Lecture 12 - Duality

$$f^* = \min f(\mathbf{x})$$
s.t. $g_i(\mathbf{x}) \le 0, i = 1, 2, ..., m$

$$h_j(\mathbf{x}) = 0, j = 1, 2, ..., p,$$

$$\mathbf{x} \in X,$$
(1)

- ▶ $f, g_i, h_j (i = 1, 2, ..., m, j = 1, 2, ..., p)$ are functions defined on the set $X \subseteq \mathbb{R}^n$.
- ▶ Problem (1) will be referred to as the primal problem.
- ► The Lagrangian is

$$L(\mathbf{x}, \boldsymbol{\lambda}, \boldsymbol{\mu}) = f(\mathbf{x}) + \sum_{i=1}^{m} \lambda_i g_i(\mathbf{x}) + \sum_{j=1}^{p} \mu_j h_j(\mathbf{x}) \quad (\mathbf{x} \in X, \boldsymbol{\lambda} \in \mathbb{R}_+^m, \boldsymbol{\mu} \in \mathbb{R}^p)$$

▶ The dual objective function $q: \mathbb{R}^m_+ \times \mathbb{R}^p \to \mathbb{R} \cup \{-\infty\}$ is defined to be

$$q(\lambda, \mu) = \min_{\mathbf{x} \in X} L(\mathbf{x}, \lambda, \mu). \tag{2}$$

The Dual Problem

▶ The domain of the dual objective function is

$$\mathsf{dom}(q) = \{(\pmb{\lambda}, \pmb{\mu}) \in \mathbb{R}^m_+ imes \mathbb{R}^p : q(\pmb{\lambda}, \pmb{\mu}) > -\infty\}.$$

► The dual problem is given by

$$q^* = \max_{\mathbf{s.t.}} q(\lambda, \mu)$$

s.t. $(\lambda, \mu) \in \text{dom}(q)$ (3)

Convexity of the Dual Problem

Theorem. Consider problem (1) with $f, g_i, h_j (i = 1, 2, ..., m, j = 1, 2, ..., p)$ being functions defined on the set $X \subseteq \mathbb{R}^n$, and let q be the dual function defined in (2). Then

- (a) dom(q) is a convex set.
- (b) q is a concave function over dom(q).

Proof.

▶ (a) Take $(\lambda_1, \mu_1), (\lambda_2, \mu_2) \in dom(q)$ and $\alpha \in [0, 1]$. Then

$$\min_{\mathbf{x} \in X} L(\mathbf{x}, \lambda_1, \mu_1) > -\infty, \tag{4}$$

$$\min_{\mathbf{x} \in X} L(\mathbf{x}, \lambda_2, \mu_2) > -\infty.$$
 (5)

Proof Contd.

▶ Therefore, since the Lagrangian $L(\mathbf{x}, \lambda, \mu)$ is affine w.r.t. λ, μ ,

$$\begin{split} &q(\alpha \boldsymbol{\lambda}_1 + (1-\alpha)\boldsymbol{\lambda}_2, \alpha \boldsymbol{\mu}_1 + (1-\alpha)\boldsymbol{\mu}_2) \\ &= \min_{\mathbf{x} \in X} L(\mathbf{x}, \alpha \boldsymbol{\lambda}_1 + (1-\alpha)\boldsymbol{\lambda}_2, \alpha \boldsymbol{\mu}_1 + (1-\alpha)\boldsymbol{\mu}_2) \\ &= \min_{\mathbf{x} \in X} \left\{ \alpha L(\mathbf{x}, \boldsymbol{\lambda}_1, \boldsymbol{\mu}_1) + (1-\alpha)L(\mathbf{x}, \boldsymbol{\lambda}_2, \boldsymbol{\mu}_2) \right\} \\ &\geq \alpha \min_{\mathbf{x} \in X} L(\mathbf{x}, \boldsymbol{\lambda}, \boldsymbol{\mu}_1) + (1-\alpha) \min_{\mathbf{x} \in X} L(\mathbf{x}, \boldsymbol{\lambda}_2, \boldsymbol{\mu}_2) \\ &= \alpha q(\boldsymbol{\lambda}_1, \boldsymbol{\mu}_1) + (1-\alpha)q(\boldsymbol{\lambda}_2, \boldsymbol{\mu}_2) \\ &> -\infty. \end{split}$$

- ▶ Hence, $\alpha(\lambda_1, \mu_1) + (1 \alpha)(\lambda_2, \mu_2) \in \text{dom}(q)$, and the convexity of dom(q) is established.
- (b) $L(\mathbf{x}, \lambda, \mu)$ is an affine function w.r.t. (λ, μ) .
- In particular, it is a concave function w.r.t. $(\pmb{\lambda},\pmb{\mu})$.
- ▶ Hence, since *q* is the minimum of concave functions, it must be concave.

The Weak Duality Theorem

Theorem. Consider the primal problem (1) and its dual problem (3). Then

$$q^* \leq f^*$$
,

where f^*, q^* are the primal and dual optimal values respectively.

Proof.

▶ The feasible set of the primal problem is

$$S = \{ \mathbf{x} \in X : g_i(\mathbf{x}) \le 0, h_j(\mathbf{x}) = 0, i = 1, 2, \dots, m, j = 1, 2, \dots, p \}.$$

▶ Then for any $(\lambda, \mu) \in \mathsf{dom}(q)$ we have

$$q(\lambda, \mu) = \min_{\mathbf{x} \in X} L(\mathbf{x}, \lambda, \mu) \leq \min_{\mathbf{x} \in S} L(\mathbf{x}, \lambda, \mu)$$

$$= \min_{\mathbf{x} \in S} \left\{ f(\mathbf{x}) + \sum_{i=1}^{m} \lambda_{i} g_{i}(\mathbf{x}) + \sum_{j=1}^{p} \mu_{j} h_{j}(\mathbf{x}) \right\}$$

$$\leq \min_{\mathbf{x} \in S} f(\mathbf{x}) = f^{*}.$$

▶ Taking the maximum over $(\lambda, \mu) \in dom(q)$, the result follows.

Example

min
$$x_1^2 - 3x_2^2$$

s.t. $x_1 = x_2^3$.

In class

Strong Duality in the Convex Case - Back to Separation

Supporting Hyperplane Theorem Let $C \subseteq \mathbb{R}^n$ be a convex set and let $\mathbf{y} \notin C$. Then there exists $\mathbf{0} \neq \mathbf{p} \in \mathbb{R}^n$ such that

$$\mathbf{p}^T \mathbf{x} \leq \mathbf{p}^T \mathbf{y}$$
 for any $\mathbf{x} \in C$.

Proof.

- ▶ Although the theorem holds for any convex set C, we will prove it only for sets with a nonempty interior.
- ▶ Since $\mathbf{y} \notin \operatorname{int}(C)$, it follows that $\mathbf{y} \notin \operatorname{int}(\operatorname{cl}(C))$.
- ▶ Therefore, there exists a sequence $\{y_k\}_{k\geq 1}$ such that $y_k \notin cl(C)$ and $y_k \to y$.
- ▶ By the separation theorem of a point from a closed and convex set, there exists $\mathbf{0} \neq \mathbf{p}_k \in \mathbb{R}^n$ such that

$$\mathbf{p}_k^T \mathbf{x} < \mathbf{p}_k^T \mathbf{y}_k \quad \forall \mathbf{x} \in \mathrm{cl}(C)$$

Thus,

$$\frac{\mathbf{p}_k^T}{\|\mathbf{p}_k\|}(\mathbf{x} - \mathbf{y}_k) < 0 \text{ for any } \mathbf{x} \in \mathrm{cl}(C).$$
 (6)

Proof Contd.

- Since the sequence $\left\{\frac{\mathbf{p}_k}{\|\mathbf{p}_k\|}\right\}$ is bounded, it follows that there exists a subsequence $\left\{\frac{\mathbf{p}_k}{\|\mathbf{p}_k\|}\right\}_{k\in\mathcal{I}}$ such that $\frac{\mathbf{p}_k}{\|\mathbf{p}_k\|}\to\mathbf{p}$ as $k\xrightarrow{\mathcal{T}}\infty$ for some $\mathbf{p}\in\mathbb{R}^n$.
- ▶ Obviously, $\|\mathbf{p}\| = 1$ and hence in particular $\mathbf{p} \neq 0$.
- ▶ Taking the limit as $k \xrightarrow{T} \infty$ in inequality (6) we obtain that

$$\mathbf{p}^{T}(\mathbf{x} - \mathbf{y}) \leq 0$$
 for any $\mathbf{x} \in \mathrm{cl}(C)$,

which readily implies the result since $C \subseteq cl(C)$.

Separation of Two Convex Sets

Theorem. Let $C_1, C_2 \subseteq \mathbb{R}^n$ be two nonempty convex sets such that $C_1 \cap C_2 = \emptyset$. Then there exists $\mathbf{0} \neq \mathbf{p} \in \mathbb{R}^n$ for which

$$\mathbf{p}^T \mathbf{x} \leq \mathbf{p}^T \mathbf{y}$$
 for any $\mathbf{x} \in C_1, \mathbf{y} \in C_2$.

Proof.

- ▶ The set $C_1 C_2$ is a convex set.
- $C_1 \cap C_2 = \emptyset \Rightarrow \mathbf{0} \notin C_1 C_2.$
- **ightharpoonup** By the supporting hyperplane theorem, there exists $\mathbf{0}
 eq \mathbf{p} \in \mathbb{R}^n$ such that

$$\mathbf{p}^T(\mathbf{x} - \mathbf{y}) \leq \mathbf{p}^T \mathbf{0}$$
 for any $\mathbf{x} \in C_1, \mathbf{y} \in C_2$,

The Nonlinear Farkas Lemma

Theorem. Let $X \subseteq \mathbb{R}^n$ be a convex set and let f, g_1, g_2, \ldots, g_m be convex functions over X. Assume that there exists $\hat{\mathbf{x}} \in X$ such that

$$g_1(\hat{\mathbf{x}}) < 0, g_2(\hat{\mathbf{x}}) < 0, \dots, g_m(\hat{\mathbf{x}}) < 0.$$

Let $c \in \mathbb{R}$. Then the following two claims are equivalent:

(a) the following implication holds:

$$\mathbf{x} \in X, g_i(\mathbf{x}) \leq 0, i = 1, 2, \dots, m \Rightarrow f(\mathbf{x}) \geq c.$$

(b) there exist $\lambda_1, \lambda_2, \dots, \lambda_m \geq 0$ such that

$$\min_{\mathbf{x}\in X}\left\{f(\mathbf{x})+\sum_{i=1}^{m}\lambda_{i}g_{i}(\mathbf{x})\right\}\geq c. \tag{7}$$

Proof of (b) \Rightarrow (a)

- ▶ Suppose that there exist $\lambda_1, \lambda_2, \dots, \lambda_m \ge 0$ such that (7) holds, and let $\mathbf{x} \in X$ satisfy $g_i(\mathbf{x}) \le 0, i = 1, 2, \dots, m$.
- ▶ By (7) we have

$$f(\mathbf{x}) + \sum_{i=1}^{m} \lambda_i g_i(\mathbf{x}) \geq c,$$

► Hence,

$$f(\mathbf{x}) \geq c - \sum_{i=1}^{m} \lambda_i g_i(\mathbf{x}) \geq c.$$

Proof of (a) \Rightarrow (b)

- Assume that the implication (a) holds.
- ► Consider the following two sets:

$$S = \{\mathbf{u} = (u_0, u_1, \dots, u_m) : \exists \mathbf{x} \in X, f(\mathbf{x}) \le u_0, g_i(\mathbf{x}) \le u_i, i = 1, 2, \dots, m\},$$

$$T = \{(u_0, u_1, \dots, u_m) : u_0 < c, u_1 \le 0, u_2 \le 0, \dots, u_m \le 0\}.$$

- ▶ S, T are nonempty and convex and in addition $S \cap T = \emptyset$.
- ▶ By the supporting hyperplane theorem, there exists a vector $\mathbf{a} = (a_0, a_1, \dots, a_m) \neq \mathbf{0}$, such that

$$\min_{(u_0, u_1, \dots, u_m) \in S} \sum_{j=0}^m a_j u_j \ge \max_{(u_0, u_1, \dots, u_m) \in T} \sum_{j=0}^m a_j u_j.$$
 (8)

- ▶ a > 0.
- ▶ Since $\mathbf{a} \ge 0$, it follows that the right-hand side is $a_0 c$, and we thus obtained

$$\min_{(u_0, u_1, \dots, u_m) \in S} \sum_{i=0}^m a_i u_i \ge a_0 c.$$
 (9)

Proof of (a) \Rightarrow (b) Contd.

- ▶ We will show that $a_0 > 0$. Suppose in contradiction that $a_0 = 0$. Then $\min_{(u_0, u_1, ..., u_m) \in S} \sum_{i=1}^m a_i u_i \ge 0$.
- ▶ Since we can take $u_i = g_i(\hat{\mathbf{x}})$, we can deduce that $\sum_{j=1}^m a_j g_j(\hat{\mathbf{x}}) \ge 0$, which is impossible since $g_i(\hat{\mathbf{x}}) < 0$ and $\mathbf{a} \ne \mathbf{0}$.
- ▶ Since $a_0 > 0$, we can divide (9) by a_0 to obtain

$$\min_{(u_0, u_1, \dots, u_m) \in S} \left\{ u_0 + \sum_{j=1}^m \tilde{a}_j u_j \right\} \ge c, \tag{10}$$

where $\tilde{a}_j = \frac{a_j}{a_0}$.

▶ By the definition of *S* we have

$$\min_{(u_0,u_1,\ldots,u_m)\in S} \left\{ u_0 + \sum_{j=1}^m \tilde{a}_j u_j \right\} \leq \min_{\mathbf{x}\in X} \left\{ f(\mathbf{x}) + \sum_{j=1}^m \tilde{a}_j g_j(\mathbf{x}) \right\},$$

which combined with (10) yields the desired result

$$\min_{\mathbf{x}\in X}\left\{f(\mathbf{x})+\sum_{j=1}^m \tilde{a}_jg_j(\mathbf{x})\right\}\geq c.$$

Strong Duality of Convex Problems with Inequality Constraints

Theorem. Consider the optimization problem

$$f^* = \min_{\mathbf{x} \in X} f(\mathbf{x})$$

s.t. $g_i(\mathbf{x}) \le 0, \quad i = 1, 2, \dots, m, ,$ (11)
 $\mathbf{x} \in X,$

where X is a convex set and $f, g_i, i = 1, 2, ..., m$ are convex functions over X. Suppose that there exists $\hat{\mathbf{x}} \in X$ for which $g_i(\hat{\mathbf{x}}) < 0, i = 1, 2, ..., m$. If problem (11) has a finite optimal value, then

- (a) the optimal value of the dual problem is attained.
- (b) $f^* = q^*$.

Proof of Strong Duality Theorem

▶ Since $f^* > -\infty$ is the optimal value of (11), it follows that the following implication holds:

$$\mathbf{x} \in X, g_i(\mathbf{x}) \leq 0, i = 1, 2, \dots, m \Rightarrow f(\mathbf{x}) \geq f^*,$$

▶ By the nonlinear Farkas Lemma there exists $\tilde{\lambda}_1, \tilde{\lambda}_2, \dots, \tilde{\lambda}_m \geq 0$ such that

$$q(\tilde{\lambda}) = \min_{\mathbf{x} \in X} \left\{ f(\mathbf{x}) + \sum_{j=1}^{m} \tilde{\lambda}_j g_j(\mathbf{x}) \right\} \geq f^*.$$

▶ By the weak duality theorem,

$$q^* \geq q(\tilde{\lambda}) \geq f^* \geq q^*$$
,

▶ Hence $f^* = g^*$ and $\tilde{\lambda}$ is an optimal solution of the dual problem.

Example

min
$$x_1^2 - x_2$$

s.t. $x_2^2 \le 0$.

In class

Duffin's Duality Gap

$$\min \left\{ e^{-x_2} : \sqrt{x_1^2 + x_2^2} - x_1 \le 0 \right\}.$$

- ▶ The feasible set is in fact $F = \{(x_1, x_2) : x_1 \ge 0, x_2 = 0\} \Rightarrow f^* = 1$
- Slater condition is not satisfied.
- ► Lagrangian: $L(x_1, x_2, \lambda) = e^{-x_2} + \lambda(\sqrt{x_1^2 + x_2^2} x_1)$ ($\lambda > 0$).
- $p(\lambda) = \min_{x_1, x_2} L(x_1, x_2, \lambda) \geq 0$
- ▶ For any $\varepsilon > 0$, take $x_2 = -\log \varepsilon, x_1 = \frac{x_2^2 \varepsilon^2}{2\varepsilon}$.

$$\begin{split} \sqrt{x_1^2 + x_2^2} - x_1 &= \sqrt{\frac{(x_2^2 - \varepsilon^2)}{4\varepsilon^2} + x_2^2} - \frac{x_2^2 - \varepsilon^2}{2\varepsilon} = \sqrt{\frac{(x_2^2 + \varepsilon^2)^2}{4\varepsilon^2}} - \frac{x_2^2 - \varepsilon^2}{2\varepsilon} \\ &= \frac{x_2^2 + \varepsilon^2}{2\varepsilon} - \frac{x_2^2 - \varepsilon^2}{2\varepsilon} = \varepsilon. \end{split}$$

- ▶ Hence, $L(x_1, x_2, \lambda) = e^{-x_2} + \lambda(\sqrt{x_1^2 + x_2^2} x_1) = \varepsilon + \lambda \varepsilon = (1 + \lambda)\varepsilon$,
- $ightharpoonup q(\lambda) = 0$ for all $\lambda > 0$.
- $a^* = 0 \Rightarrow f^* q^* = 1 \Rightarrow$ duality gap of 1.

Complementary Slackness Conditions

Theorem. Consider the optimization problem

$$f^* = \min\{f(\mathbf{x}) : g_i(\mathbf{x}) \le 0, i = 1, 2, \dots, m, \mathbf{x} \in X\},\tag{12}$$

and assume that $f^*=q^*$ where q^* is the optimal value of the dual problem. Let $\mathbf{x}^*, \boldsymbol{\lambda}^*$ be feasible solutions of the primal and dual problems. Then $\mathbf{x}^*, \boldsymbol{\lambda}^*$ are optimal solutions of the primal and dual problems iff

$$\mathbf{x}^* \in \operatorname{argmin} L_{\mathbf{x} \in X}(\mathbf{x}, \boldsymbol{\lambda}^*),$$
 (13)

$$\lambda_i^* g_i(\mathbf{x}^*) = 0, i = 1, 2, \dots, m.$$
 (14)

Proof.

- lacksquare By strong duality, $\mathbf{x}^*, oldsymbol{\lambda}^*$ are optimal iff $f(\mathbf{x}^*) = q(oldsymbol{\lambda}^*)$
- iff $\min_{\mathbf{x} \in X} L(\mathbf{x}, \lambda^*) = L(\mathbf{x}^*, \lambda^*), \sum_{i=1}^m \lambda_i^* g_i(\mathbf{x}^*) = 0.$
- ▶ iff (13), (14) hold.

A More General Strong Duality Theorem

Theorem. Consider the optimization problem

$$f^* = \min_{\mathbf{x}} f(\mathbf{x})$$
s.t. $g_i(\mathbf{x}) \le 0, \quad i = 1, 2, ..., m,$
 $h_j(\mathbf{x}) \le 0, \quad j = 1, 2, ..., p,$
 $s_k(\mathbf{x}) = 0, \quad k = 1, 2, ..., q,$
 $\mathbf{x} \in X,$

$$(15)$$

where X is a convex set and $f, g_i, i = 1, 2, \ldots, m$ are convex functions over X. The functions h_j, s_k are affine functions. Suppose that there exists $\hat{\mathbf{x}} \in \operatorname{int}(X)$ for which $g_i(\hat{\mathbf{x}}) < 0, h_j(\hat{\mathbf{x}}) \le 0, s_k(\hat{\mathbf{x}}) = 0$. Then if problem (15) has a finite optimal value, then the optimal value of the dual problem

$$q^* = \max\{q(\lambda, \eta, \mu) : (\lambda, \eta, \mu) \in \mathsf{dom}(q)\},$$

where

$$q(\lambda, \eta, \mu) = \min_{\mathbf{x} \in X} \left[f(\mathbf{x}) + \sum_{i=1}^{m} \lambda_i g_i(\mathbf{x}) + \sum_{j=1}^{p} \eta_j h_j(\mathbf{x}) + \sum_{k=1}^{q} \mu_k s_k(\mathbf{x}) \right]$$

is attained, and $f^* = q^*$.

Importance of the Underlying Set

(P)
$$\min_{\substack{x_1 = x_2 \\ \text{s.t.}}} x_1^3 + x_2^3 \\ x_1 + x_2 \ge 1, \\ x_1, x_2 \ge 0.$$

- $(\frac{1}{2}, \frac{1}{2})$ is the optimal solution of (P) with an optimal value $f^* = \frac{1}{4}$.
- ▶ First dual problem is constructed by taking $X = \{(x_1, x_2) : x_1, x_2 \ge 0\}$.
- ▶ The primal problem is $\min\{x_1^3 + x_2^3 : x_1 + x_2 \ge 1, (x_1, x_2) \in X\}$.
- Strong duality holds for the problem and hence in particular $q^* = \frac{1}{4}$.
- ▶ Second dual is constructed by taking $X = \mathbb{R}^2$.
- $lackbox{ Objective function is not convex} \Rightarrow strong duality is not necessarily satisfied.$
- $L(x_1, x_2, \lambda, \eta_1, \eta_2) = x_1^3 + x_2^3 \lambda(x_1 + x_2 1) \eta_1 x_1 \eta_2 x_2.$
- $q(\lambda, \eta_1, \eta_2) = -\infty$ for all $(\lambda, \mu_1, \mu_2) \Rightarrow q^* = -\infty$.

Linear Programming

Consider the linear programming problem

min
$$\mathbf{c}^T \mathbf{x}$$
 s.t. $\mathbf{A} \mathbf{x} \leq \mathbf{b}$,

- $\mathbf{c} \in \mathbb{R}^n$, $\mathbf{A} \in \mathbb{R}^{m \times n}$ and $\mathbf{b} \in \mathbb{R}^m$.
- ightharpoonup We assume that the problem is feasible \Rightarrow strong duality holds.
- $L(\mathbf{x}, \lambda) = \mathbf{c}^T \mathbf{x} + \lambda^T (\mathbf{A} \mathbf{x} \mathbf{b}) = (\mathbf{c} + \mathbf{A}^T \lambda)^T \mathbf{x} \mathbf{b}^T \lambda.$
- Dual objective funvtion:

$$q(\lambda) = \min_{\mathbf{x} \in \mathbb{R}^n} L(\mathbf{x}, \lambda) = \min_{\mathbf{x} \in \mathbb{R}^n} (\mathbf{c} + \mathbf{A}^T \lambda)^T \mathbf{x} - \mathbf{b}^T \lambda = \begin{cases} -\mathbf{b}^T \lambda & \mathbf{c} + \mathbf{A}^T \lambda = \mathbf{0}, \\ -\infty & \text{else.} \end{cases}$$

Dual problem:

$$\begin{array}{ll}
\mathsf{max} & -\mathbf{b}^T \boldsymbol{\lambda} \\
\mathsf{s.t.} & \mathbf{A}^T \boldsymbol{\lambda} = -\mathbf{c}, \\
\boldsymbol{\lambda} > \mathbf{0}.
\end{array}$$

Strictly Convex Quadratic Programming

Consider the strictly convex quadratic programming problem

min
$$\mathbf{x}^T \mathbf{Q} \mathbf{x} + 2 \mathbf{f}^T \mathbf{x}$$

s.t. $\mathbf{A} \mathbf{x} \leq \mathbf{b}$, (16)

- ▶ $\mathbf{Q} \in \mathbb{R}^{n \times n}$ positive definite, $\mathbf{f} \in \mathbb{R}^n$, $\mathbf{A} \in \mathbb{R}^{m \times n}$, $\mathbf{b} \in \mathbb{R}^m$.
- Lagrangian: $(\lambda \in \mathbb{R}_+^m)$ $L(\mathbf{x}, \lambda) = \mathbf{x}^T \mathbf{Q} \mathbf{x} + 2\mathbf{f}^T \mathbf{x} + 2\lambda^T (\mathbf{A} \mathbf{x} \mathbf{b}) = \mathbf{x}^T \mathbf{Q} \mathbf{x} + 2(\mathbf{A}^T \lambda + \mathbf{f})^T \mathbf{x} 2\mathbf{b}^T \lambda$.
- ▶ The minimizer of the Lagrangian is attained at $\mathbf{x}^* = -\mathbf{Q}^{-1}(\mathbf{f} + \mathbf{A}^T \lambda)$.

$$q(\lambda) = L(\mathbf{x}^*, \lambda)$$

$$= (\mathbf{f} + \mathbf{A}^T \lambda)^T \mathbf{Q}^{-1} \mathbf{Q} \mathbf{Q}^{-1} (\mathbf{f} + \mathbf{A}^T \lambda) - 2(\mathbf{f} + \mathbf{A}^T \lambda)^T \mathbf{Q}^{-1} (\mathbf{f} + \mathbf{A}^T \lambda) - 2\mathbf{b}^T \lambda$$

$$= -(\mathbf{f} + \mathbf{A}^T \lambda)^T \mathbf{Q}^{-1} (\mathbf{f} + \mathbf{A}^T \lambda) - 2\mathbf{b}^T \lambda$$

$$= -\lambda^T \mathbf{A} \mathbf{Q}^{-1} \mathbf{A}^T \lambda - 2\mathbf{f}^T \mathbf{Q}^{-1} \mathbf{A}^T \lambda - \mathbf{f}^T \mathbf{Q}^{-1} \mathbf{f} - 2\mathbf{b}^T \lambda$$

$$= -\lambda^T \mathbf{A} \mathbf{Q}^{-1} \mathbf{A}^T \lambda - 2(\mathbf{A} \mathbf{Q}^{-1} \mathbf{f} + \mathbf{b})^T \lambda - \mathbf{f}^T \mathbf{Q}^{-1} \mathbf{f}.$$

▶ The dual problem is $\max\{q(\lambda) : \lambda \ge 0\}$.

Dual of Convex QCQP with strictly convex objective

Consider the QCQP problem

min
$$\mathbf{x}^T \mathbf{A}_0 \mathbf{x} + 2\mathbf{b}_0^T \mathbf{x} + c_0$$

s.t. $\mathbf{x}^T \mathbf{A}_i \mathbf{x} + 2\mathbf{b}_i^T \mathbf{x} + c_i \le 0, \quad i = 1, 2, \dots, m,$

where $\mathbf{A}_i \succeq \mathbf{0}$ is an $n \times n$ matrix, $\mathbf{b}_i \in \mathbb{R}^n, c_i \in \mathbb{R}, i = 0, 1, \dots, m$. Assume that $\mathbf{A}_0 \succ \mathbf{0}$.

▶ Lagrangian $(\lambda \in \mathbb{R}^m_+)$:

$$L(\mathbf{x}, \boldsymbol{\lambda}) = \mathbf{x}^{T} \mathbf{A}_{0} \mathbf{x} + 2\mathbf{b}_{0}^{T} \mathbf{x} + c_{0} + \sum_{i=1}^{m} \lambda_{i} (\mathbf{x}^{T} \mathbf{A}_{i} \mathbf{x} + 2\mathbf{b}_{i}^{T} \mathbf{x} + c_{i})$$

$$= \mathbf{x}^{T} (\mathbf{A}_{0} + \sum_{i=1}^{m} \lambda_{i} \mathbf{A}_{i}) \mathbf{x} + 2 (\mathbf{b}_{0} + \sum_{i=1}^{m} \lambda_{i} \mathbf{b}_{i})^{T} \mathbf{x} + c_{0} + \sum_{i=1}^{m} \lambda_{i} c_{i}.$$

▶ The minimizer of the Lagrangian w.r.t. \mathbf{x} is attained at $\tilde{\mathbf{x}}$ satisfying

$$2\left(\mathbf{A}_{0}+\sum_{i=1}^{m}\lambda_{i}\mathbf{A}_{i}\right)\tilde{\mathbf{x}}=-2\left(\mathbf{b}_{0}+\sum_{i=1}^{m}\lambda_{i}\mathbf{b}_{i}\right).$$

► Thus,
$$\tilde{\mathbf{x}} = -\left(\mathbf{A}_0 + \sum_{i=1}^m \lambda_i \mathbf{A}_i\right)^{-1} \left(\mathbf{b}_0 + \sum_{i=1}^m \lambda_i \mathbf{b}_i\right)$$
.

QCQP contd.

 Plugging this expression back into the Lagrangian, we obtain the following expression for the dual objective function

$$q(\lambda) = \min_{\mathbf{x}} L(\mathbf{x}, \lambda) = L(\tilde{\mathbf{x}}, \lambda)$$

$$= \tilde{\mathbf{x}}^{T} \left(\mathbf{A}_{0} + \sum_{i=1}^{m} \lambda_{i} \mathbf{A}_{i} \right) \tilde{\mathbf{x}} + 2 \left(\mathbf{b}_{0} + \sum_{i=1}^{m} \lambda_{i} \mathbf{b}_{i} \right)^{T} \tilde{\mathbf{x}} + c_{0} + \sum_{i=1}^{m} \lambda_{i} c_{i}$$

$$= - \left(\mathbf{b}_{0} + \sum_{i=1}^{m} \lambda_{i} \mathbf{b}_{i} \right)^{T} \left(\mathbf{A}_{0} + \sum_{i=1}^{m} \lambda_{i} \mathbf{A}_{i} \right)^{-1} \left(\mathbf{b}_{0} + \sum_{i=1}^{m} \lambda_{i} \mathbf{b}_{i} \right) + c_{0} + \sum_{i=1}^{m} \lambda_{i} c_{i}.$$

▶ The dual problem is thus

$$\max \quad -\left(\mathbf{b}_{0} + \sum_{i=1}^{m} \lambda_{i} \mathbf{b}_{i}\right)^{T} \left(\mathbf{A}_{0} + \sum_{i=1}^{m} \lambda_{i} \mathbf{A}_{i}\right)^{-1} \left(\mathbf{b}_{0} + \sum_{i=1}^{m} \lambda_{i} \mathbf{b}_{i}\right) + c_{0} + \sum_{i=1}^{m} \lambda_{i} c_{i}$$
s.t.
$$\lambda_{i} \geq 0, \quad i = 1, 2, \dots, m.$$

\mathbf{A}_0 is only assumed to be positive semidefinite.

- ► The previous dual is not well defined since the matrix $\mathbf{A}_0 + \sum_{i=1}^m \lambda_i \mathbf{A}_i$ is not necessarily PD.
- lacktriangle Decompose $oldsymbol{\mathsf{A}}_i$ as $oldsymbol{\mathsf{A}}_i = oldsymbol{\mathsf{D}}_i^Toldsymbol{\mathsf{D}}_i$ $(oldsymbol{\mathsf{D}}_i \in \mathbb{R}^{n imes n})$ and rewrite the problem as

min
$$\mathbf{x}^T \mathbf{D}_0^T \mathbf{D}_0 \mathbf{x} + 2\mathbf{b}_0^T \mathbf{x} + c_0$$

s.t. $\mathbf{x}^T \mathbf{D}_i^T \mathbf{D}_i \mathbf{x} + 2\mathbf{b}_i^T \mathbf{x} + c_i \le 0, i = 1, 2, \dots, m,$

▶ Define additional variables $\mathbf{z}_i = \mathbf{D}_i \mathbf{x}$, giving rise to the formulation

min
$$\|\mathbf{z}_0\|^2 + 2\mathbf{b}_0^T \mathbf{x} + c_0$$

s.t. $\|\mathbf{z}_i\|^2 + 2\mathbf{b}_i^T \mathbf{x} + c_i \le 0, i = 1, 2, ..., m,$
 $\mathbf{z}_i = \mathbf{D}_i \mathbf{x}, \quad i = 0, 1, ..., m.$

▶ The Lagrangian is $(\lambda \in \mathbb{R}^m_+, \mu_i \in \mathbb{R}^n, i = 0, 1, ..., m)$:

$$L(\mathbf{x}, \mathbf{z}_{0}, \dots, \mathbf{z}_{m}, \lambda, \mu_{0}, \dots, \mu_{m})$$

$$= \|\mathbf{z}_{0}\|^{2} + 2\mathbf{b}_{0}^{T}\mathbf{x} + c_{0} + \sum_{i=1}^{m} \lambda_{i}(\|\mathbf{z}_{i}\|^{2} + 2\mathbf{b}_{i}^{T}\mathbf{x} + c_{i}) + 2\sum_{i=0}^{m} \mu_{i}^{T}(\mathbf{z}_{i} - \mathbf{D}_{i}\mathbf{x})$$

$$= \|\mathbf{z}_{0}\|^{2} + 2\mu_{0}^{T}\mathbf{z}_{0} + \sum_{i=1}^{m} (\lambda_{i}\|\mathbf{z}_{i}\|^{2} + 2\mu_{i}^{T}\mathbf{z}_{i}) + 2\left(\mathbf{b}_{0} + \sum_{i=1}^{m} \lambda_{i}\mathbf{b}_{i} - \sum_{i=0}^{m} \mathbf{D}_{i}^{T}\mu_{i}\right)^{T}\mathbf{x}$$

$$+c_{0} + \sum_{i=1}^{m} c_{i}\lambda_{i}.$$

▶ For any $\lambda \in \mathbb{R}_+, \mu \in \mathbb{R}^n$,

$$g(\lambda, \boldsymbol{\mu}) \equiv \min_{\mathbf{z}} \left\{ \lambda \|\mathbf{z}\|^2 + 2\boldsymbol{\mu}^T \mathbf{z} \right\} = \left\{ \begin{array}{ll} -\frac{\|\boldsymbol{\mu}\|^2}{\lambda} & \lambda > 0, \\ 0 & \lambda = 0, \boldsymbol{\mu} = \mathbf{0}, \\ -\infty & \lambda = 0, \boldsymbol{\mu} \neq \mathbf{0}. \end{array} \right.$$

 \triangleright Since the Lagrangian is separable with respect to z_i and x, we can perform the minimization with respect to each of the variables vectors:

$$\begin{split} \min_{\mathbf{z}_0} \left[\|\mathbf{z}_0\|^2 + 2\boldsymbol{\mu}_0^T \mathbf{z}_0 \right] &= g(1, \boldsymbol{\mu}_0) = -\|\boldsymbol{\mu}_0\|^2, \\ \min_{\mathbf{z}_i} \left[\lambda_i \|\mathbf{z}_i\|^2 + 2\boldsymbol{\mu}_i^T \mathbf{z}_i \right] &= g(\lambda_i, \boldsymbol{\mu}_i), \\ \min_{\mathbf{x}} \left(\mathbf{b}_0 + \sum_{i=1}^m \lambda_i \mathbf{b}_i - \sum_{i=0}^m \mathbf{D}_i^T \boldsymbol{\mu}_i \right)^T \mathbf{x} &= \left\{ \begin{array}{cc} 0 & \mathbf{b}_0 + \sum_{i=1}^m \lambda_i \mathbf{b}_i - \sum_{i=0}^m \mathbf{D}_i^T \boldsymbol{\mu}_i = \mathbf{0}, \\ -\infty & \text{else,} \end{array} \right. \end{split}$$

Hence,

$$\begin{split} & q(\boldsymbol{\lambda}, \boldsymbol{\mu}_0, \dots, \boldsymbol{\mu}_m) = \min_{\mathbf{x}, \mathbf{z}_0, \dots, \mathbf{z}_m} L(\mathbf{x}, \mathbf{z}_0, \dots, \mathbf{z}_m, \boldsymbol{\lambda}, \boldsymbol{\mu}_0, \dots, \boldsymbol{\mu}_m) \\ & = \left\{ \begin{array}{l} g(1, \boldsymbol{\mu}_0) + \sum_{i=1}^m g(\lambda_i, \boldsymbol{\mu}_i) + c_0 + \mathbf{c}^T \boldsymbol{\lambda} & \mathbf{b}_0 + \sum_{i=1}^m \lambda_i \mathbf{b}_i - \sum_{i=0}^m \mathbf{D}_i^T \boldsymbol{\mu}_i = \mathbf{0}, \\ -\infty & \text{else.} \end{array} \right. \end{split}$$

The dual problem is therefore

$$\begin{array}{ll} \max & g(1, \boldsymbol{\mu}_0) + \sum_{i=1}^m g(\lambda_i, \boldsymbol{\mu}_i) + c_0 + \sum_{i=1}^m c_i \lambda_i \\ \mathrm{s.t.} & \mathbf{b}_0 + \sum_{i=1}^m \lambda_i \mathbf{b}_i - \sum_{i=0}^m \mathbf{D}_i^T \boldsymbol{\mu}_i = \mathbf{0}, \\ & \boldsymbol{\lambda} \in \mathbb{R}_+^m, \boldsymbol{\mu}_0, \dots, \boldsymbol{\mu}_m \in \mathbb{R}^n. \end{array}$$

Dual of Nonconvex QCQPs

Consider the problem

min
$$\mathbf{x}^T \mathbf{A}_0 \mathbf{x} + 2\mathbf{b}_0^T \mathbf{x} + c_0$$

s.t. $\mathbf{x}^T \mathbf{A}_i \mathbf{x} + 2\mathbf{b}_i^T \mathbf{x} + c_i \le 0, \quad i = 1, 2, \dots, m,$

- $ightharpoonup \mathbf{A}_i = \mathbf{A}_i^T \in \mathbb{R}^{n \times n}, \mathbf{b}_i \in \mathbb{R}^n, c_i \in \mathbb{R}, i = 0, 1, \dots, m.$
- ▶ We do not assume that \mathbf{A}_i are positive semidefinite, and hence the problem is in general nonconvex.
- ▶ Lagrangian $(\lambda \in \mathbb{R}^m_+)$:

$$L(\mathbf{x}, \boldsymbol{\lambda}) = \mathbf{x}^{T} \mathbf{A}_{0} \mathbf{x} + 2\mathbf{b}_{0}^{T} \mathbf{x} + c_{0} + \sum_{i=1}^{m} \lambda_{i} \left(\mathbf{x}^{T} \mathbf{A}_{i} \mathbf{x} + 2\mathbf{b}_{i}^{T} \mathbf{x} + c_{i} \right)$$

$$= \mathbf{x}^{T} \left(\mathbf{A}_{0} + \sum_{i=1}^{m} \lambda_{i} \mathbf{A}_{i} \right) \mathbf{x} + 2 \left(\mathbf{b}_{0} + \sum_{i=1}^{m} \lambda_{i} \mathbf{b}_{i} \right)^{T} \mathbf{x} + c_{0} + \sum_{i=1}^{m} c_{i} \lambda_{i}.$$

Note that

$$q(\lambda) = \min_{\mathbf{x}} L(\mathbf{x}, \lambda) = \max_{t} \{t : L(\mathbf{x}, \lambda) \ge t \text{ for any } \mathbf{x} \in \mathbb{R}^n\}.$$

Dual of Nonconvex QCQPs

► The following holds:

$$L(\mathbf{x}, \boldsymbol{\lambda}) \geq t$$
 for all $\mathbf{x} \in \mathbb{R}^n$

is equivalent to

$$\begin{pmatrix} \mathbf{A}_0 + \sum_{i=1}^m \lambda_i \mathbf{A}_i & \mathbf{b}_0 + \sum_{i=1}^m \lambda_i \mathbf{b}_i \\ (\mathbf{b}_0 + \sum_{i=1}^m \lambda_i \mathbf{b}_i)^T & c_0 + \sum_{i=1}^m \lambda_i c_i - t \end{pmatrix} \succeq \mathbf{0},$$

▶ Therefore, the dual problem is

$$\begin{array}{ll} \max_{t,\lambda_i} & t \\ \text{s.t.} & \begin{pmatrix} \mathbf{A}_0 + \sum_{i=1}^m \lambda_i \mathbf{A}_i & \mathbf{b}_0 + \sum_{i=1}^m \lambda_i \mathbf{b}_i \\ (\mathbf{b}_0 + \sum_{i=1}^m \lambda_i \mathbf{b}_i)^T & c_0 + \sum_{i=1}^m \lambda_i c_i - t \end{pmatrix} \succeq \mathbf{0}, \\ \lambda_i \geq 0, \quad i = 1, 2, \dots, m. \end{array}$$

Orthogonal Projection onto the Unit Simplex

• Given a vector $\mathbf{y} \in \mathbb{R}^n$, the orthogonal projection of \mathbf{y} onto Δ_n is the solution to

min
$$\|\mathbf{x} - \mathbf{y}\|^2$$

s.t. $\mathbf{e}^T \mathbf{x} = 1$, $\mathbf{x} \ge \mathbf{0}$.

Lagrangian:

$$L(\mathbf{x}, \lambda) = \|\mathbf{x} - \mathbf{y}\|^2 + 2\lambda (\mathbf{e}^T \mathbf{x} - 1) = \|\mathbf{x}\|^2 - 2(\mathbf{y} - \lambda \mathbf{e})^T \mathbf{x} + \|\mathbf{y}\|^2 - 2\lambda$$
$$= \sum_{i=1}^n (x_j^2 - 2(y_j - \lambda)x_j) + \|\mathbf{y}\|^2 - 2\lambda.$$

- ▶ The optimal x_j is the solution to the 1D problem $\min_{x_j \ge 0} [x_j^2 2(y_j \lambda)x_j]$.
- ► The optimal x_j is $x_j = \begin{cases} y_j \lambda & y_j \ge \lambda \\ 0 & \text{else} \end{cases} = [y_j \lambda]_+$, with optimal value $-[y_j \lambda]_+^2$.
- ► The dual problem is

$$\max_{\lambda \in \mathbb{D}} \left\{ g(\lambda) \equiv -\sum_{j=1}^{n} [y_j - \lambda]_+^2 - 2\lambda + \|\mathbf{y}\|^2 \right\}.$$

Orthogonal Projection onto the Unit Simplex

- g is concave, differentiable, $\lim_{\lambda\to\infty}g(\lambda)=\lim_{\lambda\to-\infty}g(\lambda)=-\infty$.
- ► Therefore, there exists an optimal solution to the dual problem attained at a point λ^* in which $g'(\lambda^*) = 0$.
- $\sum_{j=1}^{n} [y_j \lambda^*]_+ = 1.$
- ▶ $h(\lambda) = \sum_{j=1}^{n} [y_j \lambda]_+ 1$ is nonincreasing over \mathbb{R} and is in fact strictly decreasing over $(-\infty, \max_j y_j]$.

$$h(y_{\text{max}}) = -1,$$

 $h(y_{\text{min}} - \frac{2}{n}) = \sum_{j=1}^{n} y_j - ny_{\text{min}} + 2 - 1 > 0,$

where $y_{\text{max}} = \max_{j=1,2,...,n} y_j, y_{\text{min}} = \min_{j=1,2,...,n} y_j$.

▶ We can therefore invoke a bisection procedure to find the unique root λ^* of the function h over the interval $[y_{\min} - \frac{2}{n}, y_{\max}]$, and then define $P_{\Delta_n}(\mathbf{y}) = [\mathbf{y} - \lambda^* \mathbf{e}]_+$.

Orthogonal Projection Onto the Unit Simplex

The MATLAB function proj_unit_simplex:

```
function xp=proj_unit_simplex(y)
f=@(lam)sum(max(y-lam,0))-1;
n=length(y);
lb=min(y)-2/n;
ub=max(y);
lam=bisection(f,lb,ub,1e-10);
xp=max(y-lam,0);
```

Dual of the Chebyshev Center Problem

► Formulation:

$$\min_{\mathbf{x},r} r$$

s.t. $\|\mathbf{x} - \mathbf{a}_i\| \le r$, $i = 1, 2, ..., m$.

Reformulation:

$$\min_{\mathbf{x},\gamma} \quad \gamma$$

s.t. $\|\mathbf{x} - \mathbf{a}_i\|^2 \le \gamma$, $i = 1, 2, ..., m$.

Þ

$$L(\mathbf{x}, \gamma, \lambda) = \gamma + \sum_{i=1}^{m} \lambda_i (\|\mathbf{x} - \mathbf{a}_i\|^2 - \gamma)$$
$$= \gamma \left(1 - \sum_{i=1}^{m} \lambda_i\right) + \sum_{i=1}^{m} \lambda_i \|\mathbf{x} - \mathbf{a}_i\|^2.$$

▶ The minimization of the above expression must be $-\infty$ unless $\sum_{i=1}^{m} \lambda_i = 1$, and in this case we have

$$\min_{\gamma} \gamma \left(1 - \sum_{i=1}^{m} \lambda_i \right) = 0.$$

Dual of Chebyshev Center Contd.

- ▶ Need to solve $\min_{\mathbf{x}} \sum_{i=1}^{m} \lambda_i \|\mathbf{x} \mathbf{a}_i\|^2$.
- We have

$$\sum_{i=1}^{m} \lambda_{i} \|\mathbf{x} - \mathbf{a}_{i}\|^{2} = \|\mathbf{x}\|^{2} - 2\left(\sum_{i=1}^{m} \lambda_{i} \mathbf{a}_{i}\right)^{T} \mathbf{x} + \sum_{i=1}^{m} \lambda_{i} \|\mathbf{a}_{i}\|^{2},$$
(17)

▶ The minimum is attained at the point in which the gradient vanishes:

$$\mathbf{x}^* = \sum_{i=1}^m \lambda_i \mathbf{a}_i = \mathbf{A} \lambda,$$

A is the $n \times m$ matrix whose columns are $\mathbf{a}_1, \mathbf{a}_2, \dots, \mathbf{a}_m$.

▶ Substituting this expression back into (17),

$$q(\lambda) = \|\mathbf{A}\lambda\|^2 - 2(\mathbf{A}\lambda)^T(\mathbf{A}\lambda) + \sum_{i=1}^m \lambda_i \|\mathbf{a}_i\|^2 = -\|\mathbf{A}\lambda\|^2 + \sum_{i=1}^m \lambda_i \|\mathbf{a}_i\|^2.$$

▶ The dual problem is therefore

max
$$-\|\mathbf{A}\boldsymbol{\lambda}\|^2 + \sum_{i=1}^m \lambda_i \|\mathbf{a}_i\|^2$$

s.t. $\boldsymbol{\lambda} \in \Delta_m$.

MATLAB code

```
function [xp,r]=chebyshev_center(A)
d=size(A);
m=d(2):
Q=A'*A;
L=2*max(eig(Q));
b=sum(A.^2);
%initialization with the uniform vector
lam=1/m*ones(m,1);
old_lam=zeros(m,1);
while (norm(lam-old_lam)>1e-5)
    old_lam=lam;
    lam=proj_unit_simplex(lam+1/L*(-2*Q*lam+b));
end
xp=A*lam;
r=0;
for i=1:m
    r=max(r,norm(xp-A(:,i)));
end
```

Denoising

Suppose that we are given a signal contaminated with noise.

$$y = x + w$$
,

x - unknown "true" signal, **w** - unknown noise, **y** - known observed signal.

The denoising problem: find a "good" estimate for x given y.

A Tikhonov Regularization Approach

Quadratic Penalty:

$$\min \|\mathbf{x} - \mathbf{y}\|^2 + \lambda \sum_{i=1}^{n-1} (x_i - x_{i+1})^2,$$

The solution with $\lambda = 1$:

Pretty good!

Weakness of Quadratic Regularization

The quadratic regularization method does not work so well for all types of signals. True and noisy step functions:

Failure of Quadratic Regularization

l_1 regularization

$$\min \|\mathbf{x} - \mathbf{y}\|^2 + \lambda \|\mathbf{L}\mathbf{x}\|_1. \tag{18}$$

▶ The problem is equivalent to the optimization problem

$$\begin{aligned} \min_{\mathbf{x},\mathbf{z}} & & \|\mathbf{x} - \mathbf{y}\|^2 + \lambda \|\mathbf{z}\|_1 \\ \text{s.t.} & & & \mathbf{z} = \mathbf{L}\mathbf{x}. \end{aligned}$$

L is the $(n-1) \times n$ matrix whose components are $L_{i,i} = 1, L_{i,i+1} = -1$ and 0 otherwise.

▶ The Lagrangian of the problem is

$$L(\mathbf{x}, \mathbf{z}, \boldsymbol{\mu}) = \|\mathbf{x} - \mathbf{y}\|^2 + \lambda \|\mathbf{z}\|_1 + \boldsymbol{\mu}^T (\mathbf{L}\mathbf{x} - \mathbf{z})$$
$$= \|\mathbf{x} - \mathbf{y}\|^2 + (\mathbf{L}^T \boldsymbol{\mu})^T \mathbf{x} + \lambda \|\mathbf{z}\|_1 - \boldsymbol{\mu}^T \mathbf{z}.$$

► The dual problem is

$$\max_{\mathbf{L}} \quad -\frac{1}{4} \boldsymbol{\mu}^T \mathbf{L} \mathbf{L}^T \boldsymbol{\mu} + \boldsymbol{\mu}^T \mathbf{L} \mathbf{y}$$

s.t.
$$\|\boldsymbol{\mu}\|_{\infty} \leq \lambda.$$
 (19)

A MATLAB code

Employing the gradient projection method on the dual:

```
lambda=1;
mu=zeros(n-1,1);
for i=1:1000
    mu=mu-0.25*L*(L'*mu)+0.5*(L*y);
    mu=lambda*mu./max(abs(mu),lambda);
    xde=y-0.5*L'*mu;
    end
figure(5)
plot(t,xde,'.');
axis([0,1,-1,4])
```

I_1 -regularized solution

Dual of the Linear Separation Problem (Dual SVM)

- $\mathbf{x}_1, \mathbf{x}_2, \ldots, \mathbf{x}_m \in \mathbb{R}^n$.
- ▶ For each i, we are given a scalar y_i which is equal to 1 if \mathbf{x}_i is in class A or -1 if it is in class B.
- ► The problem of finding a maximal margin hyperplane that separates the two sets of points is

min
$$\frac{1}{2} \|\mathbf{w}\|^2$$

s.t. $y_i(\mathbf{w}^T \mathbf{x}_i + \beta) \ge 1$, $i = 1, 2, ..., m$.

- ► The above assumes that the two classes are linearly seperable.
- ▶ A formulation that allows violation of the constraints (with an appropriate penality):

min
$$\frac{1}{2} \|\mathbf{w}\|^2 + C \sum_{i=1}^m \xi_i$$

s.t. $y_i (\mathbf{w}^T \mathbf{x}_i + \beta) \ge 1 - \xi_i, \quad i = 1, 2, \dots, m,$
 $\xi_i \ge 0, \quad i = 1, 2, \dots, m,$

where C > 0 is a penalty parameter.

Dual SVM

The same as

$$\begin{aligned} & \min & & \frac{1}{2} \|\mathbf{w}\|^2 + C(\mathbf{e}^T \boldsymbol{\xi}) \\ & \text{s.t.} & & \mathbf{Y}(\mathbf{X}\mathbf{w} + \beta \mathbf{e}) \geq \mathbf{e} - \boldsymbol{\xi}, \\ & & \boldsymbol{\xi} \geq \mathbf{0}, \end{aligned}$$

where $\mathbf{Y} = \text{diag}(y_1, y_2, \dots, y_m)$ and \mathbf{X} is the $m \times n$ matrix whose rows are $\mathbf{x}_1^T, \mathbf{x}_2^T, \dots, \mathbf{x}_m^T$.

▶ Lagrangian $(\alpha \in \mathbb{R}_+^m)$:

$$L(\mathbf{w}, \beta, \boldsymbol{\xi}, \boldsymbol{\alpha}) = \frac{1}{2} \|\mathbf{w}\|^2 + C(\mathbf{e}^T \boldsymbol{\xi}) - \boldsymbol{\alpha}^T [\mathbf{Y} \mathbf{X} \mathbf{w} + \beta \mathbf{Y} \mathbf{e} - \mathbf{e} + \boldsymbol{\xi}]$$
$$= \frac{1}{2} \|\mathbf{w}\|^2 - \mathbf{w}^T [\mathbf{X}^T \mathbf{Y} \boldsymbol{\alpha}] - \beta (\boldsymbol{\alpha}^T \mathbf{Y} \mathbf{e}) + \boldsymbol{\xi}^T (C \mathbf{e} - \boldsymbol{\alpha}) + \boldsymbol{\alpha}^T \mathbf{e}.$$

•

$$q(\alpha) = \left[\min_{\mathbf{w}} \frac{1}{2} \|\mathbf{w}\|^2 - \mathbf{w}^T [\mathbf{X}^T \mathbf{Y} \alpha]\right] + \left[\min_{\beta} (-\beta(\alpha^T \mathbf{Y} \mathbf{e}))\right] + \left[\min_{\boldsymbol{\xi} > \mathbf{0}} \boldsymbol{\xi}^T (C\mathbf{e} - \alpha)\right] + \alpha^T \mathbf{e}.$$

Dual SVM

•

$$\begin{split} \min_{\mathbf{w}} \frac{1}{2} \|\mathbf{w}\|^2 - \mathbf{w}^T [\mathbf{X}^T \mathbf{Y} \boldsymbol{\alpha}] &= -\frac{1}{2} \boldsymbol{\alpha}^T \mathbf{Y} \mathbf{X} \mathbf{X}^T \mathbf{Y} \boldsymbol{\alpha}, \\ \min_{\boldsymbol{\beta}} (-\boldsymbol{\beta} (\boldsymbol{\alpha}^T \mathbf{Y} \mathbf{e})) &= \begin{cases} 0 & \boldsymbol{\alpha}^T \mathbf{Y} \mathbf{e} = 0, \\ -\infty & \text{else}, \end{cases} \\ \min_{\boldsymbol{\xi} \geq \mathbf{0}} \boldsymbol{\xi}^T (\boldsymbol{C} \mathbf{e} - \boldsymbol{\alpha}) &= \begin{cases} 0 & \boldsymbol{\alpha} \leq \boldsymbol{C} \mathbf{e}, \\ -\infty & \text{else}, \end{cases} \end{split}$$

Therefore, the dual objective function is given by

$$q(\alpha) = \begin{cases} \alpha^T \mathbf{e} - \frac{1}{2} \alpha^T \mathbf{Y} \mathbf{X} \mathbf{X}^T \mathbf{Y} \alpha & \alpha^T \mathbf{Y} \mathbf{e} = 0, \mathbf{0} \le \alpha \le C \mathbf{e} \\ -\infty & \text{else.} \end{cases}$$

max
$$lpha^T \mathbf{e} - rac{1}{2} lpha^T \mathbf{Y} \mathbf{X} \mathbf{X}^T \mathbf{Y} lpha$$

► The dual problem is s.t. $\alpha^T \mathbf{Ye} = 0$,

$$0 \le \alpha \le Ce$$
.

or

max
$$\sum_{i=1}^{m} \alpha_i - \frac{1}{2} \sum_{i=1}^{m} \sum_{j=1}^{m} \alpha_i \alpha_j y_i y_j (\mathbf{x}_i^\mathsf{T} \mathbf{x}_j)$$
s.t.
$$\sum_{i=1}^{m} y_i \alpha_i = 0,$$

$$0 < \alpha_i < C, \quad j = 1, 2, \dots, m.$$