Lecture 2 - Unconstrained Optimization

Definition[Global Minimum and Maximum]Let 7 : S — R be defined on a set
S CR". Then

1. x* € S is a global minimum point of f over S if f(x) > f(x*) for any x € S.

2. x* € S is a strict global minimum point of f over S if f(x) > f(x*) for any
x*#x€S.

3. x* € S is a global maximum point of f over S if f(x) < f(x*) for any x € S.

4. x* € S'is a strict global maximum point of f over S if f(x) < f(x*) for any
x*#x€S.

» global optimum=global minimum or maximum.
» maximal value of f over S:

sup{f(x) : x € S}

» minimal value of f over S:

inf{f(x):x € S}

» minimal and maximal values are always unique.
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Example 1:

Find the global minimum and maximum points of f(x,y) = x + y over the unit
ball S = B[0,1] = {(x.y)7 :x2+y? < 1)

In class.
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Example 2:
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(1/v/2,1//2) - global maximizer (—1/v/2, —1/+/2) - global minimizer.
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Local Minima and Maxima

Definition Let f : S — R be defined on a set S C R". Then
1. x* € Sis a local minimum of f over S if there exists r > 0 for which
f(x*) < f(x) for any x € SN B(x*, r).
2. x* € Sis a strict local minimum of f over S if there exists r > 0 for which
f(x*) < f(x) for any x* # x € SN B(x*, r).
3. x* € Sis a local maximum of f over S if there exists r > 0 for which
f(x*) > f(x) for any x € SN B(x*, r).
4. x* € S is a strict local maximum of f over S if there exists r > 0 for which
f(x*) > f(x) for any x* # x € SN B(x*, r).
Of course, a global minimum (maximum) point is also a local minimum
(maximum) point.
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Example

f described above is defined over [—1,8]. Classify each of the points
x=-1,1,2,3,5,6.5,8 as strict/nonstrict global/local minimum/maximum
points. In class
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Fermat's Theorem - First Order Optimality Condition

Theorem. Let f : U — R be a function defined on a set U C R". Suppose
that x* € int(U) is a local optimum point and that all the partial derivatives
of f exist at x*. Then Vf(x*) = 0.

Proof.
> Let i€ {1,2,...,n} and consider the 1-D function g(t) = f(x* + te;)
> x* is a local optimum point of f = t =0 is a local optimum of g =
g'(0)=0.
» Thus, g—;(x*) =g'(0) = 0.
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Stationary Points

Definition Let f : U — R be a function defined on a set U C R". Suppose that
x* € int(U) and that all the partial derivatives of f are defined at x*. Then x* is
called a stationary point of f if Vf(x*) = 0.
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Example:

) x+y
mln{f(X“V):m:x’yeR}
> 2 2
1 (x*+y+1) = 2(x+y)x
f = T e '
\Y% (x,y) (X2+y2+1)2 ((X2+y2+1)2(X+Y)y

» Stationary points are those satisfying:

—x?—2xy+y?* = -1,
x> —2xy —y? = -1

v

Hence, the stationary points are (1/v/2,1/v/2),(=1/v2,-1/v/2).
(1/v/2,1//2) - global maximum, (—1/v/2, —1/4/2) - global minimum.

v
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Classification of Matrices - Positive Definiteness

1. A symmetric matrix A € R"*" is called positive semidefinite, denoted by
A>0, if x"TAx > 0 for every x € R".

2. A symmetric matrix A € R"*" is called positive definite, denoted by A > 0, if
xTAx > 0 for every 0 # x € R".

Example 1:
2 -1
(4 )
In class
Example 2:
1 2
5= (2 2).
In class

Lemma: Let A be a positive definite (semidefinite) matrix. Then the diag-
onal elements of A are positive (nonnegative). J
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Negative (Semi)Definiteness, Indefiniteness

1. A symmetric matrix A € R"*" is called negative semidefinite, denoted by
A <0, if x"Ax < 0 for every x € R".

2. A symmetric matrix A € R"*" is called negative definite, denoted by A < 0,
if xTAx < 0 for every 0 # x € R".

3. A symmetric matrix A € R"*" is called indefinite if there exist x,y € R" such
that x"Ax > 0,y’ Ay < 0..

Remarks:

> A is negative (semi)definite if and only if —A is positive (semi)definite.

» A matrix is indefinite if and only if it is neither positive semidefinite nor
negative semidefinite.

Amir Beck “Introduction to Nonlinear Optimization” Lecture Slides - Unconstrained Optimization 10 /29



Eigenvalue Characterization

Theorem. Let A be a symmetric n X n matrix. Then

(a) A is positive definite iff all its eigenvalues are positive.
(b) A is positive semidefinite iff all its eigenvalues are nonnegative.
(c) A is negative definite iff all its eigenvalues are negative.

(d
(

e

A is negative semidefinite iff all its eigenvalues are nonpositive.

)
)
) A is indefinite iff it has at least one positive eigenvalue and at least
one negative eigenvalue.
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Eigenvalue Characterization — Proof
Proof of part (a): (other parts follows immediately or by similar arguments)
» There exists orthogonal U € R"™" such that

UTAU = D = diag(di, dbo, ..., dy)
where d,' = )\,(A)

» Making the linear change of variables x = Uy, we have

n
x"Ax=y"UTAUy =y Dy = Z d,-y,-z.
i=1

> Therefore, x” Ax > 0 for all x # 0 iff

Z d;iy? > 0 for any y # 0. (1)

i=1

> (1) holds iff d; > 0 for all i (why?)
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Trace and Determinant

Corollary. Let A be a positive semidefinite (definite) matrix. Then Tr(A)
and det(A) are nonnegative (positive). J

Proof. In class

Proposition. Let A be a symmetric 2 X 2 matrix. Then A is positive
semidefinite (definite) if and only if Tr(A),det(A) > 0 (Tr(A),det(A) >
0).

Proof. In class
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Example

Classify the matrices

In class
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The Principal Minors Criteria

Definition Given an n X n matrix, the determinant of the upper left k x k

submatrix is called the k-th principal minor and is denoted by Dy (A).
Example.

a1 A a11 a2 a3
Dl(A) = a1, D2(A) = det ( > ,D3(A) —det | ax ax»n a3

a31 d32 4as3

Principal Minors Criteria Let A be an n X n symmetric matrix. Then A is
positive definite if and only if D;(A) > 0, D>(A) >0, ...,D,(A) > 0. }
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Examples
Classify the matrices

4 2 3 2 2 2 -4 1 1
A=(2 3 2].,B=[2 2 2 |,C= 1 -4 1
3 2 4 2 2 -1 1 1 -4
In class
Amir Beck
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Diagonal Dominance

Definition (diagonally dominant matrices) Let A be a symmetric n X n matrix.
(a) A is called diagonally dominant if

|Aii| 2 ZJ;&: |AU| VI = 1,2,...,”
b) A is called strictly diagonally dominant if
y diag y

|A/f| > Zj;é’ |AU| VI = 1,2,...,n

Theorem (positive (semi)definiteness of diagonally dominant matrices)

(a) If A is symmetric, diagonally dominant with nonnegative diagonal
elements, then A is positive semidefinite.

(b) If A is symmetric, strictly diagonally dominant with positive diagonal
elements, then A is positive definite.

See proof of Theorem 2.25 on pages 22,23.
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Necessary Second Order Optimality Conditions

Theorem. Let f : U — R be a function defined on an open set U C R".
Suppose that f is twice continuously differentiable over U and that x* is a
stationary point. Then

L. if x* is a local minimum point, then V2f(x*) = 0.
2. if x* is a local maximum point, then V2f(x*) < 0.

Proof. of 1:
> There exists a ball B(x*, r) C U for which f(x) > f(x*) for all x € B(x*, r).
» Let d € R” be a nonzero vector. For any 0 < o < HTrH’ we have
x5 =x*+ad € B(x*,r),
» for any such «, f(x%) > f(x*).
» On the other hand, there exists a vector z,, € [x*, x%] such that

f(x5) — f(x*) = %dTvzf(za)d. (2)

» = for any a € (0, m) the inequality d” V2f(z,)d > 0 holds.
» Since z, — x* as a — 0T, we obtain that d" V£ (x*)d > 0.
» = V2f(x*) = 0.
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Sufficient Second Order Optimality Conditions

Theorem. Let f : U — R be a function defined on an open set U C R”".
Suppose that f is twice continuously differentiable over U and that x* is a
stationary point. Then

1. if V2f(x*) > 0, then x* is a strict local minimum point of f over U.

2. if V2f(x*) < 0, then x* is a strict local maximum point of f over U.

Proof. of 1: (2 directly follows)
» There exists a ball B(x*,r) C U for which V2f(x) = 0 for any x € B(x*, r).
> By LAT, there exists a vector z, € [x*,x] (and hence z, € B(x*, r)) for which

f(x) — f(x*) = %(x —x*) TV f(z)(x — x*).

» V2f(zy) = 0 = for any x € B(x*, r) such that x # x*, the inequality
f(x) > f(x*) holds, implying that x* is a strict local minimum point of f over
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Saddle Points

Definition Let f : U — R be a continuously differentiable function defined on an
open set U C R". A stationary point x* € U is called a saddle point of f over U if
it is neither a local minimum point nor a local maximum point of f over U.
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Sufficient Condition for Saddle Points

Theorem Let f : U — R be a function defined on an open set U C R".
Suppose that f is twice continuously differentiable over U and that x* is
a stationary point. If V2f(x*) is an indefinite matrix, then x* is a saddle
point of f over U.

Proof.

» V2f(x*) has at least one positive eigenvalue A > 0, corresponding to a
normalized eigenvector denoted by v.

» 3Jr > 0 such that x* + av € U for any a € (0, r).
» BY QAT! There exists a function g : R, — R satisfying

g(t)

—0ast—0,

such that for any « € (0, r)

* * Ao 2 2 2
Fx* -+ av) = Fx) + 2o V2 + g(lv]Pa?)

Lquadratic approximation theory
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Proof Contd.

v

F(x* + av) = F(x*) + 22 4 g(a?).
Je1 € (0, r) such that g(a?) > —3a? for all o € (0,e1).
= f(x* + av) > f(x*) for all o € (0,e1).

x* cannot be a local maximum point of f over U.

vV vV v v

Similarly, cannot be a local minimum point of f over U = saddle point.
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Attainment of Minimal/Maximal Points

Weierstrass Theorem Let f be a continuous function defined over a
nonempty compact set C C R". Then there exists a global minimum point
of f over C and a global maximum point of f over C.

> When the underlying set is not compact, Weierstrass theorem does not
guarantee the attainment of the solution, but certain properties of the
function f can imply attainment of the solution.

Definition Let f : R” — R be a continuous function over R". f is called coercive if

f(x) = 0.
lIx[| =00

Theorem[Attainment of Global Optima Points for Coercive Functions] Let
f : R” — R be a continuous and coercive function and let S C R” be a
nonempty closed set. Then f attains a global minimum point on S.

Proof. In class
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Example
Classify the stationary points of the function f(x1, %) = —2x% + x1x3 + 4x{.

B 2 3
Vf(x)_( bt “6X1),

2X1X0
= Stationary points are the solutions to
—4x; +x3 +16x3 = 0,
2x1x0 = 0.

= Stationary points are (0, 0), (0.5,0),(—0.5,0)

2 [(—4+483 2%
Vof(x1, x) = ( 2% 2 )

V2f(0.5,0)—<g (1’> v2f(—o.5,0)—<(8) _01) vzf(o,O):(—o4 8)

strict local minimum saddle point saddle point (why?)
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Global Optimality Conditions
No free meals...

Theorem. Let f be a twice continuously defined over R". Suppose that
V2f(x) = 0 for any x € R". Let x* € R" be a stationary point of f. Then
x* is a global minimum point of 7.

Proof. In class
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Example
F(X) = X7 + x5 + 55 + x10 + x1x3 + xox3 + (X + 5 +x5)°.
2x1 + x0 + X3 + 4x1(x12 + x22 + x32)

VE(x) = | 2% +x1 + x3 + 4o (33 + x5 + x3)
2x3 + x1 + X2 + Axa(xZ + x5 + x3)

2+4(x12 +x22 +X§)+8xf 1+ 8x1x0 1+ 8x1x3
V2f(x) = 1+ 8xqx) 244063 +53 +3) + 83 1+ 8xx3
1+ 8xx3 1+ 8xpx3 24+ 42 + x3 +x3) + 83

» x = 0 is a stationary point.
» V2f(x) = 0 for all x. (why?)
> Consequence: x = 0 is the global minimum point.
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Quadratic Functions
» A quadratic function over R” is a function of the form

f(x) =x"Ax+2b"x +c,
where A € R"*" is symmetric, b € R" and ¢ € R.

Vf(x) = 2Ax+ 2b,
V3f(x) = 2A.

Consequently,
Lemma Let f(x) =x"Ax+2b"x+c (A € R™" sym..b € R", c € R).
1. x is a stationary point of f iff Ax = —b.

2. if A = 0, then x is a global minimum point of f iff Ax = —b.
3. if A= 0, then x = —A~1b is a strict global minimum point of f.

Proof. In class
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Two Important Theorems on Quadratic Functions

Lemma [coerciveness of quadratic functions] Let f(x) = xT Ax +2b"x + ¢
where A € R"" is symmetric, b € R” and ¢ € R. Then f is coercive if
and only if A > 0.

v

Lemma 2.42 in the book (proof in page 33).

Theorem [characterization of the nonnegativity of quadratic functions]
f(x) = x"Ax + 2b"x + ¢, where A € R™" is symmetric, b € R" and
c € R. Then the following two claims are equivalent

(i) f(x) =x"Ax+2bTx +c > 0 for all x € R".

(il (bAT 'Z) - 0.

Theorem 2.43 in the book (proof in pages 33,34).
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