Lecture 7 - Convex Functions

Definition A function f : C — R defined on a convex set C C R" is called
convex (or convex over C) if

FOAX + (1= N)y) < M(x) + (1 = A\)f(y) for any x,y € C, X € [0, 1].
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Convexity, Strict Convexity and Concavity

» In case where no domain is specified, we naturally assume that f is defined
over the entire space R".

» A function f : C — R defined on a convex set C C R" is called strictly
convex if

F(Xx+ (1= A)y) < Af(x)+ (1 = N)f(y) foranyx £y € C,) € (0,1).
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Convexity, Strict Convexity and Concavity

» In case where no domain is specified, we naturally assume that f is defined
over the entire space R".

» A function f : C — R defined on a convex set C C R" is called strictly
convex if

F(Xx+ (1= A)y) < Af(x)+ (1 = N)f(y) foranyx £y € C,) € (0,1).

> A function is called concave if —f is convex. Similarly, f is called strictly
concave if —f is strictly convex.

» We can also define concavity directly: a function f is concave if and only if
for any x,y € C and X € [0, 1],

F(Ax+ (1= N)y) > Af(x) + (1 = N)f(y).
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Examples of Convex Functions

» Affine Functions. f(x) =a’x+ b, where a € R” and b € R.
» Norms. g(x) = ||x||.
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Examples of Convex Functions

» Affine Functions. f(x) =a’x+ b, where a € R” and b € R.

» Norms. g(x) = ||x||.

» Convexity of f: Take x,y € R” and A € [0,1]. Then

FOx+(1—=XNy) = a’(Ax+(1—=X\y)+b
= Ma"x)+(1-XN)(@Ty)+ b+ (1—N)b

Ma™x+b)+(1—-N)(a"y+b)
Af(x) + (1= A)f(y),
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Examples of Convex Functions

» Affine Functions. f(x) =a’x+ b, where a € R” and b € R.

» Norms. g(x) = ||x||.

» Convexity of f: Take x,y € R” and A € [0,1]. Then

FOx+(1—=XNy) = a’(Ax+(1—=X\y)+b

Ma™x)+(1—=X)(@"y) + b+ (1—A)b
Ma™x+b)+(1—-N)(a"y+b)
= A(x)+ (1= A)f(y),

» Convexity of g: Take x,y € R” and X € [0,1]. Then

gMx+(1=A)y) =[x+ (1=
]|+ [(1 = Ayl
Allx[[+ (1 = )yl
= Ag(x)+ (1 - XNely),

IA
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Jensen’s Inequality

Theorem. Let f : C — R be a convex function where C C R” is a convex
set. Then for any x1,Xp,...,Xx € C and A € Ay, the following inequality

holds: . .
f <Z )\,'X,') < Z )\,‘f(X,').
i=1 i=1

Proof very similar to the proof that any convex combination of pts. in a

convex sets is in the set — see the proof of Theorem 7.5 on pages 118,119
of the book.
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The Gradient Inequality

Theorem. Let f : C — R be a continuously differentiable function defined
on a convex set C C R". Then f is convex over C if and only if

f(x) + VF(x)"(y — x) < f(y) for any x,y € C. (1)
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The Gradient Inequality

Theorem. Let f : C — R be a continuously differentiable function defined
on a convex set C C R". Then f is convex over C if and only if

f(x) + VF(x)"(y — x) < f(y) for any x,y € C. (1)

Proof.

> Suppose first that f is convex. Let x,y € C and A € (0,1]. If x =1y, then (1)
trivially holds. We will therefore assume that x # y.
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The Gradient Inequality

Theorem. Let f : C — R be a continuously differentiable function defined
on a convex set C C R". Then f is convex over C if and only if

f(x) + VF(x)"(y — x) < f(y) for any x,y € C. (1)

Proof.

> Suppose first that f is convex. Let x,y € C and A € (0,1]. If x =1y, then (1)
trivially holds. We will therefore assume that x # y.

> f(x+)\(yj\x))—f(x) < f(y) _ f(X)
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The Gradient Inequality

Theorem. Let f : C — R be a continuously differentiable function defined
on a convex set C C R". Then f is convex over C if and only if

f(x) + VF(x)"(y — x) < f(y) for any x,y € C. (1)

Proof.

> Suppose first that f is convex. Let x,y € C and A € (0,1]. If x =1y, then (1)
trivially holds. We will therefore assume that x # y.

> f(x+)\(yj\x))—f(x) < f(y) _ f(X)
» Taking A — 0T, we obtain

Fl(xiy —x) < f(y) — f(x).
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The Gradient Inequality

Theorem. Let f : C — R be a continuously differentiable function defined
on a convex set C C R". Then f is convex over C if and only if

f(x) —|—Vf(x)T(y —x) < f(y) for any x,y € C. (1)

Proof.

> Suppose first that f is convex. Let x,y € C and A € (0,1]. If x =1y, then (1)
trivially holds. We will therefore assume that x # y.

> f(X+)\(yj\X))—f(x) S f-(y) _ f(X)
» Taking A — 0T, we obtain

Fl(xiy —x) < f(y) — f(x).

» Since f is continuously differentiable, '(x;y — x) = Vf(x)(y — x), and (1)
follows.
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Proof Contd.

» To prove the reverse direction, assume that that the gradient inequality holds.
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Proof Contd.

» To prove the reverse direction, assume that that the gradient inequality holds.
> Let z,w € C, and let A € (0,1). We will show that
f(Az+ (1= Nw) < A(2) + (1 — AN)f(w).
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Proof Contd.

» To prove the reverse direction, assume that that the gradient inequality holds.
> Let z,w € C, and let A € (0,1). We will show that
f(Az+ (1= Nw) < A(2) + (1 — AN)f(w).
> Letu=Xz+ (1 —-Aw e C. Then
u—(1-XNw 1=

Z-u=s——+——-u= T(w—u).
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Proof Contd.

» To prove the reverse direction, assume that that the gradient inequality holds.

> Let z,w € C, and let A € (0,1). We will show that
F(\z + (1 — \w) < AM(2) + (1 — \)f(w).
> Letu=Xz+ (1 —-Aw e C. Then
u—(1-XNw 1=

Z-u=s——+——-u= T(w—u).

» We have

f(u)—|—Vf(u)T(z—u) < f(2),
f(u)—%Vf(u)T(z—u) < f(w).
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Proof Contd.

» To prove the reverse direction, assume that that the gradient inequality holds.

> Let z,w € C, and let A € (0,1). We will show that
F(\z + (1 — \w) < AM(2) + (1 — \)f(w).
> Letu=Xz+ (1 —-Aw e C. Then

u—(1-X)w 1=
z—u—f—u_—T(w—u).
> We have
fu)+VF(u) (z—u) < f(2),
f(u)—%Vf(u)T(z—u) < fw).
» Thus,

f(u) < Af(z) + (1 — A)f(w).
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The Gradient Inequality for Strictly Convex Functions

Proposition Let f : C — R be a continuously differentiable function defined
on a convex set C C R". Then f is strictly convex over C if and only if

f(x) + VF(x)"(y — x) < f(y) for any x,y € C satisfying x #y
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Stationarity = Global Optimality

A direct result of the gradient inequality is that the first order optimality condition
Vf(x*) = 0 is sufficient for global optimality.

Proposition Let f be a continuously differentiable function which is convex

over a convex set C C R”. Suppose that Vf(x*) = 0 for some x* € C.
Then x* is the global minimizer of f over C.

Proof. In class
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Convexity of Quadratic Functions with Positive

Semidefinite Matrices

Theorem. Let f : R” — R be the quadratic function given by f(x) =
xTAx +2b7x + c where A € R™*" is symmetric, b € R” and ¢ € R. Then
f is (strictly) convex if and only if A = 0 (A > 0).
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Convexity of Quadratic Functions with Positive

Semidefinite Matrices

Theorem. Let f : R” — R be the quadratic function given by f(x) =
xTAx +2b7x + c where A € R™*" is symmetric, b € R” and ¢ € R. Then
f is (strictly) convex if and only if A = 0 (A > 0).

Proof.
» The convexity of f is equivalent to

f(y) > f(x) + VF(x)"(y — x) for any x,y € R"
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Convexity of Quadratic Functions with Positive

Semidefinite Matrices

Theorem. Let f : R” — R be the quadratic function given by f(x) =
xTAx +2b7x + c where A € R™*" is symmetric, b € R” and ¢ € R. Then
f is (strictly) convex if and only if A = 0 (A > 0).

Proof.
» The convexity of f is equivalent to

f(y) > f(x) + VF(x)"(y — x) for any x,y € R"

> Same as
y Ay +2bTy+c > xTAx+2b"x+c+2(Ax+b)T(y —x) for any x,y € R".
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Convexity of Quadratic Functions with Positive

Semidefinite Matrices

Theorem. Let f : R” — R be the quadratic function given by f(x) =
xTAx +2b7x + c where A € R™*" is symmetric, b € R” and ¢ € R. Then
f is (strictly) convex if and only if A = 0 (A > 0).

Proof.
» The convexity of f is equivalent to

f(y) > f(x) + VF(x)"(y — x) for any x,y € R"

> Same as
y Ay +2bTy+c > xTAx+2b"x+c+2(Ax+b)T(y —x) for any x,y € R".
» (y —x)TA(y —x) >0 for any x,y € R".
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Convexity of Quadratic Functions with Positive

Semidefinite Matrices

Theorem. Let f : R” — R be the quadratic function given by f(x) =
xTAx +2b7x + c where A € R™*" is symmetric, b € R” and ¢ € R. Then
f is (strictly) convex if and only if A = 0 (A > 0).

Proof.
» The convexity of f is equivalent to

f(y) > f(x) + VF(x)"(y — x) for any x,y € R"

» Same as

y Ay +2bTy+c > x"Ax+2b"x+ c+2(Ax+b)"(y —x) for any x,y € R".
» (y —x)TA(y —x) >0 for any x,y € R".
» Equivalent to the inequality d”Ad > 0 for any d € R".
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Convexity of Quadratic Functions with Positive

Semidefinite Matrices

Theorem. Let f : R” — R be the quadratic function given by f(x) =
xTAx +2b7x + c where A € R™*" is symmetric, b € R” and ¢ € R. Then
f is (strictly) convex if and only if A = 0 (A > 0).

Proof.
» The convexity of f is equivalent to

f(y) > f(x) + VF(x)"(y — x) for any x,y € R"

> Same as

y Ay +2bTy+c > xTAx+2b"x+c+2(Ax+b)T(y —x) for any x,y € R".
(y —x)TA(y — x) > 0 for any x,y € R".

Equivalent to the inequality d” Ad > 0 for any d € R".

Same as A = 0.
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Convexity of Quadratic Functions with Positive

Semidefinite Matrices

Theorem. Let f : R” — R be the quadratic function given by f(x) =
xTAx +2b7x + c where A € R™*" is symmetric, b € R” and ¢ € R. Then
f is (strictly) convex if and only if A = 0 (A > 0).

Proof.
» The convexity of f is equivalent to

f(y) > f(x) + VF(x)"(y — x) for any x,y € R"

Same as

y Ay +2bTy+c > x"Ax+2b"x+ c+2(Ax+b)"(y —x) for any x,y € R".
(y —x)TA(y — x) > 0 for any x,y € R".

Equivalent to the inequality d” Ad > 0 for any d € R".

Same as A = 0.

Similar arguments show that strict convexity is equivalent to

d"Ad > 0 for any 0 #£d € R",

v

vVvyyvyy

namely to A >~ 0.

Amir Beck “Introduction to Nonlinear Optimization” Lecture Slides - Convex Functions 9 /32



[llustration

4
T
“‘.nm‘

Iy \\I\‘\\‘ u

n““‘!\\m\‘ “"‘

\\\\\\\\\

i

\ \I¢ A N,u
i
L,
\‘k‘l‘ﬁi"’:-‘v' o

Amir Beck

A
it
gt
t‘"‘t‘."’l’o‘l’o'o":';‘o

h
i
R

“Introduction to Nonlinear Optimization” Lecture Slides - Convex Functions

10 / 32



Monotonicity of the Gradient

Theorem. Suppose that f is a continuously differentiable function over a
convex set C C R”. Then f is convex over C if and only if

(VF(x) — Vf(y))"(x —y) >0 for any x,y € C.

See the proof of Theorem 8.11 on pages 122,123 of the book.
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Second-Order Characterization of Convexity

Theorem. Let f be a twice continuously differentiable function over an open
convex set C C R". Then f is convex over C if and only if V2f(x) = 0 for
any x € C.

Proof.
» Suppose that V2f(x) = 0Vx € C. Let x,y € C, then 3z € [x,y] € C:

Ly — )TV ()(y - x).

Fly) = F(x) + VFX)T(y = %) + 5
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Second-Order Characterization of Convexity

Theorem. Let f be a twice continuously differentiable function over an open
convex set C C R". Then f is convex over C if and only if V2f(x) = 0 for
any x € C.

Proof.
» Suppose that V2f(x) = 0Vx € C. Let x,y € C, then 3z € [x,y] € C:

Ly — )TV ()(y - x).

Fly) = F(x) + VFX)T(y = %) + 5

» (y —x)TV2f(2)(y — x) > 0= f(y) > f(x) + VF(x)T(y — x) = f convex.
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Second-Order Characterization of Convexity

Theorem. Let f be a twice continuously differentiable function over an open
convex set C C R". Then f is convex over C if and only if V2f(x) = 0 for
any x € C.

Proof.
» Suppose that V2f(x) = 0Vx € C. Let x,y € C, then 3z € [x,y] € C:

Ly — )TV ()(y - x).

Fly) = F(x) + VFX)T(y = %) + 5

» (y —x)TV2f(2)(y — x) > 0= f(y) > f(x) + VF(x)T(y — x) = f convex.
> Suppose that f is convex over C. Let x € C and let y € R".

Amir Beck “Introduction to Nonlinear Optimization” Lecture Slides - Convex Functions 12 /32



Second-Order Characterization of Convexity

Theorem. Let f be a twice continuously differentiable function over an open
convex set C C R". Then f is convex over C if and only if V2f(x) = 0 for
any x € C.

Proof.
» Suppose that V2f(x) = 0Vx € C. Let x,y € C, then 3z € [x,y] € C:

20TV )y %)

Fly) = f(x) + VF(x)"(y = x) +
» (y —x)TV2f(2)(y — x) > 0= f(y) > f(x) + VF(x)T(y — x) = f convex.
> Suppose that f is convex over C. Let x € C and let y € R".
» C is open = Je > 0 such that x + Ay € C VA € (0,¢).
f(x+ Ay) > f(x) + AVF(x)Ty.
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Second-Order Characterization of Convexity

Theorem. Let f be a twice continuously differentiable function over an open
convex set C C R". Then f is convex over C if and only if V2f(x) = 0 for
any x € C.

Proof.
» Suppose that V2f(x) = 0Vx € C. Let x,y € C, then 3z € [x,y] € C:

Ly — )TV ()(y - x).

Fly) = F(x) + VFX)T(y = %) + 5

v

(y —x)TV2f(z)(y — x) > 0= f(y) > f(x) + VF(x)"(y — x) = f convex.
Suppose that f is convex over C. Let x € C and let y € R".
» C is open = Je > 0 such that x + Ay € C VA € (0,¢).
f(x+ Ay) > f(x) + AVF(x)Ty.
Fx+Ay) = F(x) + AVAX) Ty + 3yTV2F(x)y + o(A2]ly| ).

v

v

Amir Beck “Introduction to Nonlinear Optimization” Lecture Slides - Convex Functions 12 /32



Second-Order Characterization of Convexity

Theorem. Let f be a twice continuously differentiable function over an open
convex set C C R". Then f is convex over C if and only if V2f(x) = 0 for
any x € C.

Proof.
» Suppose that V2f(x) = 0Vx € C. Let x,y € C, then 3z € [x,y] € C:

20TV )y %)

Fly) = f(x) + VF(x)"(y = x) +

v

(y —x)TV2f(z)(y — x) > 0= f(y) > f(x) + VF(x)"(y — x) = f convex.
Suppose that f is convex over C. Let x € C and let y € R".
» C is open = Je > 0 such that x + Ay € C VA € (0,¢).
f(x+ Ay) > f(x) + AVF(x)Ty.
Fx+Xy) = F(x) + AVF(x) Ty + 3y V2 (x)y + o(A2]ly[?).
Thus, 2y7V2f(x)y + o(A2]ly[?) > 0 for any A € (0,&).

v

v

v
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Second-Order Characterization of Convexity

Theorem. Let f be a twice continuously differentiable function over an open
convex set C C R". Then f is convex over C if and only if V2f(x) = 0 for
any x € C.

Proof.
» Suppose that V2f(x) = 0Vx € C. Let x,y € C, then 3z € [x,y] € C:

Ly — )TV ()(y - x).

Fly) = F(x) + VFX)T(y = %) + 5

v

(y —x)TV2(z)(y —x) > 0= f(y) > f(x) + VF(x)"(y — x) = f convex.
Suppose that f is convex over C. Let x € C and let y € R".
» C is open = Je > 0 such that x + Ay € C VA € (0,¢).
f(x+ Ay) > f(x) + AVF(x)Ty.

2
F(x +Ay) = F(x) + AVF(x) Ty + Sy V2 F(x)y + o(N|ly[).
Thus, 2yTV2f(x)y + o(A2ly||2) > 0 for any X € (0,).

2 2
Dividing by A2, 3y7V2f(x)y + 220 > o,

v

v

v
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Second-Order Characterization of Convexity

Theorem. Let f be a twice continuously differentiable function over an open
convex set C C R". Then f is convex over C if and only if V2f(x) = 0 for
any x € C.

Proof.
» Suppose that V2f(x) = 0Vx € C. Let x,y € C, then 3z € [x,y] € C:

Ly — )TV ()(y - x).

Fly) = F(x) + VFX)T(y = %) + 5

v

(y —x)TV2f(z)(y — x) > 0= f(y) > f(x) + VF(x)"(y — x) = f convex.
Suppose that f is convex over C. Let x € C and let y € R".
C is open = Je > 0 such that x+ Ay € C VA € (0,¢).
f(x+ Ay) > f(x) + AVF(x)Ty.
Fx+Ay) = F(x) + AVAX) Ty + 3 yTV2F(x)y + o(A2]y|?).
Thus, 2y7V2f(x)y + o(A2]ly[?) > 0 for any A € (0,&).
Dividing by A2, 2yTV2f(x)y + 2D > g,
Taking A — 0T, we have y" V2f(x)y > OVy € R".

vy VY vy
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Second-Order Characterization of Convexity

Theorem. Let f be a twice continuously differentiable function over an open
convex set C C R". Then f is convex over C if and only if V2f(x) = 0 for
any x € C.

Proof.
» Suppose that V2f(x) = 0Vx € C. Let x,y € C, then 3z € [x,y] € C:

20TV )y %)

Fly) = f(x) + VF(x)"(y = x) +

v

(y —x)TV2f(z)(y — x) > 0= f(y) > f(x) + VF(x)"(y — x) = f convex.
Suppose that f is convex over C. Let x € C and let y € R".
C is open = Je > 0 such that x+ Ay € C VA € (0,¢).
f(x+ Ay) > f(x) + AVF(x)Ty.
Fx+Ay) = F(x) + AVAX) Ty + 3 yTV2F(x)y + o(A2]y|?).
Thus, 2y7V2f(x)y + o(A2]ly[?) > 0 for any A € (0,&).
Dividing by A2, 2yTV2f(x)y + 2D > g,
Taking A — 0T, we have y" V2f(x)y > OVy € R".
» Hence V2f(x) = 0 for any x € C.
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Convexity of the log-sum-exp function
> f(x)=log(e® +e2+...+€%), xeR”
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Convexity of the log-sum-exp function

> f(x)=log(e® +e2+...+€%), xeR”
gxfi(x):ﬁl’exj, i=1,2,...,n,
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Convexity of the log-sum-exp function

> f(x)=log(e® +e2+...+€%), xeR”
> gxfi(x):ﬁ;exj, i=1,2,...,n,

eX" eXJ . .
ey i #J,
9f _ Sr,ev)t
> Ox;0x; (X) - _( éxflexj )

i . .
- | =
(Z?:l ey )2 * YT J
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Convexity of the log-sum-exp function
> f(x)=log(e® +e2+...+€%), xeR”

»gxfi(x):ﬁ;exj, i=1,2,...,n,
eX"er . .
o i #
o’f Sy, ei)’
> Ox;0x; (X) = _( éxilexj ) .

i T
(Zpy e )2 * YT =
» We can thus write the Hessian matrix as

V2f(x) = diag(w) —ww', w= (Znelex) € A,

j=1
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Convexity of the log-sum-exp function
> f(x)=log(e+e2+...+e), xeR"

»gxfi(x):%, i=1,2,....n
e'el I;é_]
2 Zn Vi ? )
> 2w =1 TR

i i=i
(Z?Zl er) Zle v -/
» We can thus write the Hessian matrix as

V2f(x) = diag(w) —ww', w= (Zne'> € A,

. eXN
j=1 i=1

» ForanyveR™ vIV2f(x)v =" wv? — (v w)? > 0 since defining

si = /wv;, t; = /w;, we have

n n n
(vIw)? = (sTt)* < [s|?[1t]* = (Z WiVi2> (Z Wi> => wivi.
i=1 i=1 i=1
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Convexity of the log-sum-exp function

>
>

f(x)=log(e" +e2+...+e), xeR"

of _ ei P
ax,-(x)_zj’,’zlexj7 1_1727'”7”
_ efie . -
. £
ZL(x) = (zuej)’ ’
Ox;0x; - etiel e _ i :J
(Z?Zl er) Zle e’
We can thus write the Hessian matrix as

V2f(x) = diag(w) —ww', w= % € A,
2j=1€" i=1

Forany v € R™: v V2f(x)v = Y7, w;v? — (v w)2 > 0 since defining

si = /wv;, t; = /w;, we have
n n n
(vTw)? = (sTt)* < s|?|It)|* = (Z w,-v,-2> (Z Wi> => wivi.
i=1 i=1 i=1

Thus, V2f(x) = 0 and hence f is convex over R".
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Convexity of quad-over-lin

2

X:

f(Xl,Xz) = f
2

defined over R x R, = {(x1, %) : xo > 0}.
In class
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Operations Preserving Convexity

» Convexity is preserved under several operations such as summation,
multiplication by positive scalars and affine change of variables.

Theorem.

» Let f be a convex function defined over a convex set C C R" and let
o > 0. Then «f is a convex function over C.

> Let 1,5,...,f, be convex functions over a convex set C C R". Then
the sum function f; + f + ... + f, is convex over C.

» Let f be a convex function defined on a convex set C C R". Let
A € R™™ and b € R". Then the function g defined by

g(y) = f(Ay +b).

is convex over the convex set D = {y e R™: Ay + b € C}.

See the proofs of Theorems 7.16 and 7.17 of the book.
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Example: Generalized quadratic-over-linear

The generalized quad-over-lin function

|Ax + b||? «
=1—— " (AcR™"bcR"ccR",dcR
g(x) X d (Ac ,beR" cecR",deR)

is convex over D = {x € R": ¢ x + d > 0}.
In class
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Examples of Convex Functions

>
f(xi, %) = X12 + 2x1% + 3x22 + 2x1 — 3x0 + €.
>
f(Xl,X2,X3) = eX17X2+X3 + 62X2 + X1
>
f(x1,x2) = — log(x1x2)
2
over R% ,
In class
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Preservation of Convexity under Composition

Theorem. Let f : C — R be a convex function defined over the convex
set C C R". Let g : | — R be a one-dimensional nondecreasing convex
function over the interval /| C R. Assume that the image of C under f is
contained in /: f(C) C I. Then the composition of g with f defined by

h(x) = g(f(x))

is convex over C.

Proof Outline. Let x,y € C and let A € [0,1]. Then

h(Ax+ (1= A)y) = g(f(Ax+ (1= A)y))
< g(Af(x) + (1 = A)f(y))
< Ag(f(x)) + (1 - Ag(f(y))
= Ah(x) + (1 = A)h(y),

thus establishing the convexity of h.
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Examples

> h(x) = el
> h(x) = (|Ix[|* +1)?

In class
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Point-Wise Maximum of Convex Functions
Theorem. Let f1,f,...,f, : C =+ R be p convex functions over the convex
set C C R". Then the maximum function

f(x) = __max p{f,-(x)}

=dEnecoy

is convex over C.

Proof Outline Let x,y € C and A € [0,1]. Then

fAx+(1=A)y) =maxi=12,.. ,fi(Ax+(1—N)y)
< maxi=12,... p{Afi(x) + (1 = N)fi(y)}

= M (x) + (1 = N)f(y).
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Point-Wise Maximum of Convex Functions
Theorem. Let f1,f,...,f, : C =+ R be p convex functions over the convex
set C C R". Then the maximum function
f(x) = max {fi(x)}
i=1,2,...,p

is convex over C.

Proof Outline Let x,y € C and A € [0,1]. Then

fAx+(1=A)y) =maxi=12,.. ,fi(Ax+(1—N)y)
< maxi=12,... p{Afi(x) + (1 = N)fi(y)}

= M (x) + (1 = N)f(y).

Examples.
> f(x) = max{x1,x,...,X,} is convex.
» For a given vector x = (x1,x2,...,%,)] € R", let [ denote the i-th largest
value in x. For any k € {1,2,..., n} the function

hk(x) =xp) + X+ X

is convex. why?

Amir Beck “Introduction to Nonlinear Optimization” Lecture Slides - Convex Functions 20 / 32



Preservation of Convexity Under Partial Minimization

Theorem. Let f : C x D — R be a convex function defined over the set
C x D where C CR™ and D C R” are convex sets. Let

— minf C
g(x) iy (x,y), xeC,

where we assume that the minimum is finite. Then g is convex over C.
Proof. Let x;,x, € C and \ € [0,1]. Take e > 0. Then 3Jy;,y, € D:
f(X17Y1) S g(xl) + €, f(x27y2) S g(Xz) +e.
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Preservation of Convexity Under Partial Minimization

Theorem. Let f : C x D — R be a convex function defined over the set
C x D where C CR™ and D C R” are convex sets. Let

= minf C
g(x) 5l (x,y), xeC,

where we assume that the minimum is finite. Then g is convex over C.

Proof. Let x;,x, € C and \ € [0,1]. Take e > 0. Then 3Jy;,y, € D:
f(x1,y1) < g(x1) +¢&,f(x2,¥2) < g(x2) +¢.
By the convexity of f we have
f()\Xl + (1 - )\)Xz7 Ay; + (1 - )\)yz) < )\f(Xl,yl) + (1 — )\))‘-(Xz7 y2)
< Ag(x) +e) + (1 - A)(g(x2) +e)
= Ag(x1) + (1= A)g(x2) +e.

Since the above inequality holds for any € > 0, it follows that
g(Ax1 + (1= A)x2) < Ag(x1) + (1 = A)g(xa).
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Preservation of Convexity Under Partial Minimization

Theorem. Let f : C x D — R be a convex function defined over the set
C x D where C CR™ and D C R” are convex sets. Let

= minf C
g(x) 5l (x,y), xeC,

where we assume that the minimum is finite. Then g is convex over C.

Proof. Let x;,x, € C and \ € [0,1]. Take e > 0. Then 3Jy;,y, € D:
f(X17Y1) S g(xl) + €, f(x27y2) S g(x2) +e.

By the convexity of f we have
F(Ax1 4 (1= A)x2, Ay1 + (1 = N)y2) < AM(x1,y1) + (1 = N)f(x2,y2)
< Mg(xa) +e) + (1= A)(g(x2) +¢)
= Ag(x) +(1-Ag(x2) +e
Since the above inequality holds for any € > 0, it follows that
g(Ax1 + (1= A)x2) < Ag(x1) + (1 — Mg (x2).

Example: The distance function from a convex set dc(x) = infyec ||x —y|| is
convex.
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Level Sets

Definition. Let f : S — R be a function defined over a set S C R". Then the level
set of f with level « is given by

Lev(f,a) ={x € S : f(x) < a}.
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Level Sets

Definition. Let f : S — R be a function defined over a set S C R". Then the level
set of f with level « is given by

Lev(f,a) ={x € S : f(x) < a}.

Theorem. Let f : C — R be a convex function over the convex set C C R”".
Then for any a € R the level set Lev(f, a) is convex. }

Proof.
> Let x,y € Lev(f,a) and A € [0,1].
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Level Sets

Definition. Let f : S — R be a function defined over a set S C R". Then the level
set of f with level « is given by

Lev(f,a) ={x € S : f(x) < a}.

Theorem. Let f : C — R be a convex function over the convex set C C R”".
Then for any a € R the level set Lev(f, a) is convex. }

Proof.
> Let x,y € Lev(f,a) and A € [0,1].
» Then f(x), f(y) < «. Hence,

FOX 4 (1= A)y) < M)+ (1= Nf(y) < Ao+ (1 - Na=a,
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Level Sets

Definition. Let f : S — R be a function defined over a set S C R". Then the level
set of f with level « is given by

Lev(f,a) ={x € S : f(x) < a}.

Theorem. Let f : C — R be a convex function over the convex set C C R”".
Then for any a € R the level set Lev(f, a) is convex. }

Proof.
> Let x,y € Lev(f,a) and A € [0,1].
» Then f(x), f(y) < «. Hence,

FOX + (1= A)y) < MX)+ (1 - NF(y) < Aa+(1—Na = a,
> Ax+ (1 —\)y € Lev(f, a), and we have established the convexity of
Lev(f, a).
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Quasi-Convex Functions
» Definition. A function f : C — R defined over the convex set C C R" is
called quasi-convex if for any a € R the set Lev(f, a) is convex.
Examples:
> f(x) =+/|x].
> f(x) = alxth over C = {x € R":c"x+ d > 0}. where a,c € R" and

— cTx+d?
b,d € R.

; |
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Continuity of Convex Functions

Theorem. Let f : C — R be a convex function defined over a convex set
C C R". Let xg € int(C). Then there exist € > 0 and L > 0 such that
B[xg,€] € C and

[f(x) — f(x0)| < L||x — xo| for any x € B][xo, €]

Proof.
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Continuity of Convex Functions

Theorem. Let f : C — R be a convex function defined over a convex set
C C R". Let xg € int(C). Then there exist € > 0 and L > 0 such that
B[xg,€] € C and

[f(x) — f(x0)| < L||x — xo| for any x € B][xo, €]

Proof.
> Take £ > 0 such that B [xg,e] = {x € R" : ||x — X0||oc < e} C C.
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Continuity of Convex Functions

Theorem. Let f : C — R be a convex function defined over a convex set
C C R". Let xg € int(C). Then there exist € > 0 and L > 0 such that
B[xg,€] € C and

[f(x) — f(x0)| < L||x — xo| for any x € B][xo, €]

Proof.
> Take £ > 0 such that B [xg,e] = {x € R" : ||x — X0||oc < e} C C.
> Let vi,vo,..., Vo be the 2" extreme points of By[xo, <]
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Continuity of Convex Functions

Theorem. Let f : C — R be a convex function defined over a convex set
C C R". Let xg € int(C). Then there exist € > 0 and L > 0 such that
Blxo, €] C C and

[f(x) — f(x0)| < L||x — xo| for any x € B][xo, €]

Proof.
> Take £ > 0 such that B [xg,e] = {x € R" : ||x — X0||oc < e} C C.
> Let vi,vo,..., Vo be the 2" extreme points of By[xo, <]

on

> For any x € Bu[xo, €] there exists X € Ay such that x = >"7_; Aiv;.
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Continuity of Convex Functions

Theorem. Let f : C — R be a convex function defined over a convex set

C C R". Let xg € int(C). Then there exist € > 0 and L > 0 such that
Blxo, €] C C and

[f(x) — f(x0)| < L||x — xo| for any x € B][xo, €]

Proof.
> Take £ > 0 such that B [xg,e] = {x € R" : ||x — X0||oc < e} C C.
> Let vi,vo,..., Vo be the 2" extreme points of By[xo, <]

> For any x € B[, €] there exists A € Ayn such that x = lezl Aiv;.By
Jensen's inequality,

F(x) = £ (X7 Aw) < 57 if(w) < M,

where M = max _ f(v;).
i=1,2,...,2n

Amir Beck “Introduction to Nonlinear Optimization” Lecture Slides - Convex Functions 24 /32



Continuity of Convex Functions

Theorem. Let f : C — R be a convex function defined over a convex set
C C R". Let xg € int(C). Then there exist € > 0 and L > 0 such that
Blxo, €] C C and

[f(x) — f(x0)| < L||x — xo| for any x € B][xo, €]

Proof.
> Take £ > 0 such that B [xg,e] = {x € R" : ||x — X0||oc < e} C C.
> Let vi,vo,..., Vo be the 2" extreme points of By[xo, <]

> For any x € B[, €] there exists A € Ayn such that x = lezl Aiv;.By
Jensen's inequality,

F(x) = £ (X7 Aw) < 57 if(w) < M,

where M = max _ f(v;).

on

3L2yeany

> Bylxo, ] = Bxo,] = {x € R : ||x — xo||2 < £} € Buc[xo,¢].

Amir Beck “Introduction to Nonlinear Optimization” Lecture Slides - Convex Functions 24 /32



Continuity of Convex Functions

Theorem. Let f : C — R be a convex function defined over a convex set
C C R". Let xg € int(C). Then there exist € > 0 and L > 0 such that
Blxo, €] C C and

[f(x) — f(x0)| < L||x — xo| for any x € B][xo, €]

Proof.
> Take £ > 0 such that B [xg,e] = {x € R" : ||x — X0||oc < e} C C.
> Let vi,vo,..., Vo be the 2" extreme points of By[xo, <]

> For any x € B[, €] there exists A € Ayn such that x = lezl Aiv;.By
Jensen's inequality,

F(x) = £ (X7 Aw) < 57 if(w) < M,

where M = _max f(v;).
> Bylxo, ] = Bxo,] = {x € R : ||x — xo||2 < £} € Buc[xo,¢].
> We therefore conclude that f(x) < M for any x € BJxo, £].
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Continuity of Convex Functions Contd.
> Let x € B[xo, ] be such that x # xg. Define

1 1
z=x9+ —(x—x0), a=—|x—xo
o 5
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Continuity of Convex Functions Contd.
> Let x € B[xo, ] be such that x # xg. Define

1 1
z=x9+ —(x—x0), a=—|x—xo
o 5

> Then obviously @ <1 and z € B[xg,¢], and in particular f(z) < M.
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Continuity of Convex Functions Contd.
> Let x € B[xo, ] be such that x # xg. Define

1 1
z=x9+ —(x—x0), a=—|x—xo
o 5

> Then obviously @ <1 and z € B[xg,¢], and in particular f(z) < M.
> x=az+ (1 — a)x.
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Continuity of Convex Functions Contd.
> Let x € B[xo, ] be such that x # xg. Define

1 1
z=x9+ —(x—x0), a=—|x—xo
o 5

> Then obviously a < 1 and z € B|xg,¢], and in particular f(z) < M.
> x=az+ (1 — a)x.
» Consequently,

f(x) < af(z)+ (1 —a)f(x0) < f(x0) + (M —f(x0)) = f(x0) + M—Tf(xo)

[[x = xoll-
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Continuity of Convex Functions Contd.
> Let x € B[xo, ] be such that x # xg. Define

1 1
z=x9+ —(x—x0), a=—|x—xo
o 5

v

Then obviously a < 1 and z € B[xg, €], and in particular f(z) < M.

> x=az+ (1 — a)x.
» Consequently,
M — f(Xo)
F(x) < af(2) + (1-a)f(x0) < F(x0) + a(M — £(x0)) = F(xo) + U Jx—xg].

v

ThUS, f(X) — f(Xo) < L”X — XOH’ where L = %(XO)
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Continuity of Convex Functions Contd.
> Let x € B[xo, ] be such that x # xg. Define

1 1
z=x9+ —(x—x0), a=—|x—xo
o 5

> Then obviously @ <1 and z € B[xg,¢], and in particular f(z) < M.
x=az+ (1 — a)xo.
» Consequently,

v

M — f(Xo)
£

F(x) < af(2) + (1 - a)f(x0) < F(x0) +a(M - F(x0)) = F(x0) + Ix—xoll.

» Thus, f(x) — f(xo) < L||x — Xol|, where L = %(Xo)
> We need to show that f(x) — f(xq) > —L||x — xo||-
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Continuity of Convex Functions Contd.
> Let x € B[xo, ] be such that x # xg. Define

1 1
z=x9+ —(x—x0), a=—|x—xo
o 5

Then obviously & < 1 and z € BJxg, €], and in particular f(z) < M.
x=az+ (1 — a)xo.
Consequently,

vYvyy

f(x) < af(z)+ (1 —a)f(x0) < f(x0) + (M —f(x0)) = f(x0) +

M= 100D 1y

Thus, f(x) — f(xo) < L||x — xo||, where L = %(x")
We need to show that f(x) — f(xo) > —L||x — xo]|.
Define u = xo + % (xo — x). Since u € B[xg, €], then f(u) < M.
x = Xg + a(xg — u). Therefore,
f(x) = f(xo+ a(xo—u)) > f(x0) + a(f(xg) — f(u))
M — f(x

= f(x0) — Ll[x — xo|
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Existence of Directional Derivatives of Convex Functions

Theorem. Let f : C — R be a convex function over the convex set C C R”".
Let x € int(C). Then for any d # 0, the directional derivative /(x;d)
exists.

Proof.
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Existence of Directional Derivatives of Convex Functions

Theorem. Let f : C — R be a convex function over the convex set C C R”".
Let x € int(C). Then for any d # 0, the directional derivative f'(x;d)

exists.
Proof.
> Let x € int(C) and let d # 0. Then the directional derivative (if exists) is the
limit
. t)—g(0
im £ =80 1) = f(x+ ta)) (2)
t—0* t
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Existence of Directional Derivatives of Convex Functions

Theorem. Let f : C — R be a convex function over the convex set C C R”".
Let x € int(C). Then for any d # 0, the directional derivative f'(x;d)

exists.
Proof.
> Let x € int(C) and let d # 0. Then the directional derivative (if exists) is the
limit
. t)—g(0
im £ =80 1) = f(x+ ta)) (2)
t—0* t

> Defining h(t) = £&0=8© (2) is the same as lim;_,o+ h(t).
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Existence of Directional Derivatives of Convex Functions

Theorem. Let f : C — R be a convex function over the convex set C C R”".
Let x € int(C). Then for any d # 0, the directional derivative f’(x;d)J

exists.
Proof.
> Let x € int(C) and let d # 0. Then the directional derivative (if exists) is the
limit
. t)—g(0
im £ =80 1) = f(x+ ta)) (2)
t—0* t

> Defining h(t) = £&0=8© (2) is the same as lim;_,o+ h(t).
> We will take an £ > 0 for which x + td,x — td € C for all t € [0, ¢].
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Existence of Directional Derivatives of Convex Functions

Theorem. Let f : C — R be a convex function over the convex set C C R".
Let x € int(C). Then for any d # 0, the directional derivative f’(x;d)J

exists.
Proof.
> Let x € int(C) and let d # 0. Then the directional derivative (if exists) is the
limit
. t)—g(0
im £ =80 1) = f(x+ ta)) (2)
t—0* t

> Defining h(t) = £&0=8© (2) is the same as lim;_,o+ h(t).
> We will take an £ > 0 for which x + td,x — td € C for all t € [0, ¢].

» Let 0 <ty < tp <e. Then f(x+ t1d) < ( — 3) f(x) + 2f(x + tod).

tr
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Existence of Directional Derivatives of Convex Functions

Theorem. Let f : C — R be a convex function over the convex set C C R".
Let x € int(C). Then for any d # 0, the directional derivative f’(x;d)J

exists.
Proof.
> Let x € int(C) and let d # 0. Then the directional derivative (if exists) is the
limit
. t)—g(0
im £ =80 1) = f(x+ ta)) (2)
t—0* t

v

Defining h(t) = £9=80) ' (2) is the same as lim; o+ h(t).
We will take an € > 0 for which x + td,x — td € C for all t € [0,¢].

Let 0 < t; < tp <e. Then f(x + t;d) < ( — H) f(x) + 2f(x + tod).

tr

v

v

(x+t1d)—f(x) < f(x+tod)—f(x)
t1 :

f
» Consequently, < 5
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Existence of Directional Derivatives of Convex Functions

Theorem. Let f : C — R be a convex function over the convex set C C R".
Let x € int(C). Then for any d # 0, the directional derivative f’(x;d)J

exists.
Proof.
> Let x € int(C) and let d # 0. Then the directional derivative (if exists) is the
limit
. t) —g(0
im £ =80 1) = f(x+ ta)) (2)
t—0* t

v

Defining h(t) = £9=80) ' (2) is the same as lim; o+ h(t).
We will take an € > 0 for which x + td,x — td € C for all t € [0,¢].

Let 0 < t; < tp <e. Then f(x + t;d) < ( — H) f(x) + 2f(x + tod).

tr

v

v

v

(x+t1d)—f(x) < f(x+tod)—f(x)
t1 :

Consequently, f < 5

v

Thus, h(t;) < h(ty) = h is monotone nondecreasing over R . All that is
left is to show that it is bounded below over (0, ¢].
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Proof Contd.

» Take 0 < t < . Note that

t
td —ed).
(x + )+€+t(x ed)

e+t

» Hence,
f(x) <

t
f td) + ——f(x — ed).
s+t(x+ )+6+t(x ed)
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Proof Contd.

» Take 0 < t < . Note that

€
= td —ed).
X E+t(x+ )+€+t(x ed)
» Hence, .
f(x) < f td —f(x — ed).
(x)fé‘-&-t (X—l— )+8—|—t (x E)

> After some rearrangement of terms,

h(t) = f(x+ tdt) — f(x) > f(x) — fg(x—ad)'
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Proof Contd.

» Take 0 < t < . Note that

(x + td) +

—ed).
e+t €+t(x 6)

» Hence,

e t
< _ — .
f(x) < tf(x+td)+5+tf(x ed)

€

> After some rearrangement of terms,

f(x+ td) — f(x) < f(x) — f(x—ad)'
t o €

h(t) =

> his bounded below over (0, <].
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Proof Contd.

» Take 0 < t < . Note that

€
= td —ed).
e E+t(x+ )+€+t(x ed)
» Hence, .
€
f(x) < f td —f(x —ed).
(x) <~ flx+ td) + ——F(x — =d)
> After some rearrangement of terms,

f(x+ td) — f(x) < f(x) — f(x—ad)'
t o €

h(t) =

v

h is bounded below over (0, ¢].

v

Since h is nondecreasing and bounded below over (0, €], the limit
lim;_o+ h(t) exists = the directional derivative f'(x;d) exists.
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Extended Real-Valued Functions

>

Until now we have discussed functions that are real-valued, meaning that
they take their values in R = (—o0, 00).

We will now consider functions that take their values in RU{oco} = (—o0, ¢].
Such functions are called extended real-valued functions.

Example: the indicator function: given a set S C R”, the indicator function
0s : R" - R U {oo} is given by

0 ifxe S,
s ={ % nee

The effective domain of an extended real-valued function is the set of vectors
for which the function takes a real value:

dom(f) = {x € R": f(x) < c0}.

An extended real-valued function f : R” — R U {0} is called proper if is not
always equal to infinity, meaning that there exists xo € R” such that
f(xg) < o0.
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Extended Real-Valued Functions Contd.

> An extended real-valued function is convex if for any x,y € R" and X € [0, 1]
the following inequality holds:

f(Ax 4 (1= A)y) < M(x) + (1= M) (y),
where we use the usual arithmetic rules with oo such as

at+oo = oo forany aeR,
a-oo = ooforanyaeR,,.

In addition, we have the much less obvious rule that 0 - co = 0.

> It is easy to show that an extended real-valued function is convex iff dom(f)
is a convex set and the restriction of f to its effective domain is a convex
real-valued function over dom(f).

> As an example, the indicator function d¢(-) of a set C C R" is convex if and
only if C is a convex set.

29 / 32
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The Epigraph

» Definition. Let f : R” — RU {oo}. Then its epigraph epi(f) € R™™ is
defined to be the set

epi(f) = {(x; t) : f(x) < t}.

epi(f)

It is not difficult to show that an extended real-valued function f is convex if and
only if its epigraph set epi(f) is convex.
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Preservation of Convexity Under Supremum

Theorem. Let f; : R” — R U {oco} be an extended real-valued convex
functions for any i € | (/ being an arbitrary index set). Then the function
f(x) = sup;¢ fi(x) is an extended real-valued convex function.

Proof. f; convex for all i = epi(f;) convex = epi(f) = Njes epi(f;) convex =
f(x) = sup;¢, fi(x) is convex.
» Support Functions. Let S C R". The support function of S is the function

os(x) =supx'y.
yES

The support function is a convex function (regardless of whether S is convex
or not).

Amir Beck “Introduction to Nonlinear Optimization” Lecture Slides - Convex Functions 31/32



Maximum of a Convex Fun. over a Compact Convex Set

Theorem. Let f : C — R be convex over the nonempty convex and compact
set C C R". Then there exists at least one maximizer of f over C that is
an extreme point of C.

Proof.
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Maximum of a Convex Fun. over a Compact Convex Set

Theorem. Let f : C — R be convex over the nonempty convex and compact
set C C R". Then there exists at least one maximizer of f over C that is
an extreme point of C.

Proof.

> Let x* be a maximizer of f over C. If x* is an extreme point of C, then the
result is established. Otherwise,
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Maximum of a Convex Fun. over a Compact Convex Set

Theorem. Let f : C — R be convex over the nonempty convex and compact
set C C R". Then there exists at least one maximizer of f over C that is
an extreme point of C.

Proof.

> Let x* be a maximizer of f over C. If x* is an extreme point of C, then the
result is established. Otherwise,

» By Krein-Milman, C = conv(ext(C)) = Ix1,Xz,..., %k € ext(C) and

A€ Ay s.t.
k
x* = Z )\,‘X,‘.
i=1
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Theorem. Let f : C — R be convex over the nonempty convex and compact
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> Let x* be a maximizer of f over C. If x* is an extreme point of C, then the
result is established. Otherwise,

» By Krein-Milman, C = conv(ext(C)) = Ix1,Xz,..., %k € ext(C) and

A€ Ay s.t.
k

x* = E )\,‘X,‘.
i=1

> By convexity of f,

k
f(X*) S Z )\,‘f(X,‘),

i=1
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Maximum of a Convex Fun. over a Compact Convex Set

Theorem. Let f : C — R be convex over the nonempty convex and compact
set C C R". Then there exists at least one maximizer of f over C that is
an extreme point of C.

Proof.

> Let x* be a maximizer of f over C. If x* is an extreme point of C, then the
result is established. Otherwise,

» By Krein-Milman, C = conv(ext(C)) = Ix1,Xz,..., %k € ext(C) and

A€ Ay s.t.
k

x* = E )\,‘X,‘.
i=1

> By convexity of f,

k
f(X*) S Z )\,‘f(X,‘),

i=1

> S N(F(xi) — F(x*)) > 0= £(x;) = F(x*) (why?)
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