
Lecture 2 - Unconstrained Optimization
Definition[Global Minimum and Maximum]Let f : S → R be defined on a set
S ⊆ Rn. Then

1. x∗ ∈ S is a global minimum point of f over S if f (x) ≥ f (x∗) for any x ∈ S .

2. x∗ ∈ S is a strict global minimum point of f over S if f (x) > f (x∗) for any
x∗ 6= x ∈ S .

3. x∗ ∈ S is a global maximum point of f over S if f (x) ≤ f (x∗) for any x ∈ S .

4. x∗ ∈ S is a strict global maximum point of f over S if f (x) < f (x∗) for any
x∗ 6= x ∈ S .

I global optimum=global minimum or maximum.
I maximal value of f over S :

sup{f (x) : x ∈ S}

I minimal value of f over S :

inf{f (x) : x ∈ S}

I minimal and maximal values are always unique.
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Example 1:
Find the global minimum and maximum points of f (x , y) = x + y over the unit
ball S = B[0, 1] = {(x , y)T : x2 + y2 ≤ 1}

In class.

Amir Beck “Introduction to Nonlinear Optimization” Lecture Slides - Unconstrained Optimization 2 / 29



Example 2:

min

{
f (x , y) =

x + y

x2 + y2 + 1
: x , y ∈ R

}

(1/
√

2, 1/
√

2) - global maximizer (−1/
√

2,−1/
√

2) - global minimizer.
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Local Minima and Maxima

Definition Let f : S → R be defined on a set S ⊆ Rn. Then

1. x∗ ∈ S is a local minimum of f over S if there exists r > 0 for which
f (x∗) ≤ f (x) for any x ∈ S ∩ B(x∗, r).

2. x∗ ∈ S is a strict local minimum of f over S if there exists r > 0 for which
f (x∗) < f (x) for any x∗ 6= x ∈ S ∩ B(x∗, r).

3. x∗ ∈ S is a local maximum of f over S if there exists r > 0 for which
f (x∗) ≥ f (x) for any x ∈ S ∩ B(x∗, r).

4. x∗ ∈ S is a strict local maximum of f over S if there exists r > 0 for which
f (x∗) > f (x) for any x∗ 6= x ∈ S ∩ B(x∗, r).

Of course, a global minimum (maximum) point is also a local minimum
(maximum) point.
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Example

f described above is defined over [−1, 8]. Classify each of the points
x = −1, 1, 2, 3, 5, 6.5, 8 as strict/nonstrict global/local minimum/maximum
points. In class
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Fermat’s Theorem - First Order Optimality Condition

Theorem. Let f : U → R be a function defined on a set U ⊆ Rn. Suppose
that x∗ ∈ int(U) is a local optimum point and that all the partial derivatives
of f exist at x∗. Then ∇f (x∗) = 0.

Proof.

I Let i ∈ {1, 2, . . . , n} and consider the 1-D function g(t) = f (x∗ + tei )

I x∗ is a local optimum point of f ⇒ t = 0 is a local optimum of g ⇒
g ′(0) = 0.

I Thus, ∂f
∂xi

(x∗) = g ′(0) = 0.

Amir Beck “Introduction to Nonlinear Optimization” Lecture Slides - Unconstrained Optimization 6 / 29



Fermat’s Theorem - First Order Optimality Condition

Theorem. Let f : U → R be a function defined on a set U ⊆ Rn. Suppose
that x∗ ∈ int(U) is a local optimum point and that all the partial derivatives
of f exist at x∗. Then ∇f (x∗) = 0.

Proof.

I Let i ∈ {1, 2, . . . , n} and consider the 1-D function g(t) = f (x∗ + tei )

I x∗ is a local optimum point of f ⇒ t = 0 is a local optimum of g ⇒
g ′(0) = 0.

I Thus, ∂f
∂xi

(x∗) = g ′(0) = 0.

Amir Beck “Introduction to Nonlinear Optimization” Lecture Slides - Unconstrained Optimization 6 / 29



Stationary Points

Definition Let f : U → R be a function defined on a set U ⊆ Rn. Suppose that
x∗ ∈ int(U) and that all the partial derivatives of f are defined at x∗. Then x∗ is
called a stationary point of f if ∇f (x∗) = 0.
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Example:

min

{
f (x , y) =

x + y

x2 + y2 + 1
: x , y ∈ R

}

I

∇f (x , y) =
1

(x2 + y2 + 1)2

(
(x2 + y2 + 1)− 2(x + y)x
(x2 + y2 + 1)− 2(x + y)y

)
.

I Stationary points are those satisfying:

−x2 − 2xy + y2 = −1,

x2 − 2xy − y2 = −1.

I Hence, the stationary points are (1/
√

2, 1/
√

2), (−1/
√

2,−1/
√

2).

I (1/
√

2, 1/
√

2) - global maximum, (−1/
√

2,−1/
√

2) - global minimum.
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Classification of Matrices - Positive Definiteness
1. A symmetric matrix A ∈ Rn×n is called positive semidefinite, denoted by

A � 0, if xTAx ≥ 0 for every x ∈ Rn.
2. A symmetric matrix A ∈ Rn×n is called positive definite, denoted by A � 0, if

xTAx > 0 for every 0 6= x ∈ Rn.

Example 1:

A =

(
2 −1
−1 1

)
.

In class

Example 2:

B =

(
1 2
2 1

)
.

In class

Lemma: Let A be a positive definite (semidefinite) matrix. Then the diag-
onal elements of A are positive (nonnegative).
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Negative (Semi)Definiteness, Indefiniteness

1. A symmetric matrix A ∈ Rn×n is called negative semidefinite, denoted by
A � 0, if xTAx ≤ 0 for every x ∈ Rn.

2. A symmetric matrix A ∈ Rn×n is called negative definite, denoted by A ≺ 0,
if xTAx < 0 for every 0 6= x ∈ Rn.

3. A symmetric matrix A ∈ Rn×n is called indefinite if there exist x, y ∈ Rn such
that xTAx > 0, yTAy < 0..

Remarks:

I A is negative (semi)definite if and only if −A is positive (semi)definite.

I A matrix is indefinite if and only if it is neither positive semidefinite nor
negative semidefinite.
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Eigenvalue Characterization

Theorem. Let A be a symmetric n × n matrix. Then

(a) A is positive definite iff all its eigenvalues are positive.

(b) A is positive semidefinite iff all its eigenvalues are nonnegative.

(c) A is negative definite iff all its eigenvalues are negative.

(d) A is negative semidefinite iff all its eigenvalues are nonpositive.

(e) A is indefinite iff it has at least one positive eigenvalue and at least
one negative eigenvalue.
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Eigenvalue Characterization – Proof
Proof of part (a): (other parts follows immediately or by similar arguments)

I There exists orthogonal U ∈ Rn×n such that

UTAU = D ≡ diag(d1, d2, . . . , dn)

where di = λi (A).

I Making the linear change of variables x = Uy, we have

xTAx = yTUTAUy = yTDy =
n∑

i=1

diy
2
i .

I Therefore, xTAx > 0 for all x 6= 0 iff

n∑
i=1

diy
2
i > 0 for any y 6= 0. (1)

I (1) holds iff di > 0 for all i (why?)
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Trace and Determinant

Corollary. Let A be a positive semidefinite (definite) matrix. Then Tr(A)
and det(A) are nonnegative (positive).

Proof. In class

Proposition. Let A be a symmetric 2 × 2 matrix. Then A is positive
semidefinite (definite) if and only if Tr(A), det(A) ≥ 0 (Tr(A), det(A) >
0).

Proof. In class
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Example

Classify the matrices

A =

(
4 1
1 3

)
,B =

1 1 1
1 1 1
1 1 0.1

 .

In class
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The Principal Minors Criteria

.
Definition Given an n × n matrix, the determinant of the upper left k × k
submatrix is called the k-th principal minor and is denoted by Dk(A).
Example.

A =

a11 a12 a13
a21 a22 a23
a31 a32 a33



D1(A) = a11,D2(A) = det

(
a11 a12
a21 a22

)
,D3(A) = det

a11 a12 a13
a21 a22 a23
a31 a32 a33

 .

Principal Minors Criteria Let A be an n × n symmetric matrix. Then A is
positive definite if and only if D1(A) > 0,D2(A) > 0, . . . ,Dn(A) > 0.
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Examples
Classify the matrices

A =

4 2 3
2 3 2
3 2 4

 ,B =

2 2 2
2 2 2
2 2 −1

 ,C =

−4 1 1
1 −4 1
1 1 −4

 .

In class
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Diagonal Dominance

Definition (diagonally dominant matrices) Let A be a symmetric n × n matrix.
(a) A is called diagonally dominant if

|Aii | ≥
∑

j 6=i |Aij | ∀i = 1, 2, . . . , n

(b) A is called strictly diagonally dominant if

|Aii | >
∑

j 6=i |Aij | ∀i = 1, 2, . . . , n

Theorem (positive (semi)definiteness of diagonally dominant matrices)

(a) If A is symmetric, diagonally dominant with nonnegative diagonal
elements, then A is positive semidefinite.

(b) If A is symmetric, strictly diagonally dominant with positive diagonal
elements, then A is positive definite.

See proof of Theorem 2.25 on pages 22,23.
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Necessary Second Order Optimality Conditions
Theorem. Let f : U → R be a function defined on an open set U ⊆ Rn.
Suppose that f is twice continuously differentiable over U and that x∗ is a
stationary point. Then

1. if x∗ is a local minimum point, then ∇2f (x∗) � 0.

2. if x∗ is a local maximum point, then ∇2f (x∗) � 0.

Proof. of 1:
I There exists a ball B(x∗, r) ⊆ U for which f (x) ≥ f (x∗) for all x ∈ B(x∗, r).

I Let d ∈ Rn be a nonzero vector. For any 0 < α < r
‖d‖ , we have

x∗α ≡ x∗ + αd ∈ B(x∗, r),
I for any such α, f (x∗α) ≥ f (x∗).
I On the other hand, there exists a vector zα ∈ [x∗, x∗α] such that

f (x∗α)− f (x∗) =
α2

2
dT∇2f (zα)d. (2)

I ⇒ for any α ∈ (0, r
‖d‖ ) the inequality dT∇2f (zα)d ≥ 0 holds.

I Since zα → x∗ as α→ 0+, we obtain that dT∇f (x∗)d ≥ 0.
I ⇒ ∇2f (x∗) � 0.
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Sufficient Second Order Optimality Conditions

Theorem. Let f : U → R be a function defined on an open set U ⊆ Rn.
Suppose that f is twice continuously differentiable over U and that x∗ is a
stationary point. Then

1. if ∇2f (x∗) � 0, then x∗ is a strict local minimum point of f over U.

2. if ∇2f (x∗) ≺ 0, then x∗ is a strict local maximum point of f over U.

Proof. of 1: (2 directly follows)

I There exists a ball B(x∗, r) ⊆ U for which ∇2f (x) � 0 for any x ∈ B(x∗, r).

I By LAT, there exists a vector zx ∈ [x∗, x] (and hence zx ∈ B(x∗, r)) for which

f (x)− f (x∗) =
1

2
(x− x∗)T∇2f (zx)(x− x∗).

I ∇2f (zx) � 0⇒ for any x ∈ B(x∗, r) such that x 6= x∗, the inequality
f (x) > f (x∗) holds, implying that x∗ is a strict local minimum point of f over
U.
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Saddle Points

Definition Let f : U → R be a continuously differentiable function defined on an
open set U ⊆ Rn. A stationary point x∗ ∈ U is called a saddle point of f over U if
it is neither a local minimum point nor a local maximum point of f over U.
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Sufficient Condition for Saddle Points
Theorem Let f : U → R be a function defined on an open set U ⊆ Rn.
Suppose that f is twice continuously differentiable over U and that x∗ is
a stationary point. If ∇2f (x∗) is an indefinite matrix, then x∗ is a saddle
point of f over U.

Proof.

I ∇2f (x∗) has at least one positive eigenvalue λ > 0, corresponding to a
normalized eigenvector denoted by v.

I ∃r > 0 such that x∗ + αv ∈ U for any α ∈ (0, r).

I BY QAT1 There exists a function g : R++ → R satisfying

g(t)

t
→ 0 as t → 0,

such that for any α ∈ (0, r)

f (x∗ + αv) = f (x∗) +
λα2

2
‖v‖2 + g(‖v‖2α2).

1quadratic approximation theory
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Proof Contd.

I f (x∗ + αv) = f (x∗) + λα2

2 + g(α2).

I ∃ε1 ∈ (0, r) such that g(α2) > −λ2α
2 for all α ∈ (0, ε1).

I ⇒ f (x∗ + αv) > f (x∗) for all α ∈ (0, ε1).

I x∗ cannot be a local maximum point of f over U.

I Similarly, cannot be a local minimum point of f over U ⇒ saddle point.
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Attainment of Minimal/Maximal Points

Weierstrass Theorem Let f be a continuous function defined over a
nonempty compact set C ⊆ Rn. Then there exists a global minimum point
of f over C and a global maximum point of f over C .

I When the underlying set is not compact, Weierstrass theorem does not
guarantee the attainment of the solution, but certain properties of the
function f can imply attainment of the solution.

Definition Let f : Rn → R be a continuous function over Rn. f is called coercive if

lim
‖x‖→∞

f (x) =∞.

Theorem[Attainment of Global Optima Points for Coercive Functions] Let
f : Rn → R be a continuous and coercive function and let S ⊆ Rn be a
nonempty closed set. Then f attains a global minimum point on S .

Proof. In class
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Example
Classify the stationary points of the function f (x1, x2) = −2x21 + x1x

2
2 + 4x41 .

∇f (x) =

(
−4x1 + x22 + 16x31

2x1x2

)
,

⇒ Stationary points are the solutions to

−4x1 + x22 + 16x31 = 0,

2x1x2 = 0.

⇒ Stationary points are (0, 0), (0.5, 0), (−0.5, 0)

∇2f (x1, x2) =

(
−4 + 48x21 2x2

2x2 2x1

)
.

∇2f (0.5, 0) =

(
8 0
0 1

)
strict local minimum

∇2f (−0.5, 0) =

(
8 0
0 −1

)
saddle point

∇2f (0, 0) =

(
−4 0
0 0

)
saddle point (why?)
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Illustration

Amir Beck “Introduction to Nonlinear Optimization” Lecture Slides - Unconstrained Optimization 25 / 29



Global Optimality Conditions
No free meals...

Theorem. Let f be a twice continuously defined over Rn. Suppose that
∇2f (x) � 0 for any x ∈ Rn. Let x∗ ∈ Rn be a stationary point of f . Then
x∗ is a global minimum point of f .

Proof. In class
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Example

f (x) = x21 + x22 + x23 + x1x2 + x1x3 + x2x3 + (x21 + x22 + x23 )2.

∇f (x) =

2x1 + x2 + x3 + 4x1(x21 + x22 + x23 )
2x2 + x1 + x3 + 4x2(x21 + x22 + x23 )
2x3 + x1 + x2 + 4x3(x21 + x22 + x23 )

 .

∇2 f (x) =

2 + 4(x21 + x22 + x23 ) + 8x21 1 + 8x1x2 1 + 8x1x3
1 + 8x1x2 2 + 4(x21 + x22 + x23 ) + 8x22 1 + 8x2x3
1 + 8x1x3 1 + 8x2x3 2 + 4(x21 + x22 + x23 ) + 8x23

 .

I x = 0 is a stationary point.
I ∇2f (x) � 0 for all x. (why?)
I Consequence: x = 0 is the global minimum point.
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Quadratic Functions
I A quadratic function over Rn is a function of the form

f (x) = xTAx + 2bTx + c ,

where A ∈ Rn×n is symmetric, b ∈ Rn and c ∈ R.
I

∇f (x) = 2Ax + 2b,

∇2f (x) = 2A.

Consequently,

Lemma Let f (x) = xTAx + 2bTx + c (A ∈ Rn×n sym.,b ∈ Rn, c ∈ R).

1. x is a stationary point of f iff Ax = −b.

2. if A � 0, then x is a global minimum point of f iff Ax = −b.

3. if A � 0, then x = −A−1b is a strict global minimum point of f .

Proof. In class
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Two Important Theorems on Quadratic Functions

Lemma [coerciveness of quadratic functions] Let f (x) = xTAx + 2bTx + c
where A ∈ Rn×n is symmetric, b ∈ Rn and c ∈ R. Then f is coercive if
and only if A � 0.

Lemma 2.42 in the book (proof in page 33).

Theorem [characterization of the nonnegativity of quadratic functions]
f (x) = xTAx + 2bTx + c , where A ∈ Rn×n is symmetric, b ∈ Rn and
c ∈ R. Then the following two claims are equivalent

(i) f (x) ≡ xTAx + 2bTx + c ≥ 0 for all x ∈ Rn.

(ii)

(
A b
bT c

)
� 0.

Theorem 2.43 in the book (proof in pages 33,34).
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