
Lecture 4 - The Gradient Method
Objective: find an optimal solution of the problem

min{f (x) : x ∈ Rn}.

The iterative algorithms that we will consider are of the form

xk+1 = xk + tkdk , k = 0, 1, . . .

I dk - direction.
I tk - stepsize.

We will limit ourselves to descent directions.

Definition. Let f : Rn → R be a continuously differentiable function over
Rn. A vector 0 6= d ∈ Rn is called a descent direction of f at x if the
directional derivative f ′(x; d) is negative, meaning that

f ′(x; d) = ∇f (x)Td < 0.
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The Descent Property of Descent Directions
Lemma: Let f be a continuously differentiable function over Rn, and let
x ∈ Rn. Suppose that d is a descent direction of f at x. Then there exists
ε > 0 such that

f (x + td) < f (x)

for any t ∈ (0, ε].

Proof.
I Since f ′(x; d) < 0, it follows from the definition of the directional derivative

that

lim
t→0+

f (x + td)− f (x)

t
= f ′(x; d) < 0.

I Therefore, ∃ε > 0 such that

f (x + td)− f (x)

t
< 0

for any t ∈ (0, ε], which readily implies the desired result.
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Schematic Descent Direction Method

Initialization: pick x0 ∈ Rn arbitrarily.
General step: for any k = 0, 1, 2, . . . set

(a) pick a descent direction dk .

(b) find a stepsize tk satisfying f (xk + tkdk) < f (xk).

(c) set xk+1 = xk + tkdk .

(d) if a stopping criteria is satisfied, then STOP and xk+1 is the output.

Of course, many details are missing in the above schematic algorithm:

I What is the starting point?

I How to choose the descent direction?

I What stepsize should be taken?

I What is the stopping criteria?

Amir Beck “Introduction to Nonlinear Optimization” Lecture Slides - The Gradient Method 3 / 33



Stepsize Selection Rules

I constant stepsize - tk = t̄ for any k .

I exact stepsize - tk is a minimizer of f along the ray xk + tdk :

tk ∈ argmin
t≥0

f (xk + tdk).

I backtracking1 - The method requires three parameters:
s > 0, α ∈ (0, 1), β ∈ (0, 1). Here we start with an initial stepsize tk = s.
While

f (xk)− f (xk + tkdk) < −αtk∇f (xk)Tdk .

set tk := βtk

Sufficient Decrease Property:

f (xk)− f (xk + tkdk) ≥ −αtk∇f (xk)Tdk .

1also referred to as Armijo
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Exact Line Search for Quadratic Functions

f (x) = xTAx + 2bTx + c where A is an n× n positive definite matrix, b ∈ Rn and
c ∈ R. Let x ∈ Rn and let d ∈ Rn be a descent direction of f at x. The objective
is to find a solution to

min
t≥0

f (x + td).

In class
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The Gradient Method - Taking the Direction of Minus the
Gradient

I In the gradient method dk = −∇f (xk).
I This is a descent direction as long as ∇f (xk) 6= 0 since

f ′(xk ;−∇f (xk)) = −∇f (xk)T∇f (xk) = −‖∇f (xk)‖2 < 0.

I In addition for being a descent direction, minus the gradient is also the
steepest direction method.

Lemma: Let f be a continuously differentiable function and let x ∈ Rn be
a non-stationary point (∇f (x) 6= 0). Then an optimal solution of

min
d
{f ′(x; d) : ‖d‖ = 1} (1)

is d = −∇f (x)/‖∇f (x)‖.

Proof. In class
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The Gradient Method

The Gradient Method

Input: ε > 0 - tolerance parameter.

Initialization: pick x0 ∈ Rn arbitrarily.
General step: for any k = 0, 1, 2, . . . execute the following steps:

(a) pick a stepsize tk by a line search procedure on the function

g(t) = f (xk − t∇f (xk)).

(b) set xk+1 = xk − tk∇f (xk).

(c) if ‖∇f (xk+1)‖ ≤ ε, then STOP and xk+1 is the output.
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Numerical Example

min x2 + 2y2

x0 = (2; 1), ε = 10−5, exact line search.

13 iterations until convergence.
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The Zig-Zag Effect

Lemma. Let {xk}k≥0 be the sequence generated by the gradient method
with exact line search for solving a problem of minimizing a continuously
differentiable function f . Then for any k = 0, 1, 2, . . .

(xk+2 − xk+1)T (xk+1 − xk) = 0.

Proof.

I xk+1 − xk = −tk∇f (xk), xk+2 − xk+1 = −tk+1∇f (xk+1).

I Therefore, we need to prove that ∇f (xk)T∇f (xk+1) = 0.

I tk ∈ argmin
t≥0

{g(t) ≡ f (xk − t∇f (xk))}

I Hence, g ′(tk) = 0.

I −∇f (xk)T∇f (xk − tk∇f (xk)) = 0.

I ∇f (xk)T∇f (xk+1) = 0.
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Numerical Example - Constant Stepsize, t̄ = 0.1

min x2 + 2y2

x0 = (2; 1), ε = 10−5, t̄ = 0.1.

iter_number = 1 norm_grad = 4.000000 fun_val = 3.280000

iter_number = 2 norm_grad = 2.937210 fun_val = 1.897600

iter_number = 3 norm_grad = 2.222791 fun_val = 1.141888

: : :

iter_number = 56 norm_grad = 0.000015 fun_val = 0.000000

iter_number = 57 norm_grad = 0.000012 fun_val = 0.000000

iter_number = 58 norm_grad = 0.000010 fun_val = 0.000000

I quite a lot of iterations...
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Numerical Example - Constant Stepsize, t̄ = 10

min x2 + 2y2

x0 = (2; 1), ε = 10−5, t̄ = 10..

iter_number = 1 norm_grad = 1783.488716 fun_val = 476806.000000

iter_number = 2 norm_grad = 656209.693339 fun_val = 56962873606.000000

iter_number = 3 norm_grad = 256032703.004797 fun_val = 8318300807190406.000000

: : :

iter_number = 119 norm_grad = NaN fun_val = NaN

I The sequence diverges:(

I Important question: how can we choose the constant stepsize so that
convergence is guaranteed?
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Lipschitz Continuity of the Gradient

Definition Let f be a continuously differentiable function over Rn. We say
that f has a Lipschitz gradient if there exists L ≥ 0 for which

‖∇f (x)−∇f (y)‖ ≤ L‖x− y‖ for any x, y ∈ Rn.

L is called the Lipschitz constant.

I If ∇f is Lipschitz with constant L, then it is also Lipschitz with constant L̃
for all L̃ ≥ L.

I The class of functions with Lipschitz gradient with constant L is denoted by
C 1,1
L (Rn) or just C 1,1

L .

I Linear functions - Given a ∈ Rn, the function f (x) = aTx is in C 1,1
0 .

I Quadratic functions - Let A be a symmetric n × n matrix, b ∈ Rn and
c ∈ R. Then the function f (x) = xTAx + 2bTx + c is a C 1,1 function. The
smallest Lipschitz constant of ∇f is 2‖A‖2 – why? In class
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Equivalence to Boundedness of the Hessian
Theorem. Let f be a twice continuously differentiable function over Rn.
Then the following two claims are equivalent:

1. f ∈ C 1,1
L (Rn).

2. ‖∇2f (x)‖ ≤ L for any x ∈ Rn.

Proof on pages 73,74 of the book
Example: f (x) =

√
1 + x2 ∈ C 1,1

In class
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Convergence of the Gradient Method
Theorem. Let {xk}k≥0 be the sequence generated by GM for solving

min
x∈Rn

f (x)

with one of the following stepsize strategies:

I constant stepsize t̄ ∈
(
0, 2L

)
.

I exact line search.

I backtracking procedure with parameters s > 0 and α, β ∈ (0, 1).

Assume that

I f ∈ C 1,1
L (Rn).

I f is bounded below over Rn, that is, there exists m ∈ R such that
f (x) > m for all x ∈ Rn).

Then

1. for any k , f (xk+1) < f (xk) unless ∇f (xk) = 0.

2. ∇f (xk)→ 0 as k →∞.

Theorem 4.25 in the book.
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Two Numerical Examples - Backtracking

min x2 + 2y2

x0 = (2; 1), s = 2, α = 0.25, β = 0.5, ε = 10−5.

iter_number = 1 norm_grad = 2.000000 fun_val = 1.000000

iter_number = 2 norm_grad = 0.000000 fun_val = 0.000000

I fast convergence (also due to lack!)
I no real advantage to exact line search.

ANOTHER EXAMPLE:
min 0.01x2 + y2, s = 2, α = 0.25, β = 0.5, ε = 10−5.

iter_number = 1 norm_grad = 0.028003 fun_val = 0.009704

iter_number = 2 norm_grad = 0.027730 fun_val = 0.009324

iter_number = 3 norm_grad = 0.027465 fun_val = 0.008958

: : :

iter_number = 201 norm_grad = 0.000010 fun_val = 0.000000

Important Question: Can we detect key properties of the objective function that
imply slow/fast convergence?
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Kantorovich Inequality
Lemma. Let A be a positive definite n×n matrix. Then for any 0 6= x ∈ Rn

the inequality

xTx

(xTAx)(xTA−1x)
≥ 4λmax(A)λmin(A)

(λmax(A) + λmin(A))2

holds.

Proof.
I Denote m = λmin(A) and M = λmax(A).

I The eigenvalues of the matrix A + MmA−1 are λi (A) + Mm
λi (A) .

I The maximum of the 1-D function ϕ(t) = t + Mm
t over [m,M] is attained at

the endpoints m and M with a corresponding value of M + m.
I Thus, the eigenvalues of A + MmA−1 are smaller than (M + m).
I A + MmA−1 � (M + m)I.
I xTAx + Mm(xTA−1x) ≤ (M + m)(xTx),
I Therefore,

(xTAx)[Mm(xTA−1x)] ≤ 1

4

[
(xTAx) + Mm(xTA−1x)

]2 ≤ (M + m)2

4
(xTx)2,
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Gradient Method for Minimizing xTAx

Theorem. Let {xk}k≥0 be the sequence generated by the gradient method
with exact linesearch for solving the problem

min
x∈Rn

xTAx (A � 0).

Then for any k = 0, 1, . . .:

f (xk+1) ≤
(
M −m

M + m

)2

f (xk),

where M = λmax(A),m = λmin(A).

Proof.

I

xk+1 = xk − tkdk ,

where tk =
dT
k dk

2dT
k Adk

,dk = 2Axk .
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Proof of Rate of Convergence Contd.
I

f (xk+1) = xT
k+1Axk+1 = (xk − tkdk)

TA(xk − tkdk)

= xT
k Axk − 2tkdT

k Axk + t2kdT
k Adk

= xT
k Axk − tkdT

k dk + t2kdT
k Adk .

I Plugging in the expression for tk

f (xk+1) = xT
k Axk −

1

4

(dT
k dk)

2

dT
k Adk

= xT
k Axk

(
1− 1

4

(dT
k dk)

2

(dT
k Adk)(xT

k AA−1Axk)

)
=

(
1− (dT

k dk)
2

(dT
k Adk)(dT

k A−1dk)

)
f (xk).

I By Kantorovich:

f (xk+1) ≤
(
1− 4Mm

(M +m)2

)
f (xk) =

(
M −m

M +m

)2

f (xk) =

(
κ(A)− 1

κ(A) + 1

)2

f (xk),
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The Condition Number

Definition. Let A be an n × n positive definite matrix. Then the condition
number of A is defined by

κ(A) =
λmax(A)

λmin(A)
.

I matrices (or quadratic functions) with large condition number are called
ill-conditioned.

I matrices with small condition number are called well-conditioned.

I large condition number implies large number of iterations of the gradient
method.

I small condition number implies small number of iterations of the gradient
method.

I For a non-quadratic function, the asymptotic rate of convergence of xk to a
stationary point x∗ is usually determined by the condition number of ∇2f (x∗).
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A Severely Ill-Condition Function - Rosenbrock

min
{
f (x1, x2) = 100(x2 − x21 )2 + (1− x1)2

}
.

I optimal solution:(x1, x2) = (1, 1), optimal value: 0.

I

∇f (x) =

(
−400x1(x2 − x21 )− 2(1− x1)

200(x2 − x21 )

)
,

∇2f (x) =

(
−400x2 + 1200x21 + 2 −400x1

−400x1 200

)
.

I

∇2f (1, 1) =

(
802 −400
−400 200

)
condition number: 2508
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Solution of the Rosenbrock Problem with the Gradient
Method
x0 = (2; 5), s = 2, α = 0.25, β = 0.5, ε = 10−5, backtracking stepsize selection.

6890(!!!) iterations.
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Sensitivity of Solutions to Linear Systems

I Suppose that we are given the linear system

Ax = b

where A � 0 and we assume that x is indeed the solution of the system
(x = A−1b).

I Suppose that the right-hand side is perturbed b + ∆b. What can be said on
the solution of the new system x + ∆x?

I ∆x = A−1∆b.

I Result (derivation In class):

‖∆x‖
‖x‖

≤ κ(A)
‖∆b‖
‖b‖
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Numerical Example
I consider the ill-condition matrix:

A =

(
1 + 10−5 1

1 1 + 10−5

)
>> A=[1+1e-5,1;1,1+1e-5];

>> cond(A)

ans =

2.000009999998795e+005

I We have
>> A\[1;1]

ans =

0.499997500018278

0.499997500006722

I However,
>> A\[1.1;1]

ans =

1.0e+003 *

5.000524997400047

-4.999475002650021
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Scaled Gradient Method
I Consider the minimization problem

(P) min{f (x) : x ∈ Rn}.

I For a given nonsingular matrix S ∈ Rn×n, we make the linear change of
variables x = Sy, and obtain the equivalent problem

(P’) min{g(y) ≡ f (Sy) : y ∈ Rn}.

I Since ∇g(y) = ST∇f (Sy) = ST∇f (x), the gradient method for (P’) is

yk+1 = yk − tkST∇f (Syk).

I Multiplying the latter equality by S from the left, and using the notation
xk = Syk :

xk+1 = xk − tkSST∇f (xk).

I Defining D = SST , we obtain the scaled gradient method:

xk+1 = xk − tkD∇f (xk).
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Scaled Gradient Method
I D � 0, so the direction −D∇f (xk) is a descent direction:

f ′(xk ;−D∇f (xk)) = −∇f (xk)TD∇f (xk) < 0,

We also allow different scaling matrices at each iteration.

Scaled Gradient Method

Input: ε > 0 - tolerance parameter.
Initialization: pick x0 ∈ Rn arbitrarily.
General step: for any k = 0, 1, 2, . . . execute the following steps:

(a) pick a scaling matrix Dk � 0.

(b) pick a stepsize tk by a line search procedure on the function

g(t) = f (xk − tDk∇f (xk)).

(c) set xk+1 = xk − tkDk∇f (xk).

(c) if ‖∇f (xk+1)‖ ≤ ε, then STOP and xk+1 is the output.
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Choosing the Scaling Matrix Dk

I The scaled gradient method with scaling matrix D is equivalent to the
gradient method employed on the function g(y) = f (D1/2y).

I Note that the gradient and Hessian of g are given by

∇g(y) = D1/2f (D1/2y) = D1/2f (x),

∇2g(y) = D1/2∇2f (D1/2y)D1/2 = D1/2∇2f (x)D1/2.

.
I The objective is usually to pick Dk so as to make D

1/2
k ∇2f (xk)D

1/2
k as

well-conditioned as possible.
I A well known choice (Newton’s method): Dk = (∇2f (xk))−1.
I diagonal scaling: Dk is picked to be diagonal. For example,

(Dk)ii =

(
∂2f (xk)

∂x2i

)−1
.

I Diagonal scaling can be very effective when the decision variables are of
different magnitudes.
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The Gauss-Newton Method

I Nonlinear least squares problem:

(NLS): min
x∈Rn

{
g(x) ≡

m∑
i=1

(fi (x)− ci )
2

}
.

f1, . . . , fm are continuously differentiable over Rn and c1, . . . , cm ∈ R.

I Denote:

F (x) =


f1(x)− c1
f2(x)− c2

...
fm(x)− cm

 ,

I Then the problem becomes:

min ‖F (x)‖2.
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The Gauss-Newton Method
Given the kth iterate xk , the next iterate is chosen to minimize the sum of squares
of the linearized terms, that is,

xk+1 = argmin
x∈Rn

{
m∑
i=1

[
fi (xk) +∇fi (xk)T (x− xk)− ci

]2}
.

I The general step actually consists of solving the linear LS problem

min ‖Akx− bk‖2,
where

Ak =


∇f1(xk)

T

∇f2(xk)
T

...
∇fm(xk)

T

 = J(xk)

is the so-called Jacobian matrix, assumed to have full column rank.

bk =


∇f1(xk)

Txk − f1(xk) + c1
∇f2(xk)

Txk − f2(xk) + c2
...

∇fm(xk)
Txk − fm(xk) + cm

 = J(xk)xk − F (xk)
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The Gauss-Newton Method
I The Gauss-Newton method can thus be written as:

xk+1 = (J(xk)T J(xk))−1J(xk)Tbk .

I The gradient of the objective function f (x) = ‖F (x)‖2 is

∇f (x) = 2J(x)TF (x)

I The GN method can be rewritten as follows:

xk+1 = (J(xk)T J(xk))−1J(xk)T (J(xk)xk − F (xk))

= xk − (J(xk)T J(xk))−1J(xk)TF (xk)

= xk −
1

2
(J(xk)T J(xk))−1∇f (xk),

I that is, it is a scaled gradient method with a special choice of scaling matrix:

Dk =
1

2
(J(xk)T J(xk))−1.
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The Damped Gauss-Newton Method

The Gauss-Newton method does not incorporate a stepsize, which might cause it
to diverge. A well known variation of the method incorporating stepsizes is the
damped Gauss-newton Method.

Damped Gauss-Newton Method

Input: ε - tolerance parameter.

Initialization: pick x0 ∈ Rn arbitrarily.
General step: for any k = 0, 1, 2, . . . execute the following steps:

(a) Set dk = −(J(xk)T J(xk))−1J(xk)TF (xk).

(b) Set tk by a line search procedure on the function

h(t) = g(xk + tdk).

(c) set xk+1 = xk + tkdk .

(c) if ‖∇f (xk+1)‖ ≤ ε, then STOP and xk+1 is the output.
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Fermat-Weber Problem

Fermat-Weber Problem: Given m points in Rn : a1, . . . , am – also
called “anchor point” – and m weights ω1, ω2, . . . , ωm > 0, find a
point x ∈ Rn that minimizes the weighted distance of x to each of
the points a1, . . . , am:

min
x∈Rn

{
f (x) ≡

m∑
i=1

ωi‖x− ai‖

}
.

I The objective function is not differentiable at the anchor points a1, . . . , am.

I One of the simplest instances of facility location problems.
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Weiszfeld’s Method (1937)

I Start from the stationarity condition ∇f (x) = 0.2

I
∑m

i=1 ωi
x−ai

‖x−ai‖ = 0.

I
(∑m

i=1
ωi

‖x−ai‖

)
x =

∑m
i=1

ωiai

‖x−ai‖ ,

I x = 1∑m
i=1

ωi
‖x−ai‖

∑m
i=1

ωiai

‖x−ai‖ .

I The stationarity condition can be written as x = T (x), where T is the
operator

T (x) ≡ 1∑m
i=1

ωi

‖x−ai‖

m∑
i=1

ωiai

‖x− ai‖
.

I Weiszfeld’s method is a fixed point method:

xk+1 = T (xk).

2We implicitly assume here that x is not an anchor point.
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xk+1 = T (xk).

2We implicitly assume here that x is not an anchor point.
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Weiszfeld’s Method as a Gradient Method
Weiszfeld’s Method
Initialization: pick x0 ∈ Rn such that x 6= a1, a2, . . . , am.
General step: for any k = 0, 1, 2, . . . compute:

xk+1 = T (xk) =
1∑m

i=1
ωi

‖xk−ai‖

m∑
i=1

ωiai

‖xk − ai‖
.

I Weiszfeld’s method is a gradient method since

xk+1 =
1∑m

i=1
ωi

‖xk−ai‖

m∑
i=1

ωiai

‖xk − ai‖

= xk −
1∑m

i=1
ωi

‖xk−ai‖

m∑
i=1

ωi
xk − ai

‖xk − ai‖

= xk −
1∑m

i=1
ωi

‖xk−ai‖
∇f (xk).

I A gradient method with a special choice of stepsize: tk = 1∑m
i=1

ωi
‖xk−ai‖

.
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