Lecture 10 - Linearly Constrained Problems: Separation —

Alternative Theorems — Optimality Conditions
» A hyperplane

H={xecR":a"x=b} (acR"\{0},bcR)
is said to strictly separate a pointy ¢ S from S if
a’y>b

and
a'x < b for all yesS.
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Lecture 10 - Linearly Constrained Problems: Separation —

Alternative Theorems — Optimality Conditions
» A hyperplane

H={xecR":a"x=b} (acR"\{0},bcR)
is said to strictly separate a pointy ¢ S from S if
a’y>b

and
a'x < b for all yesS.

Theorem (separation of a point from a closed and convex set) Let C C R”
be a nonempty closed and convex set, and let y ¢ C. Then there exists
p € R"\{0} and a € R such that

p’y>aand p'x < aforallx e C.
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Proof of the Separation Theorem

» By the second orthogonal projection theorem, the vector x = Pc(y) € C
satisfies
(y—%)"T(x—%)<0forallx € C,

which is the same as

(y—%)"x<(y—%x)"xforall x e C.
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Proof of the Separation Theorem

» By the second orthogonal projection theorem, the vector x = Pc(y) € C
satisfies
(y—%)"T(x—%)<0forallx € C,

which is the same as

(y—%)"x<(y—%x)"xforall x e C.

» Denotep=y—x#0and a = (y —X)"x. Then

p’x<aforallxeC
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Proof of the Separation Theorem

» By the second orthogonal projection theorem, the vector x = Pc(y) € C
satisfies
(y—%)"T(x—%)<0forallx € C,

which is the same as

(y—%)"x<(y—%x)"xforall x e C.

» Denotep=y—x#0and a = (y —X)"x. Then

p’x<aforallxeC

» On the other hand,

Ply=@-X)Ty=@-x)"(y-x)+y-%)"x=y—%x"+a>a
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Farkas Lemma - an Alternative Theorem

Farkas Lemma. Let ¢ € R” and A € R™*". Then exactly one of the
following systems has a solution

I. Ax<0,c"x > 0.

. ATy =c,y > 0.

Another equivalent formulation is the following.

Farkas Lemma - second Formulation Let ¢ € R” and A € R™*". Then the
following two claims are equivalent:

(A) The implication Ax < 0 = ¢"x < 0 holds true.

(B) There exists y € RT such that ATy =c.

What does it mean?

1 5 -1
Example. A = (1 2) ,€C= < 9 ),
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Proof of Farkas Lemma
» Suppose that system (B) is feasible:Jy € RT such that ATy = c.

Amir Beck “Introduction to Nonlinear Optimization” Lecture Slides - Linearly Constrained Problems 4 /21



Proof of Farkas Lemma

» Suppose that system (B) is feasible:Jy € RT such that ATy = c.
> To see that the implication (A) holds, suppose that Ax < 0 for some x € R".
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Proof of Farkas Lemma

» Suppose that system (B) is feasible:Jy € RT such that ATy = c.
> To see that the implication (A) holds, suppose that Ax < 0 for some x € R".
» Multiplying this inequality from the left by y7:

y Ax < 0.
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Proof of Farkas Lemma

» Suppose that system (B) is feasible:Jy € RT such that ATy = c.
> To see that the implication (A) holds, suppose that Ax < 0 for some x € R".
» Multiplying this inequality from the left by y7:

y Ax < 0.

» Hence,
c'x<0

)
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Proof of Farkas Lemma

v

Suppose that system (B) is feasible:Jy € RT such that ATy = c.
To see that the implication (A) holds, suppose that Ax < 0 for some x € R".

v

v

Multiplying this inequality from the left by y7:

y Ax < 0.

» Hence,
c'x <0,

» Suppose that the implication (A) is satisfied, and let us show that the system
(B) is feasible. Suppose in contradiction that system (B) is infeasible.
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Proof of Farkas Lemma

v

Suppose that system (B) is feasible:Jy € RT such that ATy = c.
To see that the implication (A) holds, suppose that Ax < 0 for some x € R".
Multiplying this inequality from the left by y7:

v

v

y Ax < 0.

» Hence,
c'x <0,

» Suppose that the implication (A) is satisfied, and let us show that the system
(B) is feasible. Suppose in contradiction that system (B) is infeasible.

v

Consider the following closed and convex (why?) set

S:{XER”:x:ATyforsomeyeRT}
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Proof of Farkas Lemma

» Suppose that system (B) is feasible:Jy € RT such that ATy = c.
> To see that the implication (A) holds, suppose that Ax < 0 for some x € R".
» Multiplying this inequality from the left by y':

y Ax < 0.

» Hence,
c'x <0,

» Suppose that the implication (A) is satisfied, and let us show that the system
(B) is feasible. Suppose in contradiction that system (B) is infeasible.

» Consider the following closed and convex (why?) set

S:{XER”:x:ATyforsomeyeRT}

>»c¢S.
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Proof Contd.

» By the separation theorem Jp € R"\{0} and a € R such that p’c > « and

p'x<aforallxeS§. (1)
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Proof Contd.

» By the separation theorem Jp € R"\{0} and a € R such that p’c > « and

p'x<aforallxeS§. (1)

»0cS=a>0=p’c>0.
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Proof Contd.

» By the separation theorem Jp € R"\{0} and a € R such that p’c > « and

p'x<aforallxeS§. (1)

»0cS=a>0=p’c>0.

> (1) is equivalent to
p’ATy <aforally>0

or to
(Ap)Ty < aforally >0, (2)
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Proof Contd.

v

By the separation theorem 3p € R"\{0} and o € R such that p’c > a and

p'x<aforallxeS§. (1)

v

0eS=a>0=p’c>0.

(1) is equivalent to

v

p’ATy <aforally>0

or to
(Ap)Ty < aforally >0, (2)

v

Therefore, Ap < 0.
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Proof Contd.

v

By the separation theorem 3p € R"\{0} and o € R such that p’c > a and

p’x<aforallxeS. (1)

v

0eS=a>0=p’c>0.

(1) is equivalent to

v

p’ATy <aforally>0

or to
(Ap)Ty < aforally >0, (2)

v

Therefore, Ap < 0.

Contradiction to the assertion that implication (A) holds.

v
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Gordan’s Alternative Theorem

Theorem. Let A € R™*". Then exactly one of the following two systems
has a solution.

(A) Ax < 0.
(B) p#0,ATp=10,p>0.

Proof.
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Gordan’s Alternative Theorem

Theorem. Let A € R™*". Then exactly one of the following two systems
has a solution.

(A) Ax < 0.
(B) p#0,ATp=10,p>0.

Proof.
» Suppose that system (A) has a solution.
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Gordan’s Alternative Theorem

Theorem. Let A € R™*". Then exactly one of the following two systems
has a solution.

(A) Ax < 0.
(B) p#0,ATp=10,p>0.

Proof.
» Suppose that system (A) has a solution.
» Assume in contradiction that (B) is feasible: Ip # 0 satisfying
ATp=0,p>0.
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Gordan’s Alternative Theorem

Theorem. Let A € R™*". Then exactly one of the following two systems
has a solution.

(A) Ax < 0.
(B) p#0,ATp=10,p>0.

Proof.
» Suppose that system (A) has a solution.
» Assume in contradiction that (B) is feasible: Ip # 0 satisfying
ATp=0,p>0.
» Multiplying the equality ATp = 0 from the left by x” yields (Ax)"p = 0,
which is an impossible equality.
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Gordan’s Alternative Theorem

Theorem. Let A € R™*". Then exactly one of the following two systems
has a solution.

(A) Ax < 0.
(B) p#0,ATp=10,p>0.

Proof.
» Suppose that system (A) has a solution.
» Assume in contradiction that (B) is feasible: Ip # 0 satisfying
ATp=0,p>0.
» Multiplying the equality ATp = 0 from the left by x” yields (Ax)"p = 0,
which is an impossible equality.
> Suppose that system (A) does not have a solution.

Amir Beck “Introduction to Nonlinear Optimization” Lecture Slides - Linearly Constrained Problems 6 /21



Gordan’s Alternative Theorem

Theorem. Let A € R™*". Then exactly one of the following two systems
has a solution.

(A) Ax < 0.
(B) p#0,ATp=10,p>0.

Proof.

» Suppose that system (A) has a solution.

» Assume in contradiction that (B) is feasible: Ip # 0 satisfying
ATp=0,p>0.

» Multiplying the equality ATp = 0 from the left by x” yields (Ax)"p = 0,
which is an impossible equality.

> Suppose that system (A) does not have a solution.

> System (A) is equivalent to (s is a scalar) to Ax + se < 0,s > 0.
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Gordan’s Alternative Theorem

Theorem. Let A € R™*". Then exactly one of the following two systems
has a solution.

(A) Ax < 0.
(B) p#0,ATp=10,p>0.

Proof.

>
>

Suppose that system (A) has a solution.

Assume in contradiction that (B) is feasible: Jp # 0 satisfying
ATp=0,p>0.

Multiplying the equality ATp = 0 from the left by x” yields (Ax)"p = 0,
which is an impossible equality.

Suppose that system (A) does not have a solution.

System (A) is equivalent to (s is a scalar) to Ax + se < 0,s > 0.

or to A (2) <0,c” (Z) > 0, where A = (A e)andc=en1.
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Gordan’s Alternative Theorem

Theorem. Let A € R™*". Then exactly one of the following two systems
has a solution.

(A) Ax < 0.
(B) p£0,ATp=0,p > 0.

Proof.

» Suppose that system (A) has a solution.

» Assume in contradiction that (B) is feasible: Ip # 0 satisfying
ATp=0,p>0.

» Multiplying the equality ATp = 0 from the left by x” yields (Ax)"p = 0,
which is an impossible equality.

> Suppose that system (A) does not have a solution.

> System (A) is equivalent to (s is a scalar) to Ax + se < 0,s > 0.

> orto A )s( <0,c” )s( >0, where A= (A e) and c= e, 1.
> The infeasibility of (A) is thus equivalent to the infeasibility of the system
Aw <0,c"w > 0,w € R".
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Proof of Gordan Contd.

» By Farkas' lemma, 3z € R such that

AT
(eT> Z—=2¢C
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Proof of Gordan Contd.

» By Farkas' lemma, 3z € R such that

AT
£

> (z)EIzE]RT:ATz:O,eTz:l.
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Proof of Gordan Contd.

» By Farkas' lemma, 3z € R such that

AT
£

> <:>E|Z€R_T:ATZ=0,ETZ=1.
» < 30£zeRT:ATz=0.
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Proof of Gordan Contd.

v

By Farkas' lemma, 3z € R such that

AT
£

& EIZERT:ATz:O,eTz: 1.
& 30#£zeRT:ATz=0.
= System (B) is feasible.

v

v

v

Amir Beck “Introduction to Nonlinear Optimization” Lecture Slides - Linearly Constrained Problems 7/21



KKT Conditions for Linearly Constrained Problems

Theorem (KKT conditions for linearly constrained problems - necessary op-
timality conditions)
Consider the minimization problem

min  f(x),
(P) st. a/x<b,i=12....m

where f is continuously differentiable over R"”, aj,as,...,a, €
R" by, by, ..., by € R and let x* be a local minimum point of (P). Then
there exist A\1, Ao, ..., Ayn > 0 such that

Vf(x*) aF zm: Aa; =0. (3)

and
N(a/x*—b)=0, i=1,2,...,m. (4)
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Proof of KKT Theorem

> x* is a local minimum = x* is a stationary point.
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Proof of KKT Theorem

> x* is a local minimum = x* is a stationary point.
> Vf( )7 (X —X ) > 0 for every x € R" satisfying a/ x < b; for any
=1,2,.

) 9
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Proof of KKT Theorem

» x* is a local minimum = x* is a stationary point.

» VF(x*)T(x —x*) > 0 for every x € R” satisfying a] x < b; for any
i=1,2,...,m.

» Denote the set of active constraints by

I(x*) = {i:a]x* = b;}.
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Proof of KKT Theorem

» x* is a local minimum = x* is a stationary point.

» VF(x*)T(x —x*) > 0 for every x € R” satisfying a] x < b; for any
i=1,2,...,m.

» Denote the set of active constraints by

I(x*) = {i:a]x* = b;}.

> Making the change of variables y = x — x*, we have

V£(x*)Ty > 0 for any y € R™ satisfying a/ (y + x*) < b;,i =1,2,...
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Proof of KKT Theorem

*

» x* is a local minimum = x* is a stationary point.

» VF(x*)T(x —x*) > 0 for every x € R” satisfying a] x < b; for any
i=1,2,...,m.

» Denote the set of active constraints by

I(x*) = {i:a]x* = b;}.

> Making the change of variables y = x — x*, we have

V£(x*)Ty > 0 for any y € R™ satisfying a/ (y + x*) < b;,i =1,2,...

» or Vf(x*)Ty > 0 for any y satisfying

a’y<o0 i€ l(x*),
aly < b —a]x* i¢l(x*).
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Proof of KKT Theorem

» x* is a local minimum = x* is a stationary point.

» VF(x*)T(x —x*) > 0 for every x € R” satisfying a] x < b; for any
i=1,2,...,m.

» Denote the set of active constraints by

I(x*) = {i:a]x* = b;}.

v

Making the change of variables y = x — x*, we have

V£(x*)Ty > 0 for any y € R™ satisfying a] (y + x*) < bj,i =1,2,...,m

» or Vf(x*)Ty > 0 for any y satisfying

a’y<o0 i€ l(x*),
aly < b —a]x* i¢l(x*).

v

The second set of inequalities can be removed, that is, we will prove that

a/y <O0foralliel(x*)= VFf(x*)y>0.
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Proof Contd.

» Suppose then that y satisfies a]y < 0 for all i € /(x*)
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Proof Contd.

» Suppose then that y satisfies a]y < 0 for all i € /(x*)

» Since b; —a/x* > 0 for all i ¢ I(x*), it follows that there exists a small
enough « > 0 for which a (ay) < b; — a/x*.

Amir Beck “Introduction to Nonlinear Optimization” Lecture Slides - Linearly Constrained Problems 10/ 21



Proof Contd.

» Suppose then that y satisfies a]y < 0 for all i € /(x*)

» Since b; —a/x* > 0 for all i ¢ I(x*), it follows that there exists a small
enough « > 0 for which a (ay) < b; — a/x*.

» Thus, since in addition a] (ay) < 0 for any i € I(x*), it follows by the
stationarity condition that Vf(x*)Ty > 0.
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Proof Contd.

» Suppose then that y satisfies a]y < 0 for all i € /(x*)

» Since b; —a/x* > 0 for all i ¢ I(x*), it follows that there exists a small
enough « > 0 for which a (ay) < b; — a/x*.

» Thus, since in addition a] (ay) < 0 for any i € I(x*), it follows by the
stationarity condition that Vf(x*)Ty > 0.

» We have shown a]y <0 for all i € /(x*) = Vf(x*)Ty > 0.
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Proof Contd.

» Suppose then that y satisfies a/y < 0 for all i € /(x*)

» Since b; —a/x* > 0 for all i ¢ I(x*), it follows that there exists a small
enough o > 0 for which a] (ay) < b; —a] x*.

» Thus, since in addition a] (ay) < 0 for any i € I(x*), it follows by the
stationarity condition that Vi(x*)Ty > 0.

» We have shown a]y <0 for all i € /(x*) = Vf(x*)Ty > 0.
> By Farkas’ lemma 3)\; > 0,7 € /(x*) such that

~VFx) = > Na.

i€l(x*)
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Proof Contd.

» Suppose then that y satisfies a/y < 0 for all i € /(x*)

» Since b; —a/x* > 0 for all i ¢ I(x*), it follows that there exists a small
enough o > 0 for which a] (ay) < b; —a] x*.

» Thus, since in addition a] (ay) < 0 for any i € I(x*), it follows by the
stationarity condition that Vi(x*)Ty > 0.

» We have shown a]y <0 for all i € /(x*) = Vf(x*)Ty > 0.
> By Farkas’ lemma 3)\; > 0,7 € /(x*) such that

~VFx) = > Na.

i€l(x*)

» Defining \; = 0 for all i ¢ /(x*) we get that \;(a/x* — b;) = 0 for all
i€{l,2,...,m} and
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The Convex Case

Theorem [KKT conditions for convex linearly constrained problems -
necessary and sufficient optimality conditions]
Consider the minimization problem

min  f(x),
(P) st. a/x<b,i=12....m

where f is a convex continuously differentiable function over R”,
a;,az,...,an € R" by, bo,...,b,, € R and let x* be a feasible solu-
tion of (P). Then x* is an optimal solution if and only if there exist
A1, A2, ..., Am > 0 such that

VF(x*)+ ) Na; =0. (5)

and
N(a/x* —b)=0, i=1,2,...,m. (6)
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Proof of KKT in Convex Case

» Necessity was proven.
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Proof of KKT in Convex Case

> Necessity was proven.

> Suppose that x* is a feasible solution of (P) satisfying (5) and (6). Let x be
a feasible solution of (P).
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Proof of KKT in Convex Case

> Necessity was proven.
> Suppose that x* is a feasible solution of (P) satisfying (5) and (6). Let x be
a feasible solution of (P).

» Define the function

h(x) = f(x) + Z Ni(al x — by).
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Proof of KKT in Convex Case

> Necessity was proven.

> Suppose that x* is a feasible solution of (P) satisfying (5) and (6). Let x be
a feasible solution of (P).

» Define the function

h(x) = f(x) + Z Ni(al x — by).

> Vh(x*) =0 = x* is a minimizer of h over R".
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Proof of KKT in Convex Case

> Necessity was proven.

> Suppose that x* is a feasible solution of (P) satisfying (5) and (6). Let x be
a feasible solution of (P).

Define the function

v

h(x) = f(x) + Z Ni(al x — by).

v

Vh(x*) = 0 = x* is a minimizer of h over R".
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Problems with Equality and Inequality Constraints

Theorem [KKT conditions for linearly constrained problems]
Consider the minimization problem

min  f(x),
(Q) st a/x<b,i=1,2,...,m,
¢/x=d, j=12,...,p.
where f cont. dif., aj,c; € R", b;, d; € R.

(i) (necessity of the KKT conditions) If x* is a local minimum of (Q), then
there exist A1, A2,...,Am > 0 and pa, po, ..., p € R such that

m P
VF(x") + Z Aiai + Zujcj = 0, (7)
i=1 j=1
N@Ix*—b) = 0, i=1,2,...,m. (8)

(i) (sufficiency in the convex case) If f is convex over R” and x™ is a feasible
solution of (Q) for which there exist A1,...,Am >0 and p1,...,up €ER
such that (7) and (8) are satisfied, then x* is an optimal solution of (Q).
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Representation Via the Lagrangian

Given the a problem

min  f(x
(NLP) st gi(x)<0,i=1,2,...,m,
hi(x) =0,j=1,2,...,p.
The associated Lagrangian function os
P
L(x, A\, p) = f(x +Z)\g, +Z,ujh(x).
j=1
The KKT conditions can be written as
P
Val(x', A 1) = )+ ZA Vai(x') + Y wVhi(x") =0
Jj=1

)\,-g,-(x*) = 0, /:1,2,...,m
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Examples

>
N 2 2
min (X +x35 +x3)
st. x1+x+x3=23.
»
min X2 + 2x2 + 4x1x0
st. x3+x =1,
x1,x2 > 0.
In class
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Projection onto Affine Spaces

Lemma. Let C be the affine space
C ={xeR": Ax = b},
where A € R™*" and b € R™. Then

Pc(y) =y — AT(AAT)"'(Ay —b).

Proof. In class
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Orthogonal Projection onto Hyperplanes
Consider the hyperplane

H={xcR":a'x=b} (0#acR" bcR).
Then by the previous slide:
aly—b

Pu(y)=y—a(a’a) *(a’y —b) =y — W&
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Orthogonal Projection onto Hyperplanes
Consider the hyperplane

H={xcR":a'x=b} (0#acR" bcR).

Then by the previous slide:
a'y—b
Pu(y) =y —afa’a) " (aTy ~b) =y~ T o"

Lemma (distance of a point from a hyperplane) Let H = {x € R" :
a’x = b}, where 0 # a € R” and b € R. Then

Proof.

aly — b la"y — b]
d(y. H) = lly = Puly)l| = Hy - <y " Tal? )H R
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Orthogonal Projection onto Half-Spaces

Let H- = {x € R":a’x < b}, i
where 0 #a € R” and b € R. - y
Then . ' y
T _ b // ‘ He{x:a x = b} o}
Py-(x) = x o |)|(a||2 b - L

Proof. In class
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Orthogonal Regression

> ai,...,an € R
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Orthogonal Regression

> ai,...,a, € R".

» For a given 0 # x € R"” and
y € R, we define the
hyperplane:

Hy, = {aGR”:xTa:y}.
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Orthogonal Regression

> ai,...,a,n € R,

» For a given 0 # x € R" and . 3
y € R, we define the 4 .
2 4
hyperplane: ,, .

Hy, = {aGR”:xTa:y}.

> In the orthogonal regression problem we seek to find a nonzero vector x € R”
and y € R such that the sum of squared Euclidean distances between the
points a,...,an to Hy, is minimal:

i d(aj, He,)?: 0 €R"yeR
min ; (ai, Hxy)? 10 # x € R", y
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Orthogonal Regression

T 2
2 _ (ajx—y) -
> d(aj, Hx,y)* = e = 1,...,m.
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Orthogonal Regression
2 _ @x=y®
> d(a,-,nyy) :W, l:].,...’m.
» The Orthogonal Regression problem is the same as

& (@fx—y)? ,
mln{z(’”xzy):O;«éxeR,yeR}.

i=1
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Orthogonal Regression
2 _ (alx—y)?
> d(a,-,nyy) ZIHXT, l:].,...,m.
» The Orthogonal Regression problem is the same as

& (@l x—y)? ,
mln{z(’”x;):O;«éxeR,yeR}.
i=1

> Fixing x and minimizing first with respect to y we obtain that the optimal y
is given by y = L 3" alx = LeTAx.
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Orthogonal Regression
2 _ (alx—y)?
> d(a,-,nyy) = ’Hx”z , 1= 1,...,m.
» The Orthogonal Regression problem is the same as

& (@l x—y)? ,
mln{z(’”x;):O;«éxeR,yeR}.

i=1

> Fixing x and minimizing first with respect to y we obtain that the optimal y
is given by y = L 3" alx = LeTAx.
» Using the above expression for y we obtain that

m m 2
Z (a,—Tx - y)2 Z (a,-Tx - %eTAx>

i=1 i=1

= Y@l - %Z(eTAx)(a,-T X) + %(eTAx)z

- T \2 1 T 2 2 1 T 2
= 7x)? — —(e"Ax)® = ||Ax|]> — —(e"A
D@70 = (7 A% = AXI” — 1 (e7A%)

= x'AT (Im - leJ) Ax.
m
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Orthogonal Regression

» Therefore, a reformulation of the problem is

| xT[AT(1, — LeeT)A]x
min

x 12

x#0
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Orthogonal Regression

» Therefore, a reformulation of the problem is

min {XT[AT(Im — meel)Alx IX # 0} )

x 12

Proposition. An optimal solution of the orthogonal regression problem (x, y)
where x is an eigenvector of AT (l,,— Lee)A associated with the minimum
eigenvalue and y = % > a/ x. The optimal function value of the problem

is Amin [AT (I, — LeeT)A].
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