wivi , ti =

√
wi , we have

(vTw)2 = (sT t)2 ≤ ‖s‖2‖t‖2 =

(
n∑

i=1

wiv
2
i

)(
n∑

i=1

wi

)
=

n∑
i=1

wiv
2
i .

I Thus, ∇2f (x) � 0 and hence f is convex over Rn.
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Convexity of quad-over-lin

f (x1, x2) =
x21
x2

defined over R× R+ = {(x1, x2) : x2 > 0} .
In class

Amir Beck “Introduction to Nonlinear Optimization” Lecture Slides - Convex Functions 14 / 32



Operations Preserving Convexity

I Convexity is preserved under several operations such as summation,
multiplication by positive scalars and affine change of variables.

Theorem.

I Let f be a convex function defined over a convex set C ⊆ Rn and let
α ≥ 0. Then αf is a convex function over C .

I Let f1, f2, . . . , fp be convex functions over a convex set C ⊆ Rn. Then
the sum function f1 + f2 + . . .+ fp is convex over C .

I Let f be a convex function defined on a convex set C ⊆ Rn. Let
A ∈ Rn×m and b ∈ Rn. Then the function g defined by

g(y) = f (Ay + b).

is convex over the convex set D = {y ∈ Rm : Ay + b ∈ C}.

See the proofs of Theorems 7.16 and 7.17 of the book.
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Example: Generalized quadratic-over-linear

The generalized quad-over-lin function

g(x) =
‖Ax + b‖2

cTx + d
(A ∈ Rm×n,b ∈ Rm, c ∈ Rn, d ∈ R)

is convex over D = {x ∈ Rn : cTx + d > 0}.
In class
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Examples of Convex Functions

I

f (x1, x2) = x21 + 2x1x2 + 3x22 + 2x1 − 3x2 + ex1 .

I

f (x1, x2, x3) = ex1−x2+x3 + e2x2 + x1

I

f (x1, x2) = − log(x1x2)

over R2
++

In class
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Preservation of Convexity under Composition

Theorem. Let f : C → R be a convex function defined over the convex
set C ⊆ Rn. Let g : I → R be a one-dimensional nondecreasing convex
function over the interval I ⊆ R. Assume that the image of C under f is
contained in I : f (C ) ⊆ I . Then the composition of g with f defined by

h(x) ≡ g(f (x))

is convex over C .

Proof Outline. Let x, y ∈ C and let λ ∈ [0, 1]. Then

h(λx + (1− λ)y) = g(f (λx + (1− λ)y))
≤ g(λf (x) + (1− λ)f (y))
≤ λg(f (x)) + (1− λ)g(f (y))
= λh(x) + (1− λ)h(y),

thus establishing the convexity of h.
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Examples

I h(x) = e‖x‖
2

I h(x) = (‖x‖2 + 1)2

In class
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Point-Wise Maximum of Convex Functions
Theorem. Let f1, f2, . . . , fp : C → R be p convex functions over the convex
set C ⊆ Rn. Then the maximum function

f (x) ≡ max
i=1,2,...,p

{fi (x)}

is convex over C .

Proof Outline Let x, y ∈ C and λ ∈ [0, 1]. Then

f (λx + (1− λ)y) = maxi=1,2,...,p fi (λx + (1− λ)y)
≤ maxi=1,2,...,p{λfi (x) + (1− λ)fi (y)}
≤ λmaxi=1,2,...,p fi (x) + (1− λ) maxi=1,2,...,p fi (y)
= λf (x) + (1− λ)f (y).

Examples.
I f (x) = max{x1, x2, . . . , xn} is convex.
I For a given vector x = (x1, x2, . . . , xn)T ∈ Rn, let x[i ] denote the i-th largest

value in x. For any k ∈ {1, 2, . . . , n} the function

hk(x) = x[1] + x[2] + . . .+ x[k],

is convex. why?

Amir Beck “Introduction to Nonlinear Optimization” Lecture Slides - Convex Functions 20 / 32



Point-Wise Maximum of Convex Functions
Theorem. Let f1, f2, . . . , fp : C → R be p convex functions over the convex
set C ⊆ Rn. Then the maximum function

f (x) ≡ max
i=1,2,...,p

{fi (x)}

is convex over C .

Proof Outline Let x, y ∈ C and λ ∈ [0, 1]. Then

f (λx + (1− λ)y) = maxi=1,2,...,p fi (λx + (1− λ)y)
≤ maxi=1,2,...,p{λfi (x) + (1− λ)fi (y)}
≤ λmaxi=1,2,...,p fi (x) + (1− λ) maxi=1,2,...,p fi (y)
= λf (x) + (1− λ)f (y).

Examples.
I f (x) = max{x1, x2, . . . , xn} is convex.
I For a given vector x = (x1, x2, . . . , xn)T ∈ Rn, let x[i ] denote the i-th largest

value in x. For any k ∈ {1, 2, . . . , n} the function

hk(x) = x[1] + x[2] + . . .+ x[k],

is convex. why?
Amir Beck “Introduction to Nonlinear Optimization” Lecture Slides - Convex Functions 20 / 32



Preservation of Convexity Under Partial Minimization
Theorem. Let f : C × D → R be a convex function defined over the set
C × D where C ⊆ Rm and D ⊆ Rn are convex sets. Let

g(x) = min
y∈D

f (x, y), x ∈ C ,

where we assume that the minimum is finite. Then g is convex over C .

Proof. Let x1, x2 ∈ C and λ ∈ [0, 1]. Take ε > 0. Then ∃y1, y2 ∈ D:

f (x1, y1) ≤ g(x1) + ε, f (x2, y2) ≤ g(x2) + ε.

By the convexity of f we have

f (λx1 + (1− λ)x2, λy1 + (1− λ)y2) ≤ λf (x1, y1) + (1− λ)f (x2, y2)

≤ λ(g(x1) + ε) + (1− λ)(g(x2) + ε)

= λg(x1) + (1− λ)g(x2) + ε.

Since the above inequality holds for any ε > 0, it follows that
g(λx1 + (1− λ)x2) ≤ λg(x1) + (1− λ)g(x2).
Example: The distance function from a convex set dC (x) ≡ infy∈C ‖x− y‖ is
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Preservation of Convexity Under Partial Minimization
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Level Sets
Definition. Let f : S → R be a function defined over a set S ⊆ Rn. Then the level
set of f with level α is given by

Lev(f , α) = {x ∈ S : f (x) ≤ α}.

Theorem. Let f : C → R be a convex function over the convex set C ⊆ Rn.
Then for any α ∈ R the level set Lev(f , α) is convex.

Proof.

I Let x, y ∈ Lev(f , α) and λ ∈ [0, 1].

I Then f (x), f (y) ≤ α. Hence,

f (λx + (1− λ)y) ≤ λf (x) + (1− λ)f (y) ≤ λα + (1− λ)α = α,

I λx + (1− λ)y ∈ Lev(f , α), and we have established the convexity of
Lev(f , α).
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Quasi-Convex Functions
I Definition. A function f : C → R defined over the convex set C ⊆ Rn is

called quasi-convex if for any α ∈ R the set Lev(f , α) is convex.

Examples:
I f (x) =

√
|x |.

I f (x) = aT x+b
cT x+d

, over C = {x ∈ Rn : cTx + d > 0}. where a, c ∈ Rn and
b, d ∈ R.
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Continuity of Convex Functions
Theorem. Let f : C → R be a convex function defined over a convex set
C ⊆ Rn. Let x0 ∈ int(C ). Then there exist ε > 0 and L > 0 such that
B[x0, ε] ⊆ C and

|f (x)− f (x0)| ≤ L‖x− x0‖ for any x ∈ B[x0, ε]

Proof.

I Take ε > 0 such that B∞[x0, ε] ≡ {x ∈ Rn : ‖x− x0‖∞ ≤ ε} ⊆ C .
I Let v1, v2, . . . , v2n be the 2n extreme points of B∞[x0, ε].

I For any x ∈ B∞[x0, ε] there exists λ ∈ ∆2n such that x =
∑2n

i=1 λivi .By
Jensen’s inequality,

f (x) = f
(∑2n

i=1 λivi
)
≤
∑2n

i=1 λi f (vi ) ≤ M,

where M = max
i=1,2,...,2n

f (vi ).

I B2[x0, ε] = B[x0, ε] = {x ∈ Rn : ‖x− x0‖2 ≤ ε} ⊆ B∞[x0, ε].
I We therefore conclude that f (x) ≤ M for any x ∈ B[x0, ε].
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Continuity of Convex Functions Contd.
I Let x ∈ B[x0, ε] be such that x 6= x0. Define

z = x0 +
1

α
(x− x0), α =

1

ε
‖x− x0‖

.

I Then obviously α ≤ 1 and z ∈ B[x0, ε], and in particular f (z) ≤ M.
I x = αz + (1− α)x0.
I Consequently,

f (x) ≤ αf (z)+ (1−α)f (x0) ≤ f (x0)+α(M − f (x0)) = f (x0)+
M − f (x0)

ε
‖x− x0‖.

I Thus, f (x)− f (x0) ≤ L‖x− x0‖, where L = M−f (x0)
ε .

I We need to show that f (x)− f (x0) ≥ −L‖x− x0‖.
I Define u = x0 + 1

α (x0 − x). Since u ∈ B[x0, ε], then f (u) ≤ M.
I x = x0 + α(x0 − u). Therefore,

f (x) = f (x0 + α(x0 − u)) ≥ f (x0) + α(f (x0)− f (u))

= f (x0)− M − f (x0)

ε
‖x− x0‖

= f (x0)− L‖x− x0‖
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Existence of Directional Derivatives of Convex Functions

Theorem. Let f : C → R be a convex function over the convex set C ⊆ Rn.
Let x ∈ int(C ). Then for any d 6= 0, the directional derivative f ′(x; d)
exists.

Proof.

I Let x ∈ int(C ) and let d 6= 0. Then the directional derivative (if exists) is the
limit

lim
t→0+

g(t)− g(0)

t
(g(t) = f (x + td)) (2)

I Defining h(t) = g(t)−g(0)
t , (2) is the same as limt→0+ h(t).

I We will take an ε > 0 for which x + td, x− td ∈ C for all t ∈ [0, ε].

I Let 0 < t1 < t2 ≤ ε. Then f (x + t1d) ≤
(

1− t1
t2

)
f (x) + t1

t2
f (x + t2d).

I Consequently, f (x+t1d)−f (x)
t1

≤ f (x+t2d)−f (x)
t2

.

I Thus, h(t1) ≤ h(t2) ⇒ h is monotone nondecreasing over R++. All that is
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Existence of Directional Derivatives of Convex Functions

Theorem. Let f : C → R be a convex function over the convex set C ⊆ Rn.
Let x ∈ int(C ). Then for any d 6= 0, the directional derivative f ′(x; d)
exists.

Proof.

I Let x ∈ int(C ) and let d 6= 0. Then the directional derivative (if exists) is the
limit

lim
t→0+

g(t)− g(0)

t
(g(t) = f (x + td)) (2)

I Defining h(t) = g(t)−g(0)
t , (2) is the same as limt→0+ h(t).

I We will take an ε > 0 for which x + td, x− td ∈ C for all t ∈ [0, ε].

I Let 0 < t1 < t2 ≤ ε. Then f (x + t1d) ≤
(

1− t1
t2

)
f (x) + t1

t2
f (x + t2d).

I Consequently, f (x+t1d)−f (x)
t1

≤ f (x+t2d)−f (x)
t2

.

I Thus, h(t1) ≤ h(t2) ⇒ h is monotone nondecreasing over R++. All that is
left is to show that it is bounded below over (0, ε].

Amir Beck “Introduction to Nonlinear Optimization” Lecture Slides - Convex Functions 26 / 32



Existence of Directional Derivatives of Convex Functions

Theorem. Let f : C → R be a convex function over the convex set C ⊆ Rn.
Let x ∈ int(C ). Then for any d 6= 0, the directional derivative f ′(x; d)
exists.

Proof.

I Let x ∈ int(C ) and let d 6= 0. Then the directional derivative (if exists) is the
limit

lim
t→0+

g(t)− g(0)

t
(g(t) = f (x + td)) (2)

I Defining h(t) = g(t)−g(0)
t , (2) is the same as limt→0+ h(t).

I We will take an ε > 0 for which x + td, x− td ∈ C for all t ∈ [0, ε].

I Let 0 < t1 < t2 ≤ ε. Then f (x + t1d) ≤
(

1− t1
t2

)
f (x) + t1

t2
f (x + t2d).

I Consequently, f (x+t1d)−f (x)
t1

≤ f (x+t2d)−f (x)
t2

.

I Thus, h(t1) ≤ h(t2) ⇒ h is monotone nondecreasing over R++. All that is
left is to show that it is bounded below over (0, ε].

Amir Beck “Introduction to Nonlinear Optimization” Lecture Slides - Convex Functions 26 / 32



Existence of Directional Derivatives of Convex Functions

Theorem. Let f : C → R be a convex function over the convex set C ⊆ Rn.
Let x ∈ int(C ). Then for any d 6= 0, the directional derivative f ′(x; d)
exists.

Proof.

I Let x ∈ int(C ) and let d 6= 0. Then the directional derivative (if exists) is the
limit

lim
t→0+

g(t)− g(0)

t
(g(t) = f (x + td)) (2)

I Defining h(t) = g(t)−g(0)
t , (2) is the same as limt→0+ h(t).

I We will take an ε > 0 for which x + td, x− td ∈ C for all t ∈ [0, ε].

I Let 0 < t1 < t2 ≤ ε. Then f (x + t1d) ≤
(

1− t1
t2

)
f (x) + t1

t2
f (x + t2d).

I Consequently, f (x+t1d)−f (x)
t1

≤ f (x+t2d)−f (x)
t2

.

I Thus, h(t1) ≤ h(t2) ⇒ h is monotone nondecreasing over R++. All that is
left is to show that it is bounded below over (0, ε].

Amir Beck “Introduction to Nonlinear Optimization” Lecture Slides - Convex Functions 26 / 32



Existence of Directional Derivatives of Convex Functions

Theorem. Let f : C → R be a convex function over the convex set C ⊆ Rn.
Let x ∈ int(C ). Then for any d 6= 0, the directional derivative f ′(x; d)
exists.

Proof.

I Let x ∈ int(C ) and let d 6= 0. Then the directional derivative (if exists) is the
limit

lim
t→0+

g(t)− g(0)

t
(g(t) = f (x + td)) (2)

I Defining h(t) = g(t)−g(0)
t , (2) is the same as limt→0+ h(t).

I We will take an ε > 0 for which x + td, x− td ∈ C for all t ∈ [0, ε].

I Let 0 < t1 < t2 ≤ ε. Then f (x + t1d) ≤
(

1− t1
t2

)
f (x) + t1

t2
f (x + t2d).

I Consequently, f (x+t1d)−f (x)
t1

≤ f (x+t2d)−f (x)
t2

.

I Thus, h(t1) ≤ h(t2) ⇒ h is monotone nondecreasing over R++. All that is
left is to show that it is bounded below over (0, ε].

Amir Beck “Introduction to Nonlinear Optimization” Lecture Slides - Convex Functions 26 / 32



Existence of Directional Derivatives of Convex Functions

Theorem. Let f : C → R be a convex function over the convex set C ⊆ Rn.
Let x ∈ int(C ). Then for any d 6= 0, the directional derivative f ′(x; d)
exists.

Proof.

I Let x ∈ int(C ) and let d 6= 0. Then the directional derivative (if exists) is the
limit

lim
t→0+

g(t)− g(0)

t
(g(t) = f (x + td)) (2)

I Defining h(t) = g(t)−g(0)
t , (2) is the same as limt→0+ h(t).

I We will take an ε > 0 for which x + td, x− td ∈ C for all t ∈ [0, ε].

I Let 0 < t1 < t2 ≤ ε. Then f (x + t1d) ≤
(

1− t1
t2

)
f (x) + t1

t2
f (x + t2d).

I Consequently, f (x+t1d)−f (x)
t1

≤ f (x+t2d)−f (x)
t2

.

I Thus, h(t1) ≤ h(t2) ⇒ h is monotone nondecreasing over R++. All that is
left is to show that it is bounded below over (0, ε].

Amir Beck “Introduction to Nonlinear Optimization” Lecture Slides - Convex Functions 26 / 32



Existence of Directional Derivatives of Convex Functions

Theorem. Let f : C → R be a convex function over the convex set C ⊆ Rn.
Let x ∈ int(C ). Then for any d 6= 0, the directional derivative f ′(x; d)
exists.

Proof.

I Let x ∈ int(C ) and let d 6= 0. Then the directional derivative (if exists) is the
limit

lim
t→0+

g(t)− g(0)

t
(g(t) = f (x + td)) (2)

I Defining h(t) = g(t)−g(0)
t , (2) is the same as limt→0+ h(t).

I We will take an ε > 0 for which x + td, x− td ∈ C for all t ∈ [0, ε].

I Let 0 < t1 < t2 ≤ ε. Then f (x + t1d) ≤
(

1− t1
t2

)
f (x) + t1

t2
f (x + t2d).

I Consequently, f (x+t1d)−f (x)
t1

≤ f (x+t2d)−f (x)
t2

.

I Thus, h(t1) ≤ h(t2) ⇒ h is monotone nondecreasing over R++. All that is
left is to show that it is bounded below over (0, ε].

Amir Beck “Introduction to Nonlinear Optimization” Lecture Slides - Convex Functions 26 / 32



Proof Contd.

I Take 0 < t ≤ ε. Note that

x =
ε

ε+ t
(x + td) +

t

ε+ t
(x− εd).

I Hence,

f (x) ≤ ε

ε+ t
f (x + td) +

t

ε+ t
f (x− εd).

I After some rearrangement of terms,

h(t) =
f (x + td)− f (x)

t
≥ f (x)− f (x− εd)

ε
.

I h is bounded below over (0, ε].

I Since h is nondecreasing and bounded below over (0, ε], the limit
limt→0+ h(t) exists ⇒ the directional derivative f ′(x; d) exists.
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Extended Real-Valued Functions
I Until now we have discussed functions that are real-valued, meaning that

they take their values in R = (−∞,∞).
I We will now consider functions that take their values in R∪{∞} = (−∞,∞].

Such functions are called extended real-valued functions.
I Example: the indicator function: given a set S ⊆ Rn, the indicator function
δS : Rn → R ∪ {∞} is given by

δS(x) =

{
0 if x ∈ S ,
∞ if x /∈ S .

I The effective domain of an extended real-valued function is the set of vectors
for which the function takes a real value:

dom(f ) = {x ∈ Rn : f (x) <∞}.

I An extended real-valued function f : Rn → R ∪ {∞} is called proper if is not
always equal to infinity, meaning that there exists x0 ∈ Rn such that
f (x0) <∞.
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Extended Real-Valued Functions Contd.

I An extended real-valued function is convex if for any x, y ∈ Rn and λ ∈ [0, 1]
the following inequality holds:

f (λx + (1− λ)y) ≤ λf (x) + (1− λ)f (y),

where we use the usual arithmetic rules with ∞ such as

a +∞ = ∞ for any a ∈ R,
a · ∞ = ∞ for any a ∈ R++.

In addition, we have the much less obvious rule that 0 · ∞ = 0.

I It is easy to show that an extended real-valued function is convex iff dom(f )
is a convex set and the restriction of f to its effective domain is a convex
real-valued function over dom(f ).

I As an example, the indicator function δC (·) of a set C ⊆ Rn is convex if and
only if C is a convex set.
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The Epigraph

I Definition. Let f : Rn → R ∪ {∞}. Then its epigraph epi(f ) ∈ Rn+1 is
defined to be the set

epi(f ) = {(x; t) : f (x) ≤ t}.

It is not difficult to show that an extended real-valued function f is convex if and
only if its epigraph set epi(f ) is convex.
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Preservation of Convexity Under Supremum

Theorem. Let fi : Rn → R ∪ {∞} be an extended real-valued convex
functions for any i ∈ I (I being an arbitrary index set). Then the function
f (x) = supi∈I fi (x) is an extended real-valued convex function.

Proof. fi convex for all i ⇒ epi(fi ) convex ⇒ epi(f ) = ∩i∈I epi(fi ) convex ⇒
f (x) = supi∈I fi (x) is convex.

I Support Functions. Let S ⊆ Rn. The support function of S is the function

σS(x) = sup
y∈S

xTy.

The support function is a convex function (regardless of whether S is convex
or not).
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Maximum of a Convex Fun. over a Compact Convex Set
Theorem. Let f : C → R be convex over the nonempty convex and compact
set C ⊆ Rn. Then there exists at least one maximizer of f over C that is
an extreme point of C .

Proof.

I Let x∗ be a maximizer of f over C . If x∗ is an extreme point of C , then the
result is established. Otherwise,

I By Krein-Milman, C = conv(ext(C )) ⇒ ∃x1, x2, . . . , xk ∈ ext(C ) and
λ ∈ ∆k s.t.

x∗ =
k∑

i=1

λixi .

I By convexity of f ,

f (x∗) ≤
k∑

i=1

λi f (xi ),

I
∑k

i=1 λi (f (xi )− f (x∗)) ≥ 0⇒ f (xi ) = f (x∗) (why?)
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