Lecture 4 - The Gradient Method

Objective: find an optimal solution of the problem

min{f(x) : x € R"}.

The iterative algorithms that we will consider are of the form

X1 = Xk + tedy, k=0,1, ...

» d - direction.
> t, - stepsize.
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Lecture 4 - The Gradient Method

Objective: find an optimal solution of the problem

min{f(x) : x € R"}.

The iterative algorithms that we will consider are of the form

X1 = Xk + tedy, k=0,1, ...

» d, - direction.
> t, - stepsize.
We will limit ourselves to descent directions.

Definition. Let f : R” — R be a continuously differentiable function over
R". A vector 0 # d € R” is called a descent direction of f at x if the
directional derivative f/(x;d) is negative, meaning that

f'(x;d) = VFf(x)"d < 0.
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The Descent Property of Descent Directions

Lemma: Let f be a continuously differentiable function over R”, and let
x € R". Suppose that d is a descent direction of f at x. Then there exists
€ > 0 such that

f(x+ td) < f(x)

for any t € (0, ¢].
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The Descent Property of Descent Directions

Lemma: Let f be a continuously differentiable function over R”, and let
x € R". Suppose that d is a descent direction of f at x. Then there exists
€ > 0 such that

f(x+ td) < f(x)

for any t € (0, &].

Proof.
> Since f'(x;d) < 0, it follows from the definition of the directional derivative
that . d .
lim flx +td) - f(x) = f'(x;d) < 0.
t—0+ t
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The Descent Property of Descent Directions

Lemma: Let f be a continuously differentiable function over R”, and let
x € R". Suppose that d is a descent direction of f at x. Then there exists
€ > 0 such that

f(x+ td) < f(x)

for any t € (0, &].

Proof.
> Since f'(x;d) < 0, it follows from the definition of the directional derivative
that . d .
lim flx +td) - f(x) = f'(x;d) < 0.
t—0+ t

» Therefore, 3¢ > 0 such that
f(x+ td) — f(x)
t
for any t € (0, €], which readily implies the desired result.

<0
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Schematic Descent Direction Method

Initialization: pick xo € R” arbitrarily.
General step: for any k =0,1,2,... set

(a) pick a descent direction d.

(b) find a stepsize t; satisfying f(xx + txdg) < f(Xk)-
(c) set xxr1 = xk + trdg.
d)

(

if a stopping criteria is satisfied, then STOP and x4 is the output.

4

Of course, many details are missing in the above schematic algorithm:
» What is the starting point?
» How to choose the descent direction?
» What stepsize should be taken?
» What is the stopping criteria?
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Stepsize Selection Rules

» constant stepsize - t, = t for any k.
> exact stepsize - t, is a minimizer of f along the ray xx + tdy:

tx € argmin f(xx + tdy).
£>0

> backtracking! - The method requires three parameters:
s >0, €(0,1),5 € (0,1). Here we start with an initial stepsize t, = s.
While
f(xk) — F(xk + tedg) < —atx VF(xk) di.

set ty := Oty

Sufficient Decrease Property:

f(Xk) — f(Xk -+ tkdk) > 7Ozthf(Xk)Tdk.

Lalso referred to as Armijo
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Exact Line Search for Quadratic Functions

f(x) = xTAx+2b7x + c where A is an n x n positive definite matrix, b € R" and
c € R. Let x € R"” and let d € R" be a descent direction of f at x. The objective
is to find a solution to

min f(x + td).

>0

In class
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The Gradient Method - Taking the Direction of Minus the

Gradient

> In the gradient method dx = —Vf(x).
» This is a descent direction as long as Vf(x¥) # 0 since

f'(xk; =V F(x)) = =VF(xe)TVF(xe) = = || VF(xx)||* < 0.

» In addition for being a descent direction, minus the gradient is also the
steepest direction method.

Lemma: Let f be a continuously differentiable function and let x € R" be
a non-stationary point (Vf(x) # 0). Then an optimal solution of

min{f'(x;d) : [[d|| = 1} (1)

is d = —VF(x)/||VFX)|.

Proof. In class
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The Gradient Method

The Gradient Method
Input: £ > 0 - tolerance parameter.

Initialization: pick xo € R” arbitrarily.

General step: for any k =0,1,2,... execute the following steps:

(a) pick a stepsize t, by a line search procedure on the function

g(t) = f(xx — tVF(xk)).

(b) set xxr1 = Xk — tx VI (xk)-
(c) if |Vf(xk+1)|| < e, then STOP and x4 is the output.
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Numerical Example

min x? + 2y?
xo = (2;1),e = 1072, exact line search.

13 iterations until convergence.
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The Zig-Zag Effect

Lemma. Let {xx}k>0 be the sequence generated by the gradient method
with exact line search for solving a problem of minimizing a continuously
differentiable function f. Then for any k =0,1,2,...

(Xkt2 — Xk41) T (X1 — xi) = 0.

Proof.

> Xkl — Xk = 7kaf(Xk),Xk+2 — Xk41 = 7tk+1Vf(Xk+1).
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The Zig-Zag Effect

Lemma. Let {xx}k>0 be the sequence generated by the gradient method
with exact line search for solving a problem of minimizing a continuously
differentiable function f. Then for any k =0,1,2,...

(Xkt2 — Xk41) T (X1 — xi) = 0.

Proof.

> Xkl — Xk = 7kaf(Xk),Xk+2 — Xk41 = 7tk+1Vf(Xk+1).
» Therefore, we need to prove that Vf(xx)" Vf(xxs1) = 0.
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The Zig-Zag Effect

Lemma. Let {xx}k>0 be the sequence generated by the gradient method
with exact line search for solving a problem of minimizing a continuously
differentiable function f. Then for any k =0,1,2,...

(Xkt2 — Xk41) T (X1 — xi) = 0.

Proof.

> Xkl — Xk = 7kaf(Xk),Xk+2 — Xk41 = 7tk+1Vf(Xk+1).
» Therefore, we need to prove that Vf(xx)" Vf(xxs1) = 0.

>t € artg>ngin{g(t) = f(xk — tVF(xi))}
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The Zig-Zag Effect

Lemma. Let {xx}k>0 be the sequence generated by the gradient method
with exact line search for solving a problem of minimizing a continuously
differentiable function f. Then for any k =0,1,2,...

(Xkt2 — Xk41) T (X1 — xi) = 0.

Proof.

> Xkl — Xk = 7kaf(Xk),Xk+2 — Xk41 = 7tk+1Vf(Xk+1).
» Therefore, we need to prove that Vf(xx)" Vf(xxs1) = 0.
> t, € argmin{g(t) = f(xx — tVF(xx))}

£>0

> Hence, g’(tx) = 0.
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The Zig-Zag Effect

Lemma. Let {xx}k>0 be the sequence generated by the gradient method
with exact line search for solving a problem of minimizing a continuously
differentiable function f. Then for any k =0,1,2,...

(Xkt2 — Xk41) T (X1 — xi) = 0.

Proof.
> Xpt41 — Xk = 7kaf(Xk),Xk+2 — Xk41 = 7tk+1Vf(Xk+1).
» Therefore, we need to prove that Vf(xx)" Vf(xxs1) = 0.
>t € arg>ngin{g(t) = f(xx — tVF(x4))}
t

> Hence, g’(tx) = 0.
> 7Vf(Xk)TVf(Xk — thf(Xk)) =0.
> Vf(Xk)TVf(Xk_H) =0.
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Numerical Example - Constant Stepsize, t = 0.1

min x? + 2y
xo = (2;1),e =107°,t=0.1.
iter_number = 1 norm_grad = 4.000000 fun_val = 3.280000
iter_number = 2 norm_grad = 2.937210 fun_val = 1.897600
iter_number = 3 norm_grad = 2.222791 fun_val = 1.141888
iter_number = 56 norm_grad = 0.000015 fun_val = 0.000000
iter_number = 57 norm_grad = 0.000012 fun_val = 0.000000

iter_number = 58 norm_grad = 0.000010 fun_val = 0.000000

> quite a lot of iterations...
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Numerical Example - Constant Stepsize, t = 10

min x? + 2y
xo = (2;1),e =107°,f = 10..

1783.488716 fun_val = 476806.000000
656209.693339 fun_val = 56962873606 . 0
256032703.004797 fun_val = 8318300807:

iter_number
iter_number
iter_number

1 norm_grad
2 norm_grad
3 norm_grad

iter_number = 119 norm_grad = NaN fun_val = NaN

> The sequence diverges:(
» Important question: how can we choose the constant stepsize so that
convergence is guaranteed?
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Lipschitz Continuity of the Gradient

Definition Let f be a continuously differentiable function over R”. We say
that f has a Lipschitz gradient if there exists L > 0 for which

IVF(x) — VF(y)| < L|jx —y|| for any x,y € R".

L is called the Lipschitz constant.
» If Vf is Lipschitz with constant L, then it is also Lipschitz with constant L
forall L > L.
» The class of functions with Lipschitz gradient with constant L is denoted by
CH(R™) or just C.
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Lipschitz Continuity of the Gradient

Definition Let f be a continuously differentiable function over R”. We say
that f has a Lipschitz gradient if there exists L > 0 for which

IVF(x) — VF(y)| < L|jx —y|| for any x,y € R".

L is called the Lipschitz constant.
» If Vf is Lipschitz with constant L, then it is also Lipschitz with constant L
forall L > L.
» The class of functions with Lipschitz gradient with constant L is denoted by
CH(R™) or just C.

» Linear functions - Given a € R”, the function f(x) =a’

X is in Cg’l.
» Quadratic functions - Let A be a symmetric n X n matrix, b € R"” and

c € R. Then the function f(x) = x"Ax+2b"x + c is a C1'! function. The
smallest Lipschitz constant of Vf is 2||A|]2 — why? In class
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Equivalence to Boundedness of the Hessian

Theorem. Let f be a twice continuously differentiable function over R”.

Then the following two claims are equivalent:
1. fe CIY(RM).
2. [[V2f(x)|| < L for any x € R".

Proof on pages 73,74 of the book
Example: f(x) =1+ x2e€ CH!

In class
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Convergence of the Gradient Method

Theorem. Let {xk}x>0 be the sequence generated by GM for solving

e )

with one of the following stepsize strategies:

> constant stepsize € (0, %).

> exact line search.

> backtracking procedure with parameters s > 0 and «, 8 € (0, 1).
Assume that

» fe CIY(RN).

» f is bounded below over R”, that is, there exists m € R such that

f(x) > m for all x € R").

Then

1. for any k, f(xk+1) < f(x«) unless V£ (x,) = 0.

2. Vf(xk) = 0 as k — oo.

Theorem 4.25 in the book.
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Two Numerical Examples - Backtracking

min x? + 2y
xo=(2;1),s=2,a=0253=05,6 =107°.

iter_number = 1 norm_grad = 2.000000 fun_val = 1.000000

0.000000 fun_val = 0.000000

iter_number = 2 norm_grad

> fast convergence (also due to lack!)
» no real advantage to exact line search.

ANOTHER EXAMPLE:
min0.01x> 4+ y2, s =2, =0.25,8 = 0.5, = 107>.

iter_number = 1 norm_grad = 0.028003 fun_val = 0.009704
iter_number = 2 norm_grad = 0.027730 fun_val = 0.009324
iter_number 3 norm_grad = 0.027465 fun_val = 0.008958

o

iter_number = 201 norm_grad = 0.000010 fun_val = 0.000000

Important Question: Can we detect key properties of the objective function that
imply slow/fast convergence?

Amir Beck “Introduction to Nonlinear Optimization” Lecture Slides - The Gradient Method 15 / 33



Kantorovich Inequality
Lemma. Let A be a positive definite n x n matrix. Then for any 0 # x € R”
the inequality

xTx < A max(A) Amin(A)
(xTAX)(xTA=1x) = (Amax(A) + Amin(A))?

holds.

Proof.
> Denote m = Apin(A) and M = \pax(A).
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Lemma. Let A be a positive definite n x n matrix. Then for any 0 # x € R”
the inequality

xTx < A max(A) Amin(A)
(xTAX)(xTA=1x) = (Amax(A) + Amin(A))?

holds.

Proof.
> Denote m = Apin(A) and M = \pax(A).
» The eigenvalues of the matrix A + MmA~1 are \;(A) +

Ai(A)”
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Kantorovich Inequality
Lemma. Let A be a positive definite n x n matrix. Then for any 0 # x € R”
the inequality

xTx A\ max (A) Amin(A)
(xTAX)(xTA=1x) = (Amax(A) + Amin(A))?

%

holds.

Proof.
> Denote m = Apin(A) and M = \pax(A).
» The eigenvalues of the matrix A + MmA~1 are \;(A) + %
» The maximum of the 1-D function ¢(t) =t + @ over [m, M] is attained at
the endpoints m and M with a corresponding value of M + m.
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Kantorovich Inequality
Lemma. Let A be a positive definite n x n matrix. Then for any 0 # x € R”
the inequality
xTx A max(A) Amin(A)
(xTAX)(xTA=1x) = (Amax(A) + Amin(A))?

%

holds. )

Proof.
> Denote m = Apin(A) and M = \pax(A).
» The eigenvalues of the matrix A + MmA~1 are \;(A) + %
» The maximum of the 1-D function ¢(t) =t + @ over [m, M] is attained at
the endpoints m and M with a corresponding value of M + m.
» Thus, the eigenvalues of A + MmA~! are smaller than (M + m).
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Kantorovich Inequality
Lemma. Let A be a positive definite n x n matrix. Then for any 0 # x € R”
the inequality
xTx A max(A) Amin(A)
(xTAX)(xTA=1x) = (Amax(A) + Amin(A))?

%

holds.

Proof.
> Denote m = Apin(A) and M = \pax(A).
» The eigenvalues of the matrix A + MmA~1 are \;(A) + %
» The maximum of the 1-D function ¢(t) =t + @ over [m, M] is attained at
the endpoints m and M with a corresponding value of M + m.
» Thus, the eigenvalues of A + MmA~! are smaller than (M + m).
» A+ MmA~t < (M+ m)l
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Kantorovich Inequality
Lemma. Let A be a positive definite n x n matrix. Then for any 0 # x € R”
the inequality
xTx A max(A) Amin(A)
(xTAX)(xTA=1x) = (Amax(A) + Amin(A))?

%

holds.

Proof.
> Denote m = Apin(A) and M = \pax(A).
» The eigenvalues of the matrix A + MmA~1 are \;(A) + %
» The maximum of the 1-D function ¢(t) =t + @ over [m, M] is attained at
the endpoints m and M with a corresponding value of M + m.
» Thus, the eigenvalues of A + MmA~! are smaller than (M + m).
A+ MmA—t < (M + m)l
» xTAx + Mm(xTA~1x) < (M + m)(x"x),

v
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Kantorovich Inequality
Lemma. Let A be a positive definite n x n matrix. Then for any 0 # x € R”
the inequality

xTx A max(A) Amin(A)
(xTAX)(xTA=1x) = (Amax(A) + Amin(A))?

%

holds.
Proof.
> Denote m = Apin(A) and M = \pax(A).
» The eigenvalues of the matrix A + MmA~1 are \;(A) + %

» The maximum of the 1-D function ¢(t) =t + @ over [m, M] is attained at
the endpoints m and M with a corresponding value of M + m.

» Thus, the eigenvalues of A + MmA~! are smaller than (M + m).
> A+ MmA~ l%(M—i—m)
» xTAx + Mm(xTA~1x) < (M + m)(x"x),
» Therefore,
M 2
(x"AX)[Mm(xTA"Ix)] < = [(xTAx) + Mm(x" A~ x)] < ﬂ(xTx)27

4
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Gradient Method for Minimizing x” Ax

Theorem. Let {xx}«>0 be the sequence generated by the gradient method
with exact linesearch for solving the problem

minx"Ax (A >~ 0).
xeR"

Then for any k =0,1,...:

f(xi41) < (% J_r :)2 f (%),

where M = A\jax(A), m = Apin(A).

Proof.
>
X1 = X — tdy,

d/d
where t, = me:Ik,dk = 2Axy.
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Proof of Rate of Convergence Contd.

f(xk+1) = XZ—+1AXk+1 = (X/< - tkdk)TA(Xk — t‘kdk)
XZ—AX/( — 2tkd,<TAxk + tde—Adk
= x/Axx — tid] dy + tod] Ady.
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Proof of Rate of Convergence Contd.

>

f(xk+1)

XZ—+1AXk+1 = (X;< — tkdk)TA(Xk — t‘kdk)
XZ—AX/( — 2tkdkTAxk + tde—Adk
= x{Ax; — tid]d, + t7d] Ady.

» Plugging in the expression for tj

f(xk+1)

Amir Beck

T 1 (d[dk)2
— A —
X X 4 dkTAdk
T 1 (dz—dk)2
= A 1-—-
X Ak ( 4 (d] Ady)(x] AA—1Ax,)

_ (de )2
- (1 ~ (@A) ] A*ld@) Fxe)-
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Proof of Rate of Convergence Contd.
>
f(xk+1) = XZ—+1AXk+1 = (X;< — tkdk)TA(Xk — t‘kdk)
XZ—AX/( — 2tkdkTAxk + tde—Adk
= x{ Ax — tid] di + tid] Ady.

» Plugging in the expression for tj

1(d]dy)?
f = x[Axp— K
(Xk+1) X AXg 2 dkTAdk
T 1 (did)’
= x/Ax (1-°>
X Xk( 4 (d] Ad)(x] AA—1Ax;)

(d]d,)’
(1 ~ (@A) ] A*ld@) Fxe)-

» By Kantorovich:
) = (1 i) o) - (ﬂ+$)2f(xk) (%:)2f(xk),

Amir Beck “Introduction to Nonlinear Optimization” Lecture Slides - The Gradient Method 18 /33




The Condition Number

Definition. Let A be an n X n positive definite matrix. Then the condition
number of A is defined by

> matrices (or quadratic functions) with large condition number are called
ill-conditioned.

» matrices with small condition number are called well-conditioned.

» large condition number implies large number of iterations of the gradient
method.

» small condition number implies small number of iterations of the gradient
method.

» For a non-quadratic function, the asymptotic rate of convergence of x4 to a
stationary point x* is usually determined by the condition number of V2f(x*).
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A Severely Ill-Condition Function - Rosenbrock

min {f(Xl,X2) =100(x0 — x3)* + (1 — x1)2} .

> optimal solution:(x1, x2) = (1,1), optimal value: 0.

>
Vf(x) = (_400)(1(;30?;2(122 ;5(1 - Xl)) 7
V2f(x) — (—400x2_—i£-1§§)(310x12 +2 _gggxl>
>

) (802 —400
V’c(1’1)<—4oo 200

condition number: 2508
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Solution of the Rosenbrock Problem with the Gradient
Method

xo = (2;5),5 =2,a = 0.25,3 = 0.5, = 1075, backtracking stepsize selection.

6890(!!!) iterations.
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Sensitivity of Solutions to Linear Systems

v

Suppose that we are given the linear system

Ax=Db
where A > 0 and we assume that x is indeed the solution of the system
(x = A"1b).

> Suppose that the right-hand side is perturbed b + Ab. What can be said on
the solution of the new system x + Ax?

Ax = A~ Ab.

Result (derivation In class):

v

v

|Ab]|
x|~ b
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Numerical Example

» consider the ill-condition matrix:

_(1+107° 1
A—< 1 1+1o—5)

>> A=[1+1e-5,1;1,1+1e-5];

>> cond(A)

ans =
2.000009999998795e+005

» We have
>> A\[1;1]
ans =
0.499997500018278
0.499997500006722
» However,
>> A\[1.1;1]
ans =
1.0e+003 *
5.000524997400047
-4.,999475002650021
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Scaled Gradient Method

» Consider the minimization problem

(P) min{f(x):x € R"}.

» For a given nonsingular matrix S € R"*", we make the linear change of
variables x = Sy, and obtain the equivalent problem

(P") min{g(y)=f(Sy):y € R"}.
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Scaled Gradient Method

» Consider the minimization problem

(P) min{f(x):x € R"}.

» For a given nonsingular matrix S € R"*", we make the linear change of
variables x = Sy, and obtain the equivalent problem

(P") min{g(y)=f(Sy):y € R"}.

» Since Vg(y) = STVF(Sy) = STVf(x), the gradient method for (P') is
Yit1 = Y — ST VF(Syx).
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Scaled Gradient Method

» Consider the minimization problem
(P) min{f(x):x € R"}.

» For a given nonsingular matrix S € R"*", we make the linear change of
variables x = Sy, and obtain the equivalent problem

(P") min{g(y)=f(Sy):y € R"}.

» Since Vg(y) = STVf(Sy) = STV£(x), the gradient method for (P') is
Yk+1 = Yk — tkSTVf(Syk).

> Multiplying the latter equality by S from the left, and using the notation

Xk = Syk:
Xk+1 = Xk — tkSSTVf(Xk).
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Scaled Gradient Method

» Consider the minimization problem

(P) min{f(x):x € R"}.

» For a given nonsingular matrix S € R"*", we make the linear change of
variables x = Sy, and obtain the equivalent problem

(P") min{g(y)=f(Sy):y € R"}.

» Since Vg(y) = STVf(Sy) = STV£(x), the gradient method for (P') is
Yk+1 = Yk — tkSTVf(Syk).

> Multiplying the latter equality by S from the left, and using the notation
Xk = Syk:
Xk+1 = Xk — tkSSTVf(Xk).

» Defining D = SS7, we obtain the scaled gradient method:
Xk4+1 = Xk — tkDVf(Xk).
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Scaled Gradient Method

» D > 0, so the direction —DVf(x,) is a descent direction:

f'(xi; =DV f(xx)) = =V Ff(x,)TDVF(x,) <0,
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Scaled Gradient Method

» D > 0, so the direction —DVf(x,) is a descent direction:

f'(xi; =DV f(xx)) = =V Ff(x,)TDVF(x,) <0,
We also allow different scaling matrices at each iteration.
Scaled Gradient Method

Input: £ > 0 - tolerance parameter.
Initialization: pick xg € R” arbitrarily.

General step: for any k = 0,1,2,... execute the following steps:

(a) pick a scaling matrix Dy > 0.

(b) pick a stepsize tx by a line search procedure on the function
g(l’) = f(Xk = tDka(Xk)).

(C) set Xp41 = Xk — tkaVf(Xk).
(c) if [[VFf(xk+1)|| <&, then STOP and x441 is the output.
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Choosing the Scaling Matrix Dy

> The scaled gradient method with scaling matrix D is equivalent to the
gradient method employed on the function g(y) = f(D/?y).
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Choosing the Scaling Matrix Dy

> The scaled gradient method with scaling matrix D is equivalent to the
gradient method employed on the function g(y) = f(D*/2y).

» Note that the gradient and Hessian of g are given by

Ve(y) = DY2f(D'?y)=D"*f(x),
VQg(y) —_ D1/2v2f(D1/2y)D1/2 _ D1/2V2f(X)D1/2.

> The objective is usually to pick Dy so as to make Di/2V2f(xk)Di/2 as
well-conditioned as possible.
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Choosing the Scaling Matrix Dy

> The scaled gradient method with scaling matrix D is equivalent to the
gradient method employed on the function g(y) = f(D*/2y).

» Note that the gradient and Hessian of g are given by
Vg(y) = DY*f(D'?y)=D?f(x),
VQg(y) —_ D1/2v2f(D1/2y)D1/2 _ D1/2V2f(X)D1/2.

v

The objective is usually to pick Dy so as to make Di/2V2f(xk)Di/2 as
well-conditioned as possible.
A well known choice (Newton's method): Dy = (V2f(x,)) L.

v

» diagonal scaling: Dy is picked to be diagonal. For example,
02F(x)\
Dy)ii = :
0= (755)
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Choosing the Scaling Matrix Dy
> The scaled gradient method with scaling matrix D is equivalent to the
gradient method employed on the function g(y) = f(D*/2y).
> Note that the gradient and Hessian of g are given by

Ve(y) = DY2f(D'?y)=D"*f(x),
VQg(y) —_ Dl/2v2f‘(Dl/2y)Dl/2 _ D1/2V2f(X)D1/2.

> The objective is usually to pick Dy so as to make Di/2V2f(xk)Di/2 as
well-conditioned as possible.
» A well known choice (Newton's method): Dy = (V2f(x,)) ™ .

» diagonal scaling: Dy is picked to be diagonal. For example,

(Dy)ii = (82(;5;!())_1 |

» Diagonal scaling can be very effective when the decision variables are of
different magnitudes.
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The Gauss-Newton Method

» Nonlinear least squares problem:

(NLS):  min {g(x) = Z(f,(x) - c;)z} .

xER" .
i=1

fi,...,fn are continuously differentiable over R” and ¢1,...,cn € R.

» Denote:
fi(x) —a
H(x) — o
F(x) = . )
fm(X) — cm
» Then the problem becomes:
min | F(x)].
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The Gauss-Newton Method

Given the kth iterate xi, the next iterate is chosen to minimize the sum of squares
of the linearized terms, that is,

Xj+1 = argmin {Z [i(xk) + VAi(xi) T (x = %) - CI]Z} :

x€R" i—1
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The Gauss-Newton Method

Given the kth iterate xi, the next iterate is chosen to minimize the sum of squares
of the linearized terms, that is,

Xj+1 = argmin {Z [i(xk) + VAi(xi) T (x = %) - CI]Z} :

x€R" i—1

> The general step actually consists of solving the linear LS problem
min [|Agx — by ||?,
where
Vﬂ(xk)T
sz(xk)T
. = J(x«)

Kk =

Vin(xe)T
is the so-called Jacobian matrix, assumed to have full column rank.

VH(xk) "xk — A(xk) +
Vh(xk) "xk — H(xk) + ¢

Kk =

= J(Xk)Xk — F(Xk)

me(xk)Txk - fm(xk) + Cm
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The Gauss-Newton Method

» The Gauss-Newton method can thus be written as:
X1 = (J0xi) T (xi)) " I (xk) Ty
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The Gauss-Newton Method

» The Gauss-Newton method can thus be written as:
X1 = (J0xi) T (xi)) " I (xk) Ty

» The gradient of the objective function f(x) = ||F(x)||? is
VF(x) =2J(x)" F(x)
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The Gauss-Newton Method

» The Gauss-Newton method can thus be written as:

X1 = (J0xi) T (xi)) " I (xk) Ty

» The gradient of the objective function f(x) = ||F(x)||? is

VF(x) = 2J(x)T F(x)

» The GN method can be rewritten as follows:

Xerr = (i) TI0xk)) T I (xe) T (I(x)xk — F(xk))
= X — (J0xi) TI(xk)) T (%) T F (%)

e 0TI V),
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The Gauss-Newton Method

» The Gauss-Newton method can thus be written as:

X1 = (J0xi) T (xi)) " I (xk) Ty

» The gradient of the objective function f(x) = ||F(x)||? is

VF(x) = 2J(x)T F(x)

» The GN method can be rewritten as follows:
xir = (J0) T I0k)) T (xk) T (I (k) xk = F(xk))
= xe— (J0xu) TI(x)) T (xi) T F (%)
= Xx— %(J(xk)TJ(xk))_IVf(xk),

> that is, it is a scaled gradient method with a special choice of scaling matrix:

D, = %(J(Xk)TJ(Xk))il.
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The Damped Gauss-Newton Method

The Gauss-Newton method does not incorporate a stepsize, which might cause it

to diverge. A well known variation of the method incorporating stepsizes is the
damped Gauss-newton Method.

Damped Gauss-Newton Method
Input: ¢ - tolerance parameter.

Initialization: pick xo € R” arbitrarily.

General step: for any k = 0,1,2,... execute the following steps:
(a) Set dx = —(J(xk) T I(xx)) 2 (xx) T F(xx).

(b) Set tx by a line search procedure on the function

h(t) = g(xk + tdy).

(C) set Xp4+1 = Xk + tedy.

(c) if |Vf(xk+1)]| < e, then STOP and x4 is the output.
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Fermat-Weber Problem

Fermat-Weber Problem: Given m points in R" : ay,...,a,, — also
called “anchor point” — and m weights wq,ws,...,w, > 0, find a
point x € R” that minimizes the weighted distance of x to each of
the points a1, ...,an:

min ¢ f(x) =Y willx - a
i=1

x€R"

» The objective function is not differentiable at the anchor points ay,...,a..

» One of the simplest instances of facility location problems.
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Weiszfeld's Method (1937)

» Start from the stationarity condition V£(x) = 0.2

2We implicitly assume here that x is not an anchor point.
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Weiszfeld's Method (1937)

» Start from the stationarity condition V£(x) = 0.2

m Lo X—ap
> Y Witcay = 0-

2We implicitly assume here that x is not an anchor point.
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Weiszfeld's Method (1937)

» Start from the stationarity condition V£(x) = 0.2

m Lo X—ap
> Y Witcay = 0-

m wi — m wia;
> (ST ) = S0 s

2We implicitly assume here that x is not an anchor point.
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Weiszfeld's Method (1937)

» Start from the stationarity condition V£(x) = 0.2
m Xx—aj __
> Y Witeay = 0.
m wj _ m wia;
> (S0 ) x= S0 s
> X = 1 m

7, g
=H i .
Sy ey =1 il

2We implicitly assume here that x is not an anchor point.
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Weiszfeld's Method (1937)

» Start from the stationarity condition V£(x) = 0.2
m Xx—aj __
> it WiThmay = 0

m wj _ m wija;
(7 esy) x= S iy
1 m wia;
S e 2im1 lIx—aqll -
The stationarity condition can be written as x = T(x), where T is the
operator

v

v

X =

v

m
1 wiaj

S e 2 x—ail

2We implicitly assume here that x is not an anchor point.

Amir Beck “Introduction to Nonlinear Optimization” Lecture Slides - The Gradient Method

32/33



Weiszfeld's Method (1937)

» Start from the stationarity condition V£(x) = 0.2
m Xx—aj __
> Zi:l wi Tx—ai] — 0.
m wj — m w;a;
> (S ) x = S 2y
1 m wia;
> X = = . g
X = Sy i Teal
> The stationarity condition can be written as x = T(x), where T is the
operator
1 T wia;
J— 1%
0= S Al
i=1 T—arl izt j
» Weiszfeld's method is a fixed point method:

Xp4+1 = T(Xk).

2We implicitly assume here that x is not an anchor point.
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Weiszfeld's Method as a Gradient Method

Weiszfeld’s Method
Initialization: pick xo € R” such that x # aj,as,...,an.
General step: for any k =0,1,2,... compute:

1 7 wia
1<%
Xkr1 = T(Xk) = =5 T .
i—1 ool Xy — aj
i=1 [xc—ail] i=1
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Weiszfeld's Method as a Gradient Method

Weiszfeld’s Method
Initialization: pick xo € R” such that x # aj,as,...,an.
General step: for any k =0,1,2,... compute:

1 = wia;
M = T0) = S a2 e ]
i=1 Txe—ai]] j=1 17K !
» Weiszfeld's method is a gradient method since
X 1 = wiaj
k+1 = -
2t e = [ —all
« 1 T Xk — aj
= X—=m o D Wit ——7
Yt Tt = I —aill
1
= Xk — va()(k)
i=1 Thxe—afl
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Weiszfeld's Method as a Gradient Method

Weiszfeld’s Method
Initialization: pick xo € R” such that x # aj,as,...,an.
General step: for any k =0,1,2,... compute:

1 = wia;
Xer1 = T(xk) = S o

=1 [[xk—a;l| j=1

lIxx — aill”

» Weiszfeld's method is a gradient method since

1 7 wiaj
Xk+1 = m w;
A e Xk — aj
2 e = e —ail
m
1 Xk — aj
= Xk—Sm w2 Wito
2 e = e aill
1
= Xk — va()(k)
i=1 [[x,—a;|
> A gradient method with a special choice of stepsize: ty = —=—t—or—
=1 Txp—arT
i= X —aj
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