Lecture 6 - Convex Sets

Definition A set C C R" is called convex if for any x,y € C and X € [0, 1],
the point Ax + (1 — \)y belongs to C. J

» The above definition is equivalent to saying that for any x,y € C, the line
segment [x,y] is also in C.
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Examples of Convex Sets

» Lines: A line in R"” is a set of the form
L={z+1td:t e R},

where z,d € R” and d # 0.

> [x,y], (x,y) for x,y € R"(x # y).
> O,R".
» A hyperplane is a set of the form

H={xecR":a"x=b} (acR"\{0},bcR)
The associated half-space is the set
H™ ={xcR":a"x < b}

Both hyperplanes and half-spaces are convex sets.
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Convexity of Balls
Lemma. Let c € R” and r > 0. Then the open ball

B(c,r)={xeR":|x—c| <r}
and the closed ball
Ble,rl={x€eR":|x—c| <r}

are convex.

Note that the norm is an arbitrary norm defined over R”.
Proof. In class
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Convexity of Ellipsoids

An ellipsoid is a set of the form
E={xeR": xTQx+2bTx+c§O},
where Q € R"*" is positive semidefinite, b € R"” and ¢ € R.

Lemma: E is convex. )

Proof.
» Write E as E = {x € R" : f(x) < 0} where f(x) =x"Qx +2b"x + c.
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Convexity of Ellipsoids

An ellipsoid is a set of the form
E={xcR":x"Qx+2b"x+ c <0},
where Q € R"*" is positive semidefinite, b € R"” and ¢ € R.

Lemma: E is convex. )

Proof.
» Write E as E = {x € R" : f(x) < 0} where f(x) =x"Qx +2b"x + c.
> Take x,y € E and A € [0,1]. Then f(x) <0,f(y) <0.

Amir Beck “Introduction to Nonlinear Optimization” Lecture Slides - Convex Sets 5/32



Convexity of Ellipsoids

An ellipsoid is a set of the form
E={xecR":x"Qx+2b"x+c <0},
where Q € R"*" is positive semidefinite, b € R"” and ¢ € R.

Lemma: E is convex.

Proof.

» Write E as E = {x € R" : f(x) < 0} where f(x) =x"Qx +2b"x + c.

> Take x,y € E and A € [0,1]. Then f(x) <0,f(y) <0.
> The vector z = Ax + (1 — A)y satisfies
2"Qz = \x"Qx + (1 — A2y Qy +2\(1 — \)x'Qy.

Amir Beck “Introduction to Nonlinear Optimization” Lecture Slides - Convex Sets

5/32



Convexity of Ellipsoids

An ellipsoid is a set of the form
E={xecR":x"Qx+2b"x+c <0},
where Q € R"*" is positive semidefinite, b € R"” and ¢ € R.

Lemma: E is convex.

Proof.

» Write E as E = {x € R" : f(x) < 0} where f(x) =x"Qx +2b"x + c.

> Take x,y € E and A € [0,1]. Then f(x) <0,f(y) <0.
> The vector z = Ax + (1 — \)y satisfies
2"Qz = \x"Qx + (1 — A2y Qy +2\(1 — \)x'Qy.
> xTQy < [|Q2x]| - |Q*%y] = vXTQx\/yTQy < 3(x"Qx +y"Qy)
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Convexity of Ellipsoids

An ellipsoid is a set of the form
E={xecR":x"Qx+2b"x+c <0},
where Q € R"*" is positive semidefinite, b € R"” and ¢ € R.

Lemma: E is convex.

Proof.

» Write E as E = {x € R" : f(x) < 0} where f(x) =x"Qx +2b"x + c.

> Take x,y € E and A € [0,1]. Then f(x) <0,f(y) <0.

> The vector z = Ax + (1 — \)y satisfies

2"Qz = \x"Qx + (1 — A2y Qy +2\(1 — \)x'Qy.

xTQy < Q2] - |Q"?y|| = VXTQx\/yTQy < 3(x"Qx +y"Qy)
2"Qz < Mx"Qx+ (1 -y’ Qy

vy
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Convexity of Ellipsoids

An ellipsoid is a set of the form
E={xecR":x"Qx+2b"x+c <0},
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> x"Qy < [|Q*2x]| - | Q*%y]| = vxTQx\/yTQy < 3(x"Qx +y"Qy)
2"Qz < Mx"Qx+ (1 -y’ Qy

v

z27Qz+2b7z+ ¢
< Qx4+ (1=ANy Qy+2 b x+2(1 = A)bTy + Ac+ (1 — N)c
Af(x) + (1= A)f(y) <0,

f(2)
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Algebraic Operations Preserving Convexity

Lemma. Let G; C R"” be a convex set for any i € | where [ is an index setJ

(possibly infinite). Then the set (;., C; is convex.

Proof. In class

Example: Consider the set
P={xecR": Ax < b}

where A € R™*" and b € R™. P is called a convex polyhedron and it is indeed
convex. Why?
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Algebraic Operations Preserving Convexity

preservation under addition, cartesian product, forward and inverse linear mappings
Theorem.

1. Let G, G, ..., Cx CR" be convex sets and let p1, po, . .., ux € R. Then
the set 1 G + p2G + .. . + uk Gk is convex.

2. Let GG C RN, i=1,..., m be convex sets. Then the cartesian product
CGxXGX-XCh= {(Xl,Xz,.,.,Xm) X € C;,i: 1,2,...,m}

is convex.

3. Let M C R" be a convex set and let A € R™*". Then the set
A(M) = {Ax:x € M}

is convex.

4. Let D C R™ be convex and let A € R™*". Then the set

A '(D)={xe€R": Ax € D}

is convex.

Amir Beck “Introduction to Nonlinear Optimization” Lecture Slides - Convex Sets 7

/ 32



Convex Combinations

Given m points X1, Xa, ..., X, € R", a convex combination of these m points
is a vector of the form A\i1x; +AoXxo+ -« -+ ...+ ApXm, where A, Ao, ..., Ay
are nonnegative numbers satisfying Ay + Ao + ... + A\, = 1.

> A convex set is defined by the property that any convex combination of two
points from the set is also in the set.

» We will now show that a convex combination of any number of points from a
convex set is in the set.
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Convex Combinations

Theorem.Let C C R” be a convex set and let x1,X,...,Xn € C. Then for
any A € Ap, the relation >, A\ix; € C holds. J

Proof by induction on m.
» For m = 1 the result is obvious.
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Convex Combinations

Theorem.Let C C R"” be a convex set and let x1,X5,...,X, € C. Then for
any A € Ap, the relation >, A\ix; € C holds. J

Proof by induction on m.
» For m =1 the result is obvious.
» The induction hypothesis is that for any m vectors x1,xo,...,x, € C and
any A € A, the vector Zf"zl Aix; belongs to C. We will now prove the
theorem for m + 1 vectors.
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Convex Combinations

Theorem.Let C C R"” be a convex set and let x1,X5,...,X, € C. Then for
any A € Ap, the relation >, A\ix; € C holds. J

Proof by induction on m.

» For m =1 the result is obvious.

» The induction hypothesis is that for any m vectors x1,xo,...,x, € C and
any X € A, the vector Y 1", \ix; belongs to C. We will now prove the
theorem for m + 1 vectors.

» Suppose that x1,X2,...,Xm11 € C and that A € Ap,1. We will show that
z= Z:T:il Aix; € C.

> If Apyr1 =1, then z = x,,11 € C and the result obviously follows.

Amir Beck “Introduction to Nonlinear Optimization” Lecture Slides - Convex Sets 9 /32
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Theorem.Let C C R"” be a convex set and let x1,X5,...,X, € C. Then for
any A € Ap, the relation >, A\ix; € C holds. J

Proof by induction on m.

» For m =1 the result is obvious.

» The induction hypothesis is that for any m vectors x1,xo,...,x, € C and
any X € A, the vector Y 1", \ix; belongs to C. We will now prove the
theorem for m + 1 vectors.

» Suppose that x1,X2,...,Xm11 € C and that A € Ap,1. We will show that
z= Z:T:il Aix; € C.

> If Apyr1 =1, then z = x,,11 € C and the result obviously follows.

> If A1 < 1 then

m

m )\i
z=7 "  AiXi + Am1Xmi1 = (1 — Amy1) ; T it Xi FAme1Xmi1-

\
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Convex Combinations

Theorem.Let C C R"” be a convex set and let x1,X5,...,X, € C. Then for
any A € Ap, the relation >, A\ix; € C holds. J

Proof by induction on m.

» For m =1 the result is obvious.

» The induction hypothesis is that for any m vectors x1,xo,...,x, € C and
any X € A, the vector Y 1", \ix; belongs to C. We will now prove the
theorem for m + 1 vectors.

» Suppose that x1,X2,...,Xm11 € C and that A € Ap,1. We will show that
z= Z:T:il Aix; € C.

> If Apyr1 =1, then z = x,,11 € C and the result obviously follows.

> If A1 < 1 then

m

m )\i
z=7 "  AiXi + Am1Xmi1 = (1 — Amy1) ; T it Xi FAme1Xmi1-

v
> ve Candhence z=(1— A1)V + Amtr1Xme1 € C.
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The Convex Hull

Definition. Let S C R". The convex hull of S, denoted by conv(S), is the
set comprising all the convex combinations of vectors from S:

conv(S) = {Z)\x, x1,xz,...,xk€5,)\eAk}.

conv(C)

&9

Figure: A nonconvex set and its convex hull
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The Convex Hull

The convex hull conv(S) is “smallest” convex set containing S.

Lemma. Let S CR". If S C T for some convex set T, then conv(S) C T. J

Proof.
» Suppose that indeed S C T for some convex set T.
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The Convex Hull

The convex hull conv(S) is “smallest” convex set containing S.

Lemma. Let S CR". If S C T for some convex set T, then conv(S) C T. J

Proof.
» Suppose that indeed S C T for some convex set T.
» To prove that conv(S) C T, take z € conv(S).
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The Convex Hull

The convex hull conv(S) is “smallest” convex set containing S.

Lemma. Let S CR". If S C T for some convex set T, then conv(S) C T. J

Proof.
» Suppose that indeed S C T for some convex set T.
» To prove that conv(S) C T, take z € conv(S).

> There exist x1,Xp,...,xx € S C T (where k is a positive integer), and
A € Ay such that z = Zf;l AiX;.
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The Convex Hull

The convex hull conv(S) is “smallest” convex set containing S.

Lemma. Let S CR". If S C T for some convex set T, then conv(S) C T. J

Proof.
» Suppose that indeed S C T for some convex set T.
» To prove that conv(S) C T, take z € conv(S).
> There exist x1,Xp,...,xx € S C T (where k is a positive integer), and
A € Ay such that z = Zf;l AiX;.

» Since x1,Xo,...,Xx € T, it follows that z € T, showing the desired result.
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Carathéodory theorem

Theorem. Let S C R” and let x € conv(S). Then there exist
X1,X2,...,Xp+1 € S such that x € conv ({x1,X2,...,Xn+1}), that is, there

exist A € A 11 such that
n+1

X = E )\,'X,'.
i=1
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Carathéodory theorem

Theorem. Let S C R” and let x € conv(S). Then there exist
X1,X2,...,Xp+1 € S such that x € conv ({x1,X2,...,Xn+1}), that is, there

exist A € A 11 such that
n+1

X = E )\,'X,'.
i=1

Proof.
> Let x € conv(S). Then Ixy,xp,...,xxk € S and A € Ay s.t.

k
X = E )\,’X,’.
i=1
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Carathéodory theorem

Theorem. Let S C R” and let x € conv(S). Then there exist
X1,X2,...,Xp+1 € S such that x € conv ({x1,X2,...,Xn+1}), that is, there

exist A € A 11 such that
n+1

X = E )\,'X,'.
i=1

Proof.
> Let x € conv(S). Then Ixy,xp,...,xxk € S and A € Ay s.t.

k
X = E )\,’X,’.
i=1

» We can assume that \; >0 forall i =1,2,... k.
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Carathéodory theorem

Theorem. Let S C R” and let x € conv(S). Then there exist
X1,X2,...,Xp+1 € S such that x € conv ({x1,X2,...,Xn+1}), that is, there

exist A € A 11 such that
n+1

X = E )\,'X,'.
i=1

Proof.
> Let x € conv(S). Then Ixy,xp,...,xxk € S and A € Ay s.t.

k
X = E )\,’X,’.
i=1

» We can assume that \; >0 forall i =1,2,... k.
» If k < n+1, the result is proven.
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Carathéodory theorem

Theorem. Let S C R” and let x € conv(S). Then there exist
X1,X2,...,Xp+1 € S such that x € conv ({x1,X2,...,Xn+1}), that is, there

exist A € A 11 such that
n+1

X = E )\,‘X,‘.
i=1

Proof.
> Let x € conv(S). Then Ixy,xp,...,xxk € S and A € Ay s.t.

k
X = E )\,’X,’.
i=1

» We can assume that \; >0 forall i =1,2,... k.
» If k < n+1, the result is proven.

» Otherwise, if k > n+ 2, then the vectors x, — X1,X3 — X1,..., Xk —
more than n vectors in R”, are necessarily linearly dependent=-
3, 43, - - ., ik not all zeros s.t.

2 i(xi — x1) = 0.
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Proof of Carathéodory Theorem Contd.
» Defining u; = — 25;2 i, we obtain that

k
Z HiX; = 07
i=1
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Proof of Carathéodory Theorem Contd.
> Defining uy = — Zf.;z 1, we obtain that

k
Z HiX; = 07
i=1

> Not all of the coefficients u1, 2, .. ., ux are zeros and Zle wi =0.
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Proof of Carathéodory Theorem Contd.
> Defining uy = — Zf.;z 1, we obtain that

k
Z HiX; = 07
i=1

> Not all of the coefficients u1, 2, .. ., ux are zeros and Zle wi =0.
> There exists an index i for which p; < 0. Let &« € Ry. Then

k

k k k
X = Z X = Z AiX; + Z WiX; = Z()\, + a,u,-)x;. (1)
i=1 i=1 i=1

i=1

Amir Beck “Introduction to Nonlinear Optimization” Lecture Slides - Convex Sets 13 /32



Proof of Carathéodory Theorem Contd.
> Defining uy = — Zf.;z 1, we obtain that

k
Z HiX; = 07
i=1

> Not all of the coefficients u1, 2, .. ., ux are zeros and Zle wi =0.
> There exists an index i for which p; < 0. Let &« € Ry. Then

k

k k k
X = Z X = Z AiX; + Z WiX; = Z()\, + a,u,-)x;. (1)
i=1 i=1 i=1

i=1

> We have Zf;l()\,- + aui) =1, so (1) is a convex combination representation
iff

Ai+apu;>0foralli=1,... k. 2)
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Proof of Carathéodory Theorem Contd.
> Defining uy = — Zf.;z 1, we obtain that

k
Z HiX; = 07
i=1

> Not all of the coefficients u1, 2, .. ., ux are zeros and Zle wi =0.
> There exists an index i for which p; < 0. Let &« € Ry. Then

k

k k k
X = Z X = Z AiX; + Z WiX; = Z()\, + a,u,-)x;. (1)
i=1 i=1 i=1

i=1
> We have Zf;l()\,- + aui) =1, so (1) is a convex combination representation
iff
Ai+apu;>0foralli=1,... k. 2)

> Since A; > 0 for all /, it follows that (2) is satisfied for all o € [0, €] where

. A
€ =min;.,, <o {fm}.
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Proof of Carathéodory Theorem Contd.
> If we substitute a = ¢, then (2) still holds, but \; + eu; = 0 for

J € argmin {—ui
i <0 Ai
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Proof of Carathéodory Theorem Contd.

> If we substitute a = ¢, then (2) still holds, but \; + eu; = 0 for
J € argmin {—ui
i1 <0 Aj
» This means that we found a representation of x as a convex combination of
k — 1 (or less) vectors.
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Proof of Carathéodory Theorem Contd.

> If we substitute a = ¢, then (2) still holds, but \; + eu; = 0 for
J € argmin {—ui
i <0 Ai
» This means that we found a representation of x as a convex combination of
k — 1 (or less) vectors.

» This process can be carried on until a representation of x as a convex
combination of no more than n+ 1 vectors is derived.
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Example
For n = 2, consider the four vectors

() (- () )

and let x € conv({x1, X2, X3,X4}) be given by

X X X X X4 .

Find a representation of x as a convex combination of no more than 3 vectors.
In class
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Convex Cones

> A set S is called a cone if it satisfies the following property: for any x € S
and X > 0, the inclusion Ax € S is satisfied.

» The following lemma shows that there is a very simple and elegant
characterization of convex cones.

Lemma. A set S is a convex cone if and only if the following properties
hold:

A x,yeS=x+yeS.
B.xeSA>0= MxeS.

Simple exercise
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Examples of Convex Cones
» The convex polytope
C={xeR": Ax < 0},
where A € R™*",
» Lorentz Cone The Lorenz cone, or ice cream cone is given by

L" = {(’;) eR™: x| < t,xeR”,tER}.

» nonnegative polynomials. set consisting of all possible coefficients of
polynomials of degree n — 1 which are nonnegative over R:

K"={xeR": it 4 ot" 2 4 X, 1t + x, > OVt € R}
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The Conic Hull

Definition. Given m points X1,Xp,...,X, € R”, a conic combination of
these m points is a vector of the form A;x; + Aoxo + -+ + AXm, where
A e RT.
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The Conic Hull

Definition. Given m points X1,Xp,...,X, € R”, a conic combination of
these m points is a vector of the form A;x; + Aoxo + -+ + AXm, where
A eRT.

The definition of the conic hull is now quite natural.

Definition. Let S C R”. Then the conic hull of S, denoted by cone(S) is
the set comprising all the conic combinations of vectors from S:

K
cone(S) = {Z)\,‘X,‘ DX1,X2,...,Xk ES,AE Ri} .
i=1

Similarly to the convex hull, the conic hull of a set S is the smallest cone
containing S.

Lemma. Let S CR". If S C T for some convex cone T, then cone(S) QJ
T.
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Representation Theorem for Conic Hulls
a similar result to Carathéodory theorem

Conic Representation Theorem. Let S C R” and let x € cone(S). Then
there exist k linearly independent vector xi,Xp,...,Xx € S such that x €
cone ({x1,2,...,xx}), that is, there exist A € R such that

k

X = Z )\,‘X,‘.

i=1

In particular, kK < n.

v

Proof very similar to the proof of Carathéodory theorem. See page 107 of
the book for the proof.
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Basic Feasible Solutions

» Consider the convex polyhedron.

P={xeR":Ax=b,x>0}, (AcR™" beR")

> the rows of A are assumed to be linearly independent.

» The above is a standard formulation of the constraints of a linear
programming problem.

Definition. X is a basic feasible solution (abbreviated bfs) of P if the columns
of A corresponding to the indices of the positive values of X are linearly
independent.
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Basic Feasible Solutions

» Consider the convex polyhedron.

P={xeR":Ax=b,x>0}, (AcR™" beR")

> the rows of A are assumed to be linearly independent.

» The above is a standard formulation of the constraints of a linear
programming problem.

Definition. X is a basic feasible solution (abbreviated bfs) of P if the columns
of A corresponding to the indices of the positive values of X are linearly
independent.

Example.Consider the linear system:

X1+ X0 + X3

Xo + Xa

X1y X2, X3, X4 Z

Find all the basic feasible solutions. In class
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Existence of bfs's

Theorem.Let P = {x € R" : Ax = b,x > 0}, where A € R"*" and b € R™.
If P # (), then it contains at least one bfs.
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Existence of bfs's

Theorem.Let P = {x € R" : Ax = b,x > 0}, where A € R"*" and b € R™.
If P # (), then it contains at least one bfs.

Proof.
> P+ () = b€ cone({a1,as,...,a,}) where a; denotes the i-th column of A.
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Existence of bfs's

Theorem.Let P = {x € R" : Ax = b,x > 0}, where A € R"*" and b € R™.
If P # (), then it contains at least one bfs.

Proof.
> P+ () = b€ cone({a1,as,...,a,}) where a; denotes the i-th column of A.

» By the conic representation theorem, there exist indices i1 < b < ... < iy
k
and k numbers y, v, ...,y > 0such thatb=3"", y;a; and
a;,aj,,...,a; are linearly independent.

21 /32
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Existence of bfs's

Theorem.Let P = {x € R" : Ax = b,x > 0}, where A € R"*" and b € R™.
If P # (), then it contains at least one bfs.

Proof.
> P+ () = b€ cone({a1,as,...,a,}) where a; denotes the i-th column of A.

» By the conic representation theorem, there exist indices i1 < b < ... < iy
k
and k numbers y, v, ...,y > 0such thatb=3"", y;a; and
a;,aj,,...,a; are linearly independent.
» Denote x = E’;l yi€;;. Then obviously X > 0 and in addition

J
k k
Ax = Zy,-jAe,-j = Zy,-ja,-j =b.
j=1 j=1
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Existence of bfs's

Theorem.Let P = {x € R" : Ax = b,x > 0}, where A € R"*" and b € R™.
If P # (), then it contains at least one bfs.

Proof.
> P+ () = b€ cone({a1,as,...,a,}) where a; denotes the i-th column of A.
» By the conic representation theorem, there exist indices i1 < b < ... < iy
and k numbers y;, yi, ..., Y, > 0such that b= Zjl;l yia; and
a;,aj,,...,a; are linearly independent.
» Denote x = E’;l yi€;;. Then obviously X > 0 and in addition

J
k k
Ax = Zy,-jAe,-j = Zy,-ja;j =b.
j=1 j=1

» Therefore, X is contained in P and the columns of A corresponding to the
indices of the positive components of X are linearly independent, meaning
that P contains a bfs.
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Topological Properties of Convex Sets

Theorem.Let C C R" be a convex set. Then cl(C) is a convex set. )

Proof.
> Let x,y € cl(C) and let X € [0,1].

Amir Beck “Introduction to Nonlinear Optimization” Lecture Slides - Convex Sets 22 /32



Topological Properties of Convex Sets

Theorem.Let C C R" be a convex set. Then cl(C) is a convex set. )

Proof.
> Let x,y € cl(C) and let A € [0, 1].

> There exist sequences {xx}«>0 € C and {yk}k>0 € C for which x, — x and
Yk — Yy as k — oo.
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Topological Properties of Convex Sets

Theorem.Let C C R" be a convex set. Then cl(C) is a convex set. )

Proof.
> Let x,y € cl(C) and let A € [0, 1].

> There exist sequences {xx}«>0 € C and {yk}k>0 € C for which x, — x and
Yk — Yy as k — oo.

> (*) Axx + (1 — N)yk € C for any k > 0.
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Topological Properties of Convex Sets

Theorem.Let C C R" be a convex set. Then cl(C) is a convex set. )

Proof.
> Let x,y € cl(C) and let A € [0, 1].

> There exist sequences {xx}«>0 € C and {yk}k>0 € C for which x, — x and
Yk — Yy as k — oo.

> (*) Axx + (1 — N)yk € C for any k > 0.
> (**) Axp + (1= Nyk = Ax+ (L= Ny.
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Topological Properties of Convex Sets

Theorem.Let C C R" be a convex set. Then cl(C) is a convex set. )

Proof.
> Let x,y € cl(C) and let A € [0, 1].

> There exist sequences {xx}«>0 € C and {yk}k>0 € C for which x, — x and
Yk — Yy as k — oo.

(*) Axx + (L — Ny € C for any k > 0.
(**) Axic + (1= Ay = Ax+ (1= A)y.
(*)+(**) = Ax+ (1 — M)y € cl(C).

v

v

v
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The Line Segment Principle

Theorem. Let C be a convex set and assume that int(C) # (). Suppose that
x € int(C) and y € cl(C). Then (1 — A)x+ Ay € int(C) for any X € [0, l)J
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The Line Segment Principle

Theorem. Let C be a convex set and assume that int(C) # (). Suppose that
x € int(C) and y € cl(C). Then (1 — A)x+ Ay € int(C) for any X € [0, l)J

Proof.
> There exists ¢ > 0 such that B(x,e) C C.
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The Line Segment Principle

Theorem. Let C be a convex set and assume that int(C) # (). Suppose that
x € int(C) and y € cl(C). Then (1 — A)x+ Ay € int(C) for any X € [0, l)J

Proof.
> There exists ¢ > 0 such that B(x,e) C C.
> Let z=(1— A)x+ Ay. We will show that B(z, (1 — \)e) C C.
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The Line Segment Principle

Theorem. Let C be a convex set and assume that int(C) # (). Suppose that
x € int(C) and y € cl(C). Then (1 — A)x+ Ay € int(C) for any X € [0, l)J

Proof.
> There exists ¢ > 0 such that B(x,e) C C.
> Let z=(1— A)x+ Ay. We will show that B(z, (1 — \)e) C C.
> Let w € B(z,(1 — A)e). Sincey € cl(C), Fwy € C sit.

fwy —y) < Gz )
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The Line Segment Principle

Theorem. Let C be a convex set and assume that int(C) # (). Suppose that
x € int(C) and y € cl(C). Then (1 — A)x+ Ay € int(C) for any X € [0, l)J

Proof.
> There exists ¢ > 0 such that B(x,e) C C.
> Let z=(1— A)x+ Ay. We will show that B(z, (1 — \)e) C C.
> Let w € B(z,(1 — A)e). Sincey € cl(C), Fwy € C sit.

fwy —y) < Gz )

> Set wp = 5 (w — Awy). Then

w — )\W1

wo x| = H o = w2 Ay )

(©)
(lw —z[| + A[jwr —y[}) <e,

IN

1—)\
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The Line Segment Principle

Theorem. Let C be a convex set and assume that int(C) # (). Suppose that
x € int(C) and y € cl(C). Then (1 — A)x+ Ay € int(C) for any A € [0, 1).

Proof.
> There exists ¢ > 0 such that B(x,e) C C.
> Let z=(1— A)x+ Ay. We will show that B(z, (1 — \)e) C C.
> Let w € B(z,(1 — A)e). Sincey € cl(C), Fwy € C sit.
(1= A)e — |w—2z]
) :

lwy =yl <

> Set wp = 5 (w — Awy). Then

w — /\W1

- H Tl =)+ Ay —wa)]

Iwo —x|| = H

(©)
< (lw —z[| + A[jwr —y[}) <e,

1—)\

» Hence, since B(x,e) C C, it follows that w, € C. Finally, since
w = Aw; + (1 — A)wy with wy,wy € C, we have that w € C.
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Convexity of the Interior
Theorem. Let C C R” be a convex set. Then int(C) is convex. J

Proof.
> If int(C) = 0, then the theorem is obviously true.
> Otherwise, let x;,x; € int(C), and let A € (0, 1).
> By the LSP, Ax; + (1 — A\)x2 € int(C), establishing the convexity of int(C).
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Combination of Closure and Interior
Lemma. Let C be a convex set with a nonempty interior. Then
1. cl(int(C)) = cl(C).
2. int(cl(C)) = int(C).
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Combination of Closure and Interior
Lemma. Let C be a convex set with a nonempty interior. Then
1. cl(int(C)) = cl(C).
2. int(cl(C)) = int(C).

Proof of 1.
> Obviously, cl(int(C)) C cl(C) holds.
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Combination of Closure and Interior
Lemma. Let C be a convex set with a nonempty interior. Then
1. cl(int(C)) = cl(C).
2. int(cl(C)) = int(C).

Proof of 1.
> Obviously, cl(int(C)) C cl(C) holds.
» To prove that opposite, let x € cl(C),y € int(C).
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Combination of Closure and Interior
Lemma. Let C be a convex set with a nonempty interior. Then
1. cl(int(C)) = cl(C).
2. int(cl(C)) = int(C).
Proof of 1.
> Obviously, cl(int(C)) C cl(C) holds.

» To prove that opposite, let x € cl(C),y € int(C).
» Then x, =ty + (1 — 1) x € int(C) for any k > 1.
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Combination of Closure and Interior
Lemma. Let C be a convex set with a nonempty interior. Then
1. cl(int(C)) = cl(C).
2. int(cl(C)) = int(C).

Proof of 1.
> Obviously, cl(int(C)) C cl(C) holds.
> To prove that opposite, let x € cl(C),y € int(C).
» Then x, =ty + (1 — 1) x € int(C) for any k > 1.
> Since x is the limit (as k — 00) of the sequence {x,}«>1 C int(C), it follows
that x € cl(int(C)).

Amir Beck “Introduction to Nonlinear Optimization” Lecture Slides - Convex Sets 25 /32



Combination of Closure and Interior

Lemma. Let C be a convex set with a nonempty interior. Then
1. cl(int(C)) = cl(C).
2. int(cl(C)) = int(C).

Proof of 1.

> Obviously, cl(int(C)) C cl(C) holds.

> To prove that opposite, let x € cl(C),y € int(C).

» Then x, =ty + (1 — 1) x € int(C) for any k > 1.

> Since x is the limit (as k — 00) of the sequence {x,}«>1 C int(C), it follows

that x € cl(int(C)).

For the proof of 2, see pages 109,110 of the book for the proof of Lemma
6.30(b).
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Compactness of the Convex Hull of Convex Sets
Theorem. Let S C R” be a compact set. Then conv(S) is compact. J

Proof.
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Compactness of the Convex Hull of Convex Sets
Theorem. Let S C R” be a compact set. Then conv(S) is compact. )

Proof.
» IM > 0 such that ||x|] < M for any x € S.
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Compactness of the Convex Hull of Convex Sets

Theorem. Let S C R” be a compact set. Then conv(S) is compact. J
Proof.
» IM > 0 such that ||x|] < M for any x € S.
> Let y € conv(S). Then there exist X1,X2,...,X,11 € S and X € A, for

which y = 5271 \ix; and therefore

n+1 n+1 n+1

>oaxil| < DAkl < MY A =M,
i=1 i=1 i=1

establishing the boundedness of conv(S).

lyll =
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Compactness of the Convex Hull of Convex Sets

Theorem. Let S C R” be a compact set. Then conv(S) is compact. )
Proof.
» IM > 0 such that ||x|] < M for any x € S.
> Let y € conv(S). Then there exist X1,X2,...,X,11 € S and X € A, for

which y = 5271 \ix; and therefore

n+1 n+1 n+1

>oaxil| < DAkl < MY A =M,
i=1 i=1 i=1

establishing the boundedness of conv(S).

> To prove the closedness of conv(S), let {yx}x>1 C conv(S) be a sequence
converging to 'y € R".

lyll =
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Compactness of the Convex Hull of Convex Sets

Theorem. Let S C R” be a compact set. Then conv(S) is compact. )
Proof.
» IM > 0 such that ||x|] < M for any x € S.
> Let y € conv(S). Then there exist X1,X2,...,X,11 € S and X € A, for

which y = 5271 \ix; and therefore

n+1 n+1 n+1

>oaxil| < DAkl < MY A =M,
i=1 i=1 i=1

establishing the boundedness of conv(S).

> To prove the closedness of conv(S), let {yx}x>1 C conv(S) be a sequence
converging to 'y € R".

> There exist x{,x5,...,x%,; € S and A¥ € A,;; such that

lyll =

n+1

i =Y Afxf. (4)
i=1
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Proof Contd.

» By the compactness of S and A, 4, it follows that

{(N xk x5, ..., x5, 1)}t has a convergent subsequence

{()\kf7x‘1‘f7x’2‘f, . ,x:ﬁrl)}jzl whose limit will be denoted by

(A,Xl,X27 s 7xn+1)

with A € A, i1,X1,X2,...,Xp 1 €S
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Proof Contd.

» By the compactness of S and A, 4, it follows that

{(N xk x5, ..., x5, 1)}t has a convergent subsequence
Dk Kk k; oo
(A9, X7 %y, ... s X,y1)}j>1 whose limit will be denoted by
(A,Xl,X27 s 7xn+1)

with A € A, i1,X1,X2,...,Xp 1 €S
> Taking the limit j — oo in

n+1

Z ki _kj
ij = )‘ijxij7
i=1

we obtain that y = 27" \ix; € conv(S) as required.
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Proof Contd.

» By the compactness of S and A, 4, it follows that

{(N xk x5, ..., x5, 1)}t has a convergent subsequence
Dk Kk k; oo
(A9, X7 %y, ... s X,y1)}j>1 whose limit will be denoted by
(A,Xl,X27 s 7xn+1)

with A € A, i1,X1,X2,...,Xp 1 €S
> Taking the limit j — oo in

n+1

Z ki _kj
ij = )‘ijxij7
i=1

we obtain that y = 27" \ix; € conv(S) as required.

Example: S ={(0,0)T}U{(x,y)T : xy > 1}
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Closedness of the Conic Hull of a Finite Set

Theorem. Let aj,ap,...,ax € R". Then cone({ay,ay,...,ar}) is closed. J

Proof.
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Closedness of the Conic Hull of a Finite Set

Theorem. Let aj,ap,...,ax € R". Then cone({ay,ay,...,ar}) is closed. J

Proof.
> By the conic representation theorem, each element of cone({ay,az, ..., ax})
can be represented as a conic combination of a linearly independent subset of
{al,az, e ,ak}.
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Closedness of the Conic Hull of a Finite Set

Theorem. Let aj,ap,...,ax € R". Then cone({ay,ay,...,ar}) is closed. J
Proof.
> By the conic representation theorem, each element of cone({ay,az, ..., ax})
can be represented as a conic combination of a linearly independent subset of
{:’:11,2127 e ,ak}.
> Therefore, if $51,5,,...,Sn are all the subsets of {a1,ay,...,ax} comprising

linearly independent vectors, then

N
cone({ay,ap,...,ar}) = U cone(S;).
i=1
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Closedness of the Conic Hull of a Finite Set

Theorem. Let aj,ap,...,ax € R". Then cone({ay,ay,...,ar}) is closed. J
Proof.
> By the conic representation theorem, each element of cone({ay,az, ..., ax})
can be represented as a conic combination of a linearly independent subset of
{al,az, e ,ak}.
> Therefore, if $51,5,,...,Sn are all the subsets of {a1,ay,...,ax} comprising

linearly independent vectors, then
N
cone({ay,ap,...,ar}) = U cone(S;).
i=1

> It is enough to show that cone(S;) is closed for any i € {1,2,..., N}. Indeed,
let i € {1,2,...,N}. Then

Si={b1,by,...,by},

where by, by, ..., b, are linearly independent.
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Closedness of the Conic Hull of a Finite Set

Theorem. Let aj,ap,...,ax € R". Then cone({ay,ay,...,ar}) is closed. J
Proof.
> By the conic representation theorem, each element of cone({ay,az, ..., ax})
can be represented as a conic combination of a linearly independent subset of
{al,az, e ,ak}.
> Therefore, if $51,5,,...,Sn are all the subsets of {a1,ay,...,ax} comprising

linearly independent vectors, then
N
cone({ay,ap,...,ar}) = U cone(S;).
i=1

> It is enough to show that cone(S;) is closed for any i € {1,2,..., N}. Indeed,
let i € {1,2,...,N}. Then

Si={b1,by,...,by},

where by, by, ..., b, are linearly independent.
> cone(S;) = {By :y € R}, where B is the matrix whose columns are
by, by, ..., by
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Proof Contd.

> Suppose that x, € cone(S;) for all k > 1 and that x, — X.
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Proof Contd.

> Suppose that x, € cone(S;) for all k > 1 and that x, — X.

> Jdy, € RT such that
Xk = By. (5)
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Proof Contd.

v

Suppose that x4 € cone(S;) for all k > 1 and that x,x — X.
Jdy, € RY such that

v

X, = By. (5)

yx = (B"B)"'BTx,.

v

Taking the limit as k — oo in the last equation, we obtain that y, — y where
y=(B"B)"'B'x.
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Proof Contd.

v

Suppose that x4 € cone(S;) for all k > 1 and that x,x — X.
Jdy, € RY such that

v

X, = By. (5)

yx = (B"B)"'BTx,.

v

Taking the limit as k — oo in the last equation, we obtain that y, — y where
y=(B"B)"'B'x.
y € RT.

v
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Proof Contd.

> Suppose that x, € cone(S;) for all k > 1 and that x, — X.
> Jdy, € RT such that
X = Byk. (5)
>
yx = (B"B)"'BTx,.
» Taking the limit as k — oo in the last equation, we obtain that yx — ¥ where

y=(B"B)"'B'x.

y € R™.

Thus, taking the limit in (5), we conclude that X = By with y € R, and
hence X € cone(S;).

v

v

Amir Beck “Introduction to Nonlinear Optimization” Lecture Slides - Convex Sets 29 /32



Extreme Points

Definition. Let S C R" be a convex set. A point x € S is called an extreme
point of S if there do not exist x1,X2 € S(x1 # X2) and A € (0,1), such
that x = Ax; + (1 — A)xo.

> The set of extreme point is denoted by ext(S).
» For example, the set of extreme points of a convex polytope consists of all its
vertices.
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Equivalence Between bfs's and Extreme Points

Theorem. Let P = {x € R" : Ax = b,x > 0}, where A € R™*" has linearly
independent rows and b € R™. The X is a basic feasible solution of P if and
only if it is an extreme point of P.

Theorem 6.34 in the book.
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Krein-Milman Theorem

Theorem. Let S C R"” be a compact convex set. Then

S = conv(ext(S)).
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