Lecture 12 - Duality
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f*= min f(x)

fgi,hi(i=12,....m
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p) are functions defined on the set

Problem (1) will be referred to as the primal problem.

The Lagrangian is

L(x, A\, p) = f(x

The dual objective function g : R x RP — RU {—o0c} is defined to be
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The Dual Problem

» The domain of the dual objective function is

dom(q) = {(A, p) € RT x R”: g(A, ) > —oo}.

» The dual problem is given by
g"= max q(A p) (3)
st. (A, p) € dom(q)
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Convexity of the Dual Problem

Theorem.  Consider problem (1) with f,g;, hj(i = 1,2,...,m,j =
1,2,...,p) being functions defined on the set X C R”, and let g be the
dual function defined in (2). Then

(a) dom(q) is a convex set.

(b) g is a concave function over dom(q).

Proof.
> (a) Take (A1, 1), (A2, o) € dom(q) and « € [0,1]. Then

gg)rg L(Xa A17 /’l’l) > —00, (4)
min L(x, Az, pp) > —oc. (5)
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Proof Contd.

> Therefore, since the Lagrangian L(x, A, p) is affine w.r.t. A, s,
glad; + (1 — @) 2, apq + (1 — a)uy)
= )I’(Télg L(x,aX1 + (1 — @)X, apq + (1 — a)p,)
= Q‘Q {al(x, A1, py) + (1 = @) L(x, A2, p12) }
> a)r(nEiQ L(x, A\, 1) + (1 — @) )r(TéIQ L(x, A2, py)

= aq(Ar, py) + (1 — a)g(Aa, py)
> —00.

v

Hence, a(A1, 1) + (1 — @)(Az, py) € dom(g), and the convexity of dom(q)
is established.

(b) L(x, A, p) is an affine function w.r.t. (A, ).

v

v

In particular, it is a concave function w.r.t. (X, p).

v

Hence, since g is the minimum of concave functions, it must be concave.
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The Weak Duality Theorem

Theorem. Consider the primal problem (1) and its dual problem (3). Then
q < f*,

where f* g* are the primal and dual optimal values respectively.

Proof.
» The feasible set of the primal problem is

S={xeX:gi(x)<0,hi(x)=0,i=1,2,...,mj=12,...,p}

> Then for any (A, p) € dom(g) we have
g p) = minl(x, A p) < minl(x, A, p)

= min {f(x) + Zl Aigi(x) + ; ujhj(x)}

< mi =f".
< rxnelgf(x) f

> Taking the maximum over (X, u) € dom(q), the result follows.
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Example

: 2 2
min  xj — 3x3
s.t. x3 = X23.

In class
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Strong Duality in the Convex Case - Back to Separation

Supporting Hyperplane Theorem Let C C R” be a convex set and lety ¢ C.
Then there exists 0 # p € R” such that

p’x<pTyforanyxe C.

Proof.
» Although the theorem holds for any convex set C, we will prove it only for
sets with a nonempty interior.
> Since y ¢ int(C), it follows that y ¢ int(cl(C)).
> Therefore, there exists a sequence {yx}x>1 such that y, ¢ cl(C) and y, — y.
» By the separation theorem of a point from a closed and convex set, there
exists 0 # px € R” such that

plx <plye Vxecl(C)

» Thus, .
m(x—yk)<0for any x € cl(C). (6)
k
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Proof Contd.

» Since the sequence {M} is bounded, it follows that there exists a

such that P~ — p as k Ty 5o for some peR".

subsequence ﬁ Mo
Pk keT Pk

> Obviously, ||p|| =1 and hence in particular p # 0.

» Taking the limit as k I oo inequality (6) we obtain that
p’(x—y) <0 forany x € cl(C),

which readily implies the result since C C cl(C).
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Separation of Two Convex Sets

Theorem. Let G;, G; C R” be two nonempty convex sets such that GGNG, =
(). Then there exists 0 # p € R” for which

p’x<pTyforanyxe G.ye GC.

Proof.
» The set C; — G is a convex set.
>» GNG=0=0¢CG — G.
» By the supporting hyperplane theorem, there exists 0 # p € R" such that

p'(x—y)<p'Oforanyxec C,y€ G,
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The Nonlinear Farkas Lemma

Theorem. Let X C R” be a convex set and let 7, gy, 8, ...,8m be convex

functions over X. Assume that there exists X € X such that
g1(X) < 0,8(%X) <0,...,gn(X) <0.

Let ¢ € R. Then the following two claims are equivalent:

(a) the following implication holds:

x€ X,gi(x)<0,i=1,2,....m= f(x) > c.

(b) there exist A1, A2, ..., Am > 0 such that

)r(r;ig {f(x) + Z )x,-g,-(x)} >c.

=1l
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Proof of (b)= (a)

> Suppose that there exist A1, A, ..., Ay > 0 such that (7) holds, and let
x € X satisfy gi(x) <0,i=1,2,...,m.

> By (7) we have
f(x)+ Z Aigi(x) > c,
i=1

» Hence,

f(x) >c— Z/\igi(x) > c.
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Proof of (a) = (b)
> Assume that the implication (a) holds.
» Consider the following two sets:

S = {u:(UO,U]_,...,Um):HXEX,f(X)§U07g;(X)SU,‘,I':].,Z,...,m},
T = {(uo,ur,...,um): up<c,u; <0,up<0,...,un <0}

» S, T are nonempty and convex and in addition SN T = ().
» By the supporting hyperplane theorem, there exists a vector
a=(ag,a1,.-.,am) # 0, such that

m|n ZQJUJ > max Zajuj (8)

UO ug,.. U07u17

» a>0.
» Since a > 0, it follows that the right-hand side is agc, and we thus obtained

mm Zajuj > agc. (9)

UO»Ul
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Proof of (a) = (b) Contd.

>

We will show that ag > 0. Suppose in contradiction that ag = 0. Then
min(umul«,m,um)es 2;"21 ajuj 2 0.

Since we can take u; = gi(X), we can deduce that Zjn;l ajgj(X) > 0, which is
impossible since gj(X) < 0 and a # 0.

Since ag > 0, we can divide (9) by ag to obtain

min < uo+Zéjuj > c, (10)

(uo,U15eeeylim) €

where §; = af.
By the definition of S we have

min uo+Zau <m|n +Za
(U0, Ut ooyt €S =7 i&(x) ¢

which combined with (10) yields the desired result

[ 5. > c.
)I‘(Tél)f(l f(x)+ZanJ(x) >c
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Strong Duality of Convex Problems with Inequality
Constraints

Theorem. Consider the optimization problem

f*= min f(x)
st. gi(x)<0, i=12,....m,, (11)
x e X,
where X is a convex set and f, g;,i = 1,2,..., m are convex functions over

X. Suppose that there exists X € X for which g;j(X) < 0,i=1,2,...,m. If
problem (11) has a finite optimal value, then

(a) the optimal value of the dual problem is attained.
(b) f*=gq*.
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Proof of Strong Duality Theorem

> Since f* > —oo is the optimal value of (11), it follows that the following
implication holds:

x€X,g(x)<0,i=1,2,...,m= f(x) > f*,

» By the nonlinear Farkas Lemma there exists 5\17 5\2, cee Xm > 0 such that
~ m ~
g(X) = min ¢ £(x) + 2} Nigi(x) y > F*.
J:

» By the weak duality theorem,

a > qA) > > q",

» Hence f* = g* and X is an optimal solution of the dual problem.
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Example

min X% — x
s.t. X22 <0.

In class
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Duffin’s Duality Gap

min{e_X2 xR+ X2 —x SO}.

> The feasible set is in fact F = {(x1,x2) :x1 > 0,0 =0} = f* =1
> Slater condition is not satisfied.

» Lagrangian: L(x1,x,\) =e 2 + A(/x2+x5 —x1) (A >0).

> q(A) = ming ,, L(x1,x0,A) >0

» For any € > 0, take x, = —loge, x; = ng_;z.

2 2 2 2 . o\ 2 2
2, .2 _ (5 —¢€?) , X5 —et (x5 +e?) X; — €&
XE4+x3—x = X - = s —
4e 2e 4e 2¢e
2

2+ x2—c¢
= —_ = £.
2e 2e

» Hence, L(x1,x2,\) = e ™2 + A(y/xZ + x5 —x1) =e + Xe = (1 + M),
> g(A\) =0 for all A > 0.
> ¢*=0= " —q* =1 = duality gap of 1.
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Complementary Slackness Conditions
Theorem. Consider the optimization problem
f*=min{f(x): gi(x) <0,i=1,2,...,mx € X}, (12)

and assume that f* = g* where g* is the optimal value of the dual problem.
Let x*, A* be feasible solutions of the primal and dual problems. Then x*, A*
are optimal solutions of the primal and dual problems iff

x* €  argmin Leex(x, AY), (13)
Aigi(x*) = 0,i=1,2,...,m. (14)

Proof.
> g(A") = mingex L(x, ™) < L(x*, X") = £(x*) + >, Aigi(x*) < f(x*)
» By strong duality, x*, A" are optimal iff f(x*) = g(\")
> iff mingex L(x,A") = L(x*, X™), D7, Aigi(x*) = 0.
> iff (13), (14) hold.
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A More General Strong Duality Theorem

Theorem. Consider the optimization problem

f*= min f(x)

st. g(x)<0, i=1,2,...,m,
hj(x) <0, j=1,2,...,p, (15)
Sk(X):O, k:1727 » g,
x e X,
where X is a convex set and f,g;,i = 1,2,...,m are convex functions

over X. The functions hj, s are affine functions. Suppose that there exists
% € int(X) for which gj(X) < 0, hj(X) < 0, sx(X) = 0. Then if problem (15)
has a finite optimal value, then the optimal value of the dual problem

g = max{q(A,n, 1) : (A, m, p) € dom(q)},
where

(X, m, ) = min [F0) + 7 Aigi(x) + S0y mibi(x) + Ly ()]

is attained, and f* = g*.
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Importance of the Underlying Set

min X3 + x5
P) st xi4+x>1,

x1,Xp > 0.
> (3, 3) is the optimal solution of (P) with an optimal value f* = 1.
» First dual problem is constructed by taking X = {(x1, x2) : x1, x2 > 0}.
» The primal problem is min{>3 + x3 : x1 + x2 > 1, (x1, x2) € X}.
» Strong duality holds for the problem and hence in particular g* = %.
» Second dual is constructed by taking X = R2.
» Objective function is not convex = strong duality is not necessarily satisfied.
> L(x1, %, A\ M1, m2) = 58 4+ 3 — A(xi +x2 — 1) — mixg — maxa.
> g(\, m,m2) = —oo for all (A, p1, p2) = g* = —c0.
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Linear Programming

Consider the linear programming problem
min  c’x

st. Ax<b,

ceR"AcR™"and b e R™.

We assume that the problem is feasible = strong duality holds.
L(x,A\) =c"x+AT(Ax—b) = (c+ATA)Tx —bTA.

Dual objective funvtion:

vV vVv.v Yy

g(A) = min L(x,A) = min(c+ATA)"x—b" X = {

xERP xERN —00 else.

v

Dual problem:
max —bTX
st. ATA=—c,
A>0.
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Strictly Convex Quadratic Programming
Consider the strictly convex quadratic programming problem

min  x"Qx + 2fTx
st. Ax<b,

v

Q € R™" positive definite, f € R", A € R™*" b € R™.

Lagrangian: (A € R7)  L(x,A) = x"Qx +2f"x + 2A" (Ax — b) =
x"Qx +2(ATA+f)Tx —2bT A

The minimizer of the Lagrangian is attained at x* = —Q~1(f + AT ).

v

v

ag(A) = L(x",A)
= F+A™N'QTIQQIF+ATA) —2(fF+ ATA)QI(F+ATA)—2b" A
= —(F+A™X)"Q'(F+ATX)—2b"A
= ATAQTIATA-2fTQ'ATA—FTQ M —2b" A
“ATAQTIATA —2(AQ M+ b) A —FTQ .

v

The dual problem is max{g(A) : A > 0}.
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Dual of Convex QCQP with strictly convex objective
Consider the QCQP problem

min  x7 Agx + 2b0Tx + co
s.t. xTA,-x—&-2b,-Tx—|—c,- <0, i=12,...,m,
where A; = 0 is an n x n matrix, b; e R", ¢c; e R,i=0,1,..., m.
Assume that Ap >~ 0.
> Lagrangian (A € R7Y):

L(x,A\) = x Apx+2b{x+c+ Z Ni(xTAix +2b/ x + )

i=1

XT (Ao + Z,n;l )\,‘A,‘) X+ 2 (bo =+ ZIm:l )\,‘b,‘) T X+ co + ZIm:l A\iGi.

» The minimizer of the Lagrangian w.r.t. x is attained at X satisfying

2 (Ao + 37, VA & = 2 (bo + X7, Ab).

> Thus, & = — (Ao + 27, MA) " (b + X7, Aby) .
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QCQP contd.

» Plugging this expression back into the Lagrangian, we obtain the following
expression for the dual objective function

g(A) = minL(x,A) = L(X,A)
= % (Ao+ X7, NA) % +2 (b + X7 Aiby) TSt ST ne

= —(bo+ X7, )‘fbf)T (Ao+ 37, AfA")71 (bo + 327, Aibi) +
o+ > Aici.

» The dual problem is thus
max — (bo+ >, Aib;) ’ (Ao+>71, )\iAi)71 (bo+ X7, Aibi) +

o+ > Aici
st. A >0, i=1,2,....m.
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Dual of Convex QCQPs

Ay is only assumed to be positive semidefinite.

» The previous dual is not well defined since the matrix Ay + Z£1 AiA; is not
necessarily PD.

» Decompose A; as A; = D/ D; (D; € R"™*") and rewrite the problem as
min  x"DJ Dox + 2bJ x + ¢
s.t. xTD,.TD,-x + 2b,.Tx +¢<0,i=1,2,...,m,

» Define additional variables z; = D;x, giving rise to the formulation

min  ||zo]|? + 2b{ x + co
st. |lzi|?+2b/x+¢ <0,i=1,2,...,m,

zi=Dix, i=0,1,...,m.
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Dual of Convex QCQPs
> The Lagrangianis (A € R7, u; € R",i=0,1,...,m):
L(X,205 -y Zmy Ay gy -+ s o)
m
= [lzol® + 2bJ x + co + Y _ Ai(llzi]1> + 2b] x + ¢) +

i=1
2> pl(zi—Dx)

i=0

= |zol® +21d o+ Y _(Aillzil* + 2] z1) +
i=1

m m T
2 <b0+Z)\,~b,~ —ZD,-Tp,,) x
i=1 i=0

m
+co + Z G
i—1
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Dual of Convex QCQPs

> Forany A e Ry, p e R”,

A
g\, p) = min {||z[* + 2172} = { 0

» Since the Lagrangian is separable with respect to z; and x, we can perform
the minimization with respect to each of the variables vectors:

min [ll20l +2ud 20] = &(L, o) = ~llaol®

n;i_n [)\;||z,-H2+2u,-TZ;] = g\, p),

m oAb, —S" DIy =
min (bo + 37, Aib; — > DT ;) Tx = { 0 bo + 3 %1 Aibj = 32200 D ki = 0,
X

—oco  else,

» Hence,

q(A’“O’“"“m):xz(?".i.'.’z L(x,20, .-, Zm;s X, gy - - - )

_ e(Lime) + 3 g(Nimi) o+ et bo+ 3T Aib; — 30D p; = 0,
—00 else.

Amir Beck
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Dual of Convex QCQPs

The dual problem is therefore

max  g(1, po) + 2oy &(Ai, ;) + o+ Doy GiNi
st bo+ > Abi—> " D p; =0,
AERY po, .y € R

Amir Beck “Introduction to Nonlinear Optimization” Lecture Slides - Duality 28 / 46



Dual of Nonconvex QCQPs

Consider the problem

min  xT Agx + 2bOTx + ¢
st. x'Ax+2b/x+¢ <0, i=12

gLy ey

v

A=A eR™ b, eR" ¢eR,i=01,...,m.

We do not assume that A; are positive semidefinite, and hence the problem is
in general nonconvex.

Lagrangian (A € RT):

v

v

LxA) = x Aox+2bix+c+ > A (xTA,-x 4 2b]x + c,-)

i=1

m m T m
x" <Ao +>° A,—A,-) X+ 2 (bo +3 /\,-b,-> X+ co+ Y ci
i=1

i=1 i=1

Note that

v

g(A) = minL(x,A) = mtax{t : L(x,A) > t for any x € R"}.
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Dual of Nonconvex QCQPs

» The following holds:
L(x,A) >t for all x € R"

is equivalent to

Aot s AA - bo k30T, Ak ) g
(bo+ > Aibi)T o+ X i —t) =

> Therefore, the dual problem is
max y; t
s.t. (( Ao+ 3700 NiAi bo +>-7 Aib ) ~ 0.

bg + 2:11 )\,‘b,’)T o + 2:11 Aici— t
A>0, i=1,2,...,m.
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Orthogonal Projection onto the Unit Simplex
> Given a vector y € R", the orthogonal projection of y onto A, is the solution

to
min [|x — y||?
st. elx=1,
x > 0.
» Lagrangian:
L(x,A) = [x—y[*+2X\(e"x—1) = x| = 2(y — Ae)x + [|y[|* — 2
= D 0¢ — 20— Abg) + Iy - 2.

j=1

> The optimal x; is the solution to the 1D problem minszo[xj2 —2(y; — A)xj).
yi—A ¥z A

0 olse = [y; — Al+, with optimal value

> The optimal x; is x; = {

—ly; = AR
» The dual problem is

=3 Tyi— A2 — 2
max {g(X) = = 7l — A — 23+ [y}
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Orthogonal Projection onto the Unit Simplex

> g is concave, differentiable, limy_ o g(A) = limy_o g(A) = —00.

» Therefore, there exists an optimal solution to the dual problem attained at a
point A\* in which g’(A\*) = 0.

Ele[yj - =1

h(\) = Z;:l[yf — Al+ — 1 is nonincreasing over R and is in fact strictly
decreasing over (—oo, max; y;].

v

v

>
h (_Vmax) = _1a
2 n
h(ymin—n> = Z)/j—nymin—|—2—1>0,
Jj=1
where ymax = Maxj=12_..nYj; Ymin = MiNj=12___n Y}
» We can therefore invoke a bisection procedure to find the unique root \* of

the function h over the interval [ymin — 2, ymax], and then define
Pa,(y) =[y — A\"e]+.
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Orthogonal Projection Onto the Unit Simplex

The MATLAB function proj_unit_simplex:

function xp=proj_unit_simplex(y)
f=0(lam) sum(max (y-lam,0))-1;
n=length(y) ;

1lb=min(y)-2/n;

ub=max (y) ;
lam=bisection(f,1b,ub,1e-10);
xp=max (y-lam,0) ;
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Dual of the Chebyshev Center Problem

» Formulation:

mine, r

s.t. Ix—a;| <r, i=12,...,m.
» Reformulation:

miny, ,

s.t. Ix—ail2<~, i=1,2,...,m

L7, A) = v+ Allx—ail> =)

i=1
Y (1 - 277:1 )‘i) + 27;1 Ail[x = a,-||2.

» The minimization of the above expression must be —oo unless Y7 \; =1,
and in this case we have

m
i 1- Ai | =0.
o (1-53)
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Dual of Chebyshev Center Contd.

» Need to solve min, > 7, A[|x — a; .

» We have

m m T m
S Aillx —al? = [Ixl? =2 (27 Aar) - x+ 3T Adlail?, (17)
» The minimum is attained at the point in which the gradient vanishes:
X" =Y Aia; = AX,
i=1

A is the n X m matrix whose columns are ay,as,...,an.
> Substituting this expression back into (17),

q(A) = [AX]? = 2(AX)T(AX) + 5770 Aillail® = —[[AX]12 + 3272 Al

» The dual problem is therefore

max  —[[AX[? + 3277, Aillail?
st. A€EA,.
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MATLAB code

function [xp,r]=chebyshev_center(A)

d=size(A);

m=d(2) ;

Q=A’*A;

L=2*max (eig(Q)) ;

b=sum(A."2)’;

%initialization with the uniform vector

lam=1/m*ones(m,1) ;

old_lam=zeros(m,1);

while (norm(lam-old_lam)>1e-5)
old_lam=lam;
lam=proj_unit_simplex (lam+1/L* (-2*Q*lam+b)) ;

end

xp=A*lam;

r=0;

for i=1:m
r=max (r,norm(xp-A(:,i)));

end
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Denoising

Suppose that we are given a signal contaminated with noise.
y=x+w,

x - unknown “true” signal, w - unknown noise, y - known observed signal.

The denoising problem: find a “good” estimate for x given y. )
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A Tikhonov Regularization Approach

Quadratic Penalty:

n—1
min [[x — y[* + A (% — xi11)?,
i=1
The solution with A = 1:
//\\\\ //,A\\
ol /S \ \\
1% L | // \ ]
9 / \\
\ / S
% o
N #
o

Pretty good!

Amir Beck
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Weakness of Quadratic Regularization

The quadratic regularization method does not work so well for all types of signals.

True and noisy step functions:

Amir Beck

Y
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Failure of Quadratic Regularization

4 4

3 Eatiant e Y 4 g ———————y Bl
2 g 2 E P~
| plabrewatiisup 1 q
0 P e B 0 [T 4 4
A -1

o 100 200 300 400 500 BOO 700 800 500 1000 a 100 200 300 400 500 BOO 700 800 900 1000
4 4
3 ﬁ B k. 1
2 b . {—*-——-. 2
Y SO i £ 4 14 i 4
o L—-—n—-—f Bl o G |
-1 -1
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I, regularization

min ||x — y||*> + A Lx||1. (18)
» The problem is equivalent to the optimization problem
mine,  [x =yl + Allz[lx
s.t. z = Lx.
L is the (n — 1) x n matrix whose components are L;; =1,L; ;+1 = —1 and
0 otherwise.
» The Lagrangian of the problem is
L(x,z,p) = [x—=yl[P+ Azl + " (Lx - 2)
= x—yl? + (LT )Tx + Allzl — 2.
» The dual problem is
max f%uTLLTu+/LTLy (19)
st ulle <
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A MATLAB code

Employing the gradient projection method on the dual:

lambda=1;

mu=zeros(n-1,1);

for i=1:1000
mu=mu-0.25*L* (L’ *mu) +0. 5% (L*y) ;
mu=lambda*mu./max (abs (mu) ,lambda) ;
xde=y-0.5%L’*mu;
end

figure(5)

plot(t,xde,’.’);

axis([0,1,-1,4])
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l-regularized solution
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Dual of the Linear Separation Problem (Dual SVM)

> X1,X2,...,Xm € R".

» For each 7, we are given a scalar y; which is equal to 1 if x; is in class A or
—1ifitisin class B.

» The problem of finding a maximal margin hyperplane that separates the two
sets of points is

min %||w||2
st. yiwix;+8)>1, i=12,....,m

» The above assumes that the two classes are linearly seperable.

> A formulation that allows violation of the constraints (with an appropriate
penality):

min  3llw|®+ C Y7, &
st oyiwixi+8)>1-¢&, i=1,2,...,m,
E/’ZOa i:1127"'7m7
where C > 0 is a penalty parameter.
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Dual SVM

» The same as ) ) ) -
min  3|w|*+ C(e"§&)
st. Y(Xw+ fe) >e—¢,

£=>0,
where Y = diag(y1, ¥2,...,¥m) and X is the m x n matrix whose rows are
T T T
X{ 5Xg e ey X

» Lagrangian (a € RY):
Lw,5.&a) = Z|w|’+C(e"§) —a’ [YXw + fYe—e+¢]

= ZwlP—=w'[X"Ya] - B(a’Ye)+ £ (Ce—a)+a'e.

ate) = [mn 3 wl* — w” (XYl [+ min(-(a"ve)) |+ +a'e

. T _
212"36 (Ce—a)
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Dual SVM

>
1 1
min§||w||2—wT[XTYa] = —EaTYXXTYm
e T _ 0 a’Ye=0,

mﬂln( Bla'Ye)) = { oo else,

<
minfT(Cefa) = { 0 a < Ce,

£>0 —o0 else,

» Therefore, the dual objective function is given by

() = a’e—1a"YXX'Ya a’Ye=0,0<a< Ce
q Tl —oo else.

max o'e— %aTYXXTYa
» The dual problemis st. a’Ye=0,
0<a<CCe.

1 T
max Do — 5 2oy Do iy yiy(Xi X;)
s.t. Z:n:l yiaj =0,
0<a;<C, i=12,...,m.
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