
Lecture 6 - Convex Sets
Definition A set C ⊆ Rn is called convex if for any x, y ∈ C and λ ∈ [0, 1],
the point λx + (1− λ)y belongs to C .

I The above definition is equivalent to saying that for any x, y ∈ C , the line
segment [x, y] is also in C .

convex sets nonconvex sets
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Examples of Convex Sets
I Lines: A line in Rn is a set of the form

L = {z + td : t ∈ R},

where z,d ∈ Rn and d 6= 0.

I [x, y], (x, y) for x, y ∈ Rn(x 6= y).

I ∅,Rn.

I A hyperplane is a set of the form

H = {x ∈ Rn : aTx = b} (a ∈ Rn\{0}, b ∈ R)

The associated half-space is the set

H− = {x ∈ Rn : aTx ≤ b}

Both hyperplanes and half-spaces are convex sets.
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Convexity of Balls
Lemma. Let c ∈ Rn and r > 0. Then the open ball

B(c, r) = {x ∈ Rn : ‖x− c‖ < r}

and the closed ball

B[c, r ] = {x ∈ Rn : ‖x− c‖ ≤ r}

are convex.

Note that the norm is an arbitrary norm defined over Rn.
Proof. In class
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l1, l2 and l∞ balls
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Figure: l1, l2 and l∞ balls in R2
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Convexity of Ellipsoids
An ellipsoid is a set of the form

E = {x ∈ Rn : xTQx + 2bTx + c ≤ 0},

where Q ∈ Rn×n is positive semidefinite, b ∈ Rn and c ∈ R.

Lemma: E is convex.

Proof.
I Write E as E = {x ∈ Rn : f (x) ≤ 0} where f (x) ≡ xTQx + 2bTx + c .

I Take x, y ∈ E and λ ∈ [0, 1]. Then f (x) ≤ 0, f (y) ≤ 0.
I The vector z = λx + (1− λ)y satisfies

zTQz = λ2xTQx + (1− λ)2yTQy + 2λ(1− λ)xTQy.
I xTQy ≤ ‖Q1/2x‖ · ‖Q1/2y‖ =

√
xTQx

√
yTQy ≤ 1

2 (xTQx + yTQy)
I zTQz ≤ λxTQx + (1− λ)yTQy
I

f (z) = zTQz + 2bT z + c

≤ λxTQx + (1− λ)yTQy + 2λbTx + 2(1− λ)bTy + λc + (1− λ)c

= λf (x) + (1− λ)f (y) ≤ 0,
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Algebraic Operations Preserving Convexity
Lemma. Let Ci ⊆ Rn be a convex set for any i ∈ I where I is an index set
(possibly infinite). Then the set

⋂
i∈I Ci is convex.

Proof. In class

Example: Consider the set

P = {x ∈ Rn : Ax ≤ b}

where A ∈ Rm×n and b ∈ Rm. P is called a convex polyhedron and it is indeed
convex. Why?
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Algebraic Operations Preserving Convexity
preservation under addition, cartesian product, forward and inverse linear mappings

Theorem.

1. Let C1,C2, . . . ,Ck ⊆ Rn be convex sets and let µ1, µ2, . . . , µk ∈ R. Then
the set µ1C1 + µ2C2 + . . .+ µkCk is convex.

2. Let Ci ⊆ Rki , i = 1, . . . ,m be convex sets. Then the cartesian product

C1 × C2 × · · · × Cm = {(x1, x2, . . . , xm) : xi ∈ Ci , i = 1, 2, . . . ,m}

is convex.

3. Let M ⊆ Rn be a convex set and let A ∈ Rm×n. Then the set

A(M) = {Ax : x ∈ M}

is convex.

4. Let D ⊆ Rm be convex and let A ∈ Rm×n. Then the set

A−1(D) = {x ∈ Rn : Ax ∈ D}

is convex.

Amir Beck “Introduction to Nonlinear Optimization” Lecture Slides - Convex Sets 7 / 32



Convex Combinations

Given m points x1, x2, . . . , xm ∈ Rn, a convex combination of these m points
is a vector of the form λ1x1 +λ2x2 + · · ·+ . . .+λmxm, where λ1, λ2, . . . , λm
are nonnegative numbers satisfying λ1 + λ2 + . . .+ λm = 1.

I A convex set is defined by the property that any convex combination of two
points from the set is also in the set.

I We will now show that a convex combination of any number of points from a
convex set is in the set.
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Convex Combinations
Theorem.Let C ⊆ Rn be a convex set and let x1, x2, . . . , xm ∈ C . Then for
any λ ∈ ∆m, the relation

∑m
i=1 λixi ∈ C holds.

Proof by induction on m.
I For m = 1 the result is obvious.

I The induction hypothesis is that for any m vectors x1, x2, . . . , xm ∈ C and
any λ ∈ ∆m, the vector

∑m
i=1 λixi belongs to C . We will now prove the

theorem for m + 1 vectors.
I Suppose that x1, x2, . . . , xm+1 ∈ C and that λ ∈ ∆m+1. We will show that

z ≡
∑m+1

i=1 λixi ∈ C .
I If λm+1 = 1, then z = xm+1 ∈ C and the result obviously follows.
I If λm+1 < 1 then

z =
∑m

i=1 λixi + λm+1xm+1 = (1− λm+1)
m∑
i=1

λi
1− λm+1

xi︸ ︷︷ ︸
v

+λm+1xm+1.

I v ∈ C and hence z = (1− λm+1)v + λm+1xm+1 ∈ C .
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The Convex Hull
Definition. Let S ⊆ Rn. The convex hull of S , denoted by conv(S), is the
set comprising all the convex combinations of vectors from S :

conv(S) ≡

{
k∑

i=1

λixi : x1, x2, . . . , xk ∈ S ,λ ∈ ∆k

}
.

C conv(C)

Figure: A nonconvex set and its convex hull
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The Convex Hull

The convex hull conv(S) is “smallest” convex set containing S .

Lemma. Let S ⊆ Rn. If S ⊆ T for some convex set T , then conv(S) ⊆ T .

Proof.

I Suppose that indeed S ⊆ T for some convex set T .

I To prove that conv(S) ⊆ T , take z ∈ conv(S).

I There exist x1, x2, . . . , xk ∈ S ⊆ T (where k is a positive integer), and

λ ∈ ∆k such that z =
∑k

i=1 λixi .

I Since x1, x2, . . . , xk ∈ T , it follows that z ∈ T , showing the desired result.
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Carathéodory theorem
Theorem. Let S ⊆ Rn and let x ∈ conv(S). Then there exist
x1, x2, . . . , xn+1 ∈ S such that x ∈ conv ({x1, x2, . . . , xn+1}), that is, there
exist λ ∈ ∆n+1 such that

x =
n+1∑
i=1

λixi .

Proof.
I Let x ∈ conv(S). Then ∃x1, x2, . . . , xk ∈ S and λ ∈ ∆k s.t.

x =
k∑

i=1

λixi .

I We can assume that λi > 0 for all i = 1, 2, . . . , k.
I If k ≤ n + 1, the result is proven.
I Otherwise, if k ≥ n + 2, then the vectors x2 − x1, x3 − x1, . . . , xk − x1, being

more than n vectors in Rn, are necessarily linearly dependent⇒
∃µ2, µ3, . . . , µk not all zeros s.t.∑k

i=2 µi (xi − x1) = 0.
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λixi .

I We can assume that λi > 0 for all i = 1, 2, . . . , k .
I If k ≤ n + 1, the result is proven.
I Otherwise, if k ≥ n + 2, then the vectors x2 − x1, x3 − x1, . . . , xk − x1, being

more than n vectors in Rn, are necessarily linearly dependent⇒
∃µ2, µ3, . . . , µk not all zeros s.t.∑k

i=2 µi (xi − x1) = 0.
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Proof of Carathéodory Theorem Contd.
I Defining µ1 = −

∑k
i=2 µi , we obtain that

k∑
i=1

µixi = 0,

I Not all of the coefficients µ1, µ2, . . . , µk are zeros and
∑k

i=1 µi = 0.
I There exists an index i for which µi < 0. Let α ∈ R+. Then

x =
k∑

i=1

λixi =
k∑

i=1

λixi + α
k∑

i=1

µixi =
k∑

i=1

(λi + αµi )xi . (1)

I We have
∑k

i=1(λi + αµi ) = 1, so (1) is a convex combination representation
iff

λi + αµi ≥ 0 for all i = 1, . . . , k. (2)

.
I Since λi > 0 for all i , it follows that (2) is satisfied for all α ∈ [0, ε] where

ε = mini :µi<0

{
−λi

µi

}
.
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Proof of Carathéodory Theorem Contd.
I If we substitute α = ε, then (2) still holds, but λj + εµj = 0 for

j ∈ argmin
i :µi<0

{
−µi

λi

}
.

I This means that we found a representation of x as a convex combination of
k − 1 (or less) vectors.

I This process can be carried on until a representation of x as a convex
combination of no more than n + 1 vectors is derived.
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Example
For n = 2, consider the four vectors

x1 =

(
1
1

)
, x2 =

(
1
2

)
, x3 =

(
2
1

)
, x4 =

(
2
2

)
,

and let x ∈ conv({x1, x2, x3, x4}) be given by

x =
1

8
x1 +

1

4
x2 +

1

2
x3 +

1

8
x4 =

(
13
8
11
8

)
.

Find a representation of x as a convex combination of no more than 3 vectors.
In class
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Convex Cones
I A set S is called a cone if it satisfies the following property: for any x ∈ S

and λ ≥ 0, the inclusion λx ∈ S is satisfied.
I The following lemma shows that there is a very simple and elegant

characterization of convex cones.

Lemma. A set S is a convex cone if and only if the following properties
hold:

A. x, y ∈ S ⇒ x + y ∈ S .

B. x ∈ S , λ ≥ 0⇒ λx ∈ S .

Simple exercise
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Examples of Convex Cones
I The convex polytope

C = {x ∈ Rn : Ax ≤ 0},
where A ∈ Rm×n.

I Lorentz Cone The Lorenz cone, or ice cream cone is given by

Ln =

{(
x
t

)
∈ Rn+1 : ‖x‖ ≤ t, x ∈ Rn, t ∈ R

}
.

I nonnegative polynomials. set consisting of all possible coefficients of
polynomials of degree n − 1 which are nonnegative over R:

K n = {x ∈ Rn : x1t
n−1 + x2t

n−2 + . . .+ xn−1t + xn ≥ 0∀t ∈ R}

−2

−1

0

1

2

−2

−1

0

1

2
0

0.5

1

1.5

2
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The Conic Hull

Definition. Given m points x1, x2, . . . , xm ∈ Rn, a conic combination of
these m points is a vector of the form λ1x1 + λ2x2 + · · · + λmxm, where
λ ∈ Rm

+.

The definition of the conic hull is now quite natural.

Definition. Let S ⊆ Rn. Then the conic hull of S , denoted by cone(S) is
the set comprising all the conic combinations of vectors from S :

cone(S) ≡

{
k∑

i=1

λixi : x1, x2, . . . , xk ∈ S ,λ ∈ Rk
+

}
.

Similarly to the convex hull, the conic hull of a set S is the smallest cone
containing S .

Lemma. Let S ⊆ Rn. If S ⊆ T for some convex cone T , then cone(S) ⊆
T .
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Representation Theorem for Conic Hulls
a similar result to Carathéodory theorem

Conic Representation Theorem. Let S ⊆ Rn and let x ∈ cone(S). Then
there exist k linearly independent vector x1, x2, . . . , xk ∈ S such that x ∈
cone ({x1, x2, . . . , xk}), that is, there exist λ ∈ Rk

+ such that

x =
k∑

i=1

λixi .

In particular, k ≤ n.

Proof very similar to the proof of Carathéodory theorem. See page 107 of
the book for the proof.
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Basic Feasible Solutions
I Consider the convex polyhedron.

P = {x ∈ Rn : Ax = b, x ≥ 0}, (A ∈ Rm×n,b ∈ Rm)

I the rows of A are assumed to be linearly independent.

I The above is a standard formulation of the constraints of a linear
programming problem.

Definition. x̄ is a basic feasible solution (abbreviated bfs) of P if the columns
of A corresponding to the indices of the positive values of x̄ are linearly
independent.

Example.Consider the linear system:

x1 + x2 + x3 = 6

x2 + x4 = 3

x1, x2, x3, x4 ≥ 0.

Find all the basic feasible solutions. In class
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Existence of bfs’s
Theorem.Let P = {x ∈ Rn : Ax = b, x ≥ 0}, where A ∈ Rm×n and b ∈ Rm.
If P 6= ∅, then it contains at least one bfs.

Proof.
I P 6= ∅ ⇒ b ∈ cone({a1, a2, . . . , an}) where ai denotes the i-th column of A.
I By the conic representation theorem, there exist indices i1 < i2 < . . . < ik

and k numbers yi1 , yi2 , . . . , yik ≥ 0 such that b =
∑k

j=1 yij aij and
ai1 , ai2 , . . . , aik are linearly independent.

I Denote x̄ =
∑k

j=1 yij eij . Then obviously x̄ ≥ 0 and in addition

Ax̄ =
k∑

j=1

yij Aeij =
k∑

j=1

yij aij = b.

I Therefore, x̄ is contained in P and the columns of A corresponding to the
indices of the positive components of x̄ are linearly independent, meaning
that P contains a bfs.
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Topological Properties of Convex Sets

Theorem.Let C ⊆ Rn be a convex set. Then cl(C ) is a convex set.

Proof.

I Let x, y ∈ cl(C ) and let λ ∈ [0, 1].

I There exist sequences {xk}k≥0 ⊆ C and {yk}k≥0 ⊆ C for which xk → x and
yk → y as k →∞.

I (*) λxk + (1− λ)yk ∈ C for any k ≥ 0.

I (**) λxk + (1− λ)yk → λx + (1− λ)y.

I (*)+(**) ⇒ λx + (1− λ)y ∈ cl(C ).
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The Line Segment Principle
Theorem. Let C be a convex set and assume that int(C ) 6= ∅. Suppose that
x ∈ int(C ) and y ∈ cl(C ). Then (1− λ)x + λy ∈ int(C ) for any λ ∈ [0, 1).

Proof.
I There exists ε > 0 such that B(x, ε) ⊆ C .
I Let z = (1− λ)x + λy. We will show that B(z, (1− λ)ε) ⊆ C .
I Let w ∈ B(z, (1− λ)ε). Since y ∈ cl(C ), ∃w1 ∈ C s.t.

‖w1 − y‖ < (1− λ)ε− ‖w − z‖
λ

. (3)

I Set w2 = 1
1−λ (w − λw1). Then

‖w2 − x‖ =

∥∥∥∥w − λw1

1− λ − x

∥∥∥∥ =
1

1− λ‖(w − z) + λ(y − w1)‖

≤ 1

1− λ (‖w − z‖+ λ‖w1 − y‖)
(3)
< ε,

I Hence, since B(x, ε) ⊆ C , it follows that w2 ∈ C . Finally, since
w = λw1 + (1− λ)w2 with w1,w2 ∈ C , we have that w ∈ C .
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Convexity of the Interior
Theorem. Let C ⊆ Rn be a convex set. Then int(C ) is convex.

Proof.

I If int(C ) = ∅, then the theorem is obviously true.

I Otherwise, let x1, x2 ∈ int(C ), and let λ ∈ (0, 1).

I By the LSP, λx1 + (1− λ)x2 ∈ int(C ), establishing the convexity of int(C ).
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Combination of Closure and Interior
Lemma. Let C be a convex set with a nonempty interior. Then

1. cl(int(C )) = cl(C ).

2. int(cl(C )) = int(C ).

Proof of 1.
I Obviously, cl(int(C )) ⊆ cl(C ) holds.
I To prove that opposite, let x ∈ cl(C ), y ∈ int(C ).
I Then xk = 1

k y +
(
1− 1

k

)
x ∈ int(C ) for any k ≥ 1.

I Since x is the limit (as k →∞) of the sequence {xk}k≥1 ⊆ int(C ), it follows
that x ∈ cl(int(C )).

For the proof of 2, see pages 109,110 of the book for the proof of Lemma
6.30(b).
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Compactness of the Convex Hull of Convex Sets
Theorem. Let S ⊆ Rn be a compact set. Then conv(S) is compact.

Proof.

I ∃M > 0 such that ‖x‖ ≤ M for any x ∈ S .

I Let y ∈ conv(S). Then there exist x1, x2, . . . , xn+1 ∈ S and λ ∈ ∆n+1 for

which y =
∑n+1

i=1 λixi and therefore

‖y‖ =

∥∥∥∥∥
n+1∑
i=1

λixi

∥∥∥∥∥ ≤
n+1∑
i=1

λi‖xi‖ ≤ M
n+1∑
i=1

λi = M,

establishing the boundedness of conv(S).

I To prove the closedness of conv(S), let {yk}k≥1 ⊆ conv(S) be a sequence
converging to y ∈ Rn.

I There exist xk1 , x
k
2 , . . . , x

k
n+1 ∈ S and λk ∈ ∆n+1 such that

yk =
n+1∑
i=1

λki xki . (4)
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Proof Contd.

I By the compactness of S and ∆n+1, it follows that
{(λk , xk1 , x

k
2 , . . . , x

k
n+1)}k≥1 has a convergent subsequence

{(λkj , x
kj
1 , x

kj
2 , . . . , x

kj
n+1)}j≥1 whose limit will be denoted by

(λ, x1, x2, . . . , xn+1)

with λ ∈ ∆n+1, x1, x2, . . . , xn+1 ∈ S

I Taking the limit j →∞ in

ykj =
n+1∑
i=1

λ
kj
i x

kj
i ,

we obtain that y =
∑n+1

i=1 λixi ∈ conv(S) as required.

Example: S = {(0, 0)T} ∪ {(x , y)T : xy ≥ 1}
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Closedness of the Conic Hull of a Finite Set
Theorem. Let a1, a2, . . . , ak ∈ Rn. Then cone({a1, a2, . . . , ak}) is closed.

Proof.

I By the conic representation theorem, each element of cone({a1, a2, . . . , ak})
can be represented as a conic combination of a linearly independent subset of
{a1, a2, . . . , ak}.

I Therefore, if S1,S2, . . . ,SN are all the subsets of {a1, a2, . . . , ak} comprising
linearly independent vectors, then

cone({a1, a2, . . . , ak}) =
N⋃
i=1

cone(Si ).

I It is enough to show that cone(Si ) is closed for any i ∈ {1, 2, . . . ,N}. Indeed,
let i ∈ {1, 2, . . . ,N}. Then

Si = {b1,b2, . . . ,bm},

where b1,b2, . . . ,bm are linearly independent.
I cone(Si ) = {By : y ∈ Rm

+}, where B is the matrix whose columns are
b1,b2, . . . ,bm.
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Proof Contd.

I Suppose that xk ∈ cone(Si ) for all k ≥ 1 and that xk → x̄.

I ∃yk ∈ Rm
+ such that

xk = Byk . (5)

I

yk = (BTB)−1BTxk .

I Taking the limit as k →∞ in the last equation, we obtain that yk → ȳ where
ȳ = (BTB)−1BT x̄.

I ȳ ∈ Rm
+.

I Thus, taking the limit in (5), we conclude that x̄ = Bȳ with ȳ ∈ Rm
+, and

hence x̄ ∈ cone(Si ).
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I ȳ ∈ Rm
+.

I Thus, taking the limit in (5), we conclude that x̄ = Bȳ with ȳ ∈ Rm
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Extreme Points
Definition. Let S ⊆ Rn be a convex set. A point x ∈ S is called an extreme
point of S if there do not exist x1, x2 ∈ S(x1 6= x2) and λ ∈ (0, 1), such
that x = λx1 + (1− λ)x2.

I The set of extreme point is denoted by ext(S).
I For example, the set of extreme points of a convex polytope consists of all its

vertices.
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Equivalence Between bfs’s and Extreme Points

Theorem. Let P = {x ∈ Rn : Ax = b, x ≥ 0}, where A ∈ Rm×n has linearly
independent rows and b ∈ Rm. The x̄ is a basic feasible solution of P if and
only if it is an extreme point of P.

Theorem 6.34 in the book.
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Krein-Milman Theorem

Theorem. Let S ⊆ Rn be a compact convex set. Then

S = conv(ext(S)).
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